By Joseph Caleb Chappell Three Groups of Fluorapatite from the Mont

Total Page:16

File Type:pdf, Size:1020Kb

By Joseph Caleb Chappell Three Groups of Fluorapatite from the Mont ABSTRACT CHEMICAL AND STRUCTURAL CHARACTERIZATION OF FLUORAPATITE FROM THE POUDRETTE PEGMATITE, MONT SAINT-HILAIRE, QUEBEC, CANADA by Joseph Caleb Chappell Three groups of fluorapatite from the Mont Saint-Hilaire igneous complex in Quebec, Canada have been analyzed with scanning electron microscopy (SEM), electron probe microanalyses (EPMA), single-crystal X-ray diffraction (SCXRD), Fourier transform infrared spectroscopy (FTIR), and magic angle spinning nuclear magnetic resonance (MAS-NMR) to fully characterize the chemical and structural details of fluorapatite from one of the most mineralogically diverse locales on Earth. SEM and EPMA revealed these fluorapatites to be enriched in Th, Y, and Na, while FTIR showed substantial concentrations of carbonate substituting for phosphate at the tetrahedral site. The Th contents observed in these fluorapatites are the highest ever observed for natural samples, and have implications for designing new solid nuclear waste forms. SCXRD refinements revealed the dissymetrization of two of the three groups from the classic P63/m space group to the P space group due to the elevated Y and Na contents. Lastly, the FTIR and NMR data show the presence of the long debated C-F bond the observation of which has important implications for the incorporation of carbonate groups into apatites, and is the first time this bond has been observed in any natural mineral. CHEMICAL AND STRUCTURAL CHARACTERIZATION OF FLUORAPATITE FROM THE POUDRETTE PEGMATITE, MONT SAINT-HILAIRE, QUEBEC, CANADA A Thesis Submitted to the Faculty of Miami University In partial fulfillment of The requirements for the degree of Master of Science. Department of Geology and Environmental Earth Science. by Joseph Caleb Chappell Miami University Oxford, Ohio. 2019 Advisor: John Rakovan Reader: Claire McLeod Reader: Mark Krekeler ©2019 Joseph Caleb Chappell This thesis titled CHEMICAL AND STRUCTURAL CHARACTERIZATION OF FLUORAPATITE FROM THE POUDRETTE PEGMATITE, MONT SAINT-HILAIRE, QUEBEC, CANADA by Joseph Caleb Chappell has been approved for publication by The College of Arts and Science and Department of Geology and Environmental Earth Science ____________________________________________________ John Rakovan ______________________________________________________ Claire McLeod _______________________________________________________ Mark Krekeler Table of Contents List of Tables…………………………………………………………………………………….iv List of Figures……………………………………………………………………………….……v Dedication……………………………………………………………………………...…….…..vi Acknowledgments……………………………………………………………...………...….….vii Introduction……………………………………………………………………………………....1 Occurrence…………………………………………………………….………………………….2 Analytical Methods………………………………………………………………………………3 Scanning Electron Microscopy……………........................................................................3 Electron Probe Microanalysis…………………………………………………………….3 Single Crystal X-ray Diffraction…………………………………………………………..3 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy………………...4 Magic Angle Spinning-Nuclear Magnetic Resonance…………………………………….4 Results Scanning Electron Microscopy……………………………………………………………5 Electron Probe Microanalysis…………………………………………………………….5 Single Crystal X-ray Diffraction…………………………………………………………..6 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy………………...6 Magic Angle Spinning-Nuclear Magnetic Resonance…………………………………….7 Discussion Sodium in the fluorapatite structure………………………………………………………7 Thorium in the fluorapatite structure……………………………………………………..8 Yttrium in the fluorapatite structure………………………………………………………9 Solid solution with belovite group minerals……………………………………………..10 3- Carbonate in the fluorapatite structure and evidence for the CO3F molecule…………10 Conclusions……………………………………………………………………………………...11 References……………………………………………………………………………………….12 Tables……………………………………………………………………………………………16 Figures……………………………………………………………………………………...........20 Supplemental Data……………………………………………………………………………...32 iii List of Tables Table 1. SCXRD Experimental Details from group 2………………….………………………..17 Table 2. Atomic positions, etc, for group 2……………………………………...………………18 Table 3. Selected mean bond lengths from group 2…………………………………….….…….18 Table 4. SCXRD Experimental Details from group 3…………………………….……….…….19 Table 5. Atomic positions, etc, for group 3…………………………………………….…..……20 Table 6. Selected mean bond lengths from group 3……………………………………….……..20 iv List of Figures Figure 1. Geologic map of Mont Saint-Hilaire……………………………………………...…..21 Figure 2. Picture if the Poudrette pegmatite………………………………………………...…..22 Figure 3. XEDS spectrum of the Mont Saint-Hilaire fluorapatite………………………………23 Figure 4. SEM image of fluorapatite……………………………………………………………24 Figure 5. Mean EPMA analyses for all fluorapatites……………………………………………25 Figure 6. CIF of refined group 2 fluorapatite crystal structures…………………………...……26 Figure 7. CIF of refined group 3 fluorapatite crystal structures…………………………….…..27 Figure 8. ATR-FTIR spectrum of group 2 fluorapatite……………………………………...….28 Figure 9. ATR-FTIR spectrum of group 3 fluorapatite…………………………………...…….29 Figure 10. ATR-FTIR zoom of C-F signal region for group 2 fluorapatite……………………..30 Figure 11. ATR-FTIR zoom of C-F signal region for group 3 fluorapatite……………………..31 Figure 12. 19F MAS-NMR spectrum of group 3 fluorapatite……………………………….…...32 v Dedication This body of work is dedicated to my wife Hillary and our two cats Halpert and Beesly who we adopted right as I was beginning this Master’s degree. Beesly unfortunately passed away quite suddenly, just days after the defending this thesis, but he will always hold a special place in our hearts. vi Acknowledgments This work would not have been possible without the mentoring of my adviser John Rakovan and his expertise in the field of apatite chemistry. The collection of the FTIR data by Andy Sommer in the Department of Chemistry at Miami University is greatly appreciated, as is the NMR data collection by Brian Phillips in the Department of Geoscience at Stony Brook University. Lázslo and Elsa Horváth originally provided the samples to be studied, and without them this entire project would not have begun. vii Introduction Fluorapatite (Ca5(PO4)3F) is the most common phosphate mineral on Earth, and its accommodating crystal structure allows for nearly half the elements on the periodic table to substitute into one of 4 distinct sites (Hughes & Rakovan 2015). The M1 site is 9-fold coordinated and generally accommodates cations slightly larger than Ca, while the M2 site is 7-fold coordinated and generally incorporates cations slightly smaller than Ca, though this is not always the case (Fleet & Pan 1997). The tetrahedrally coordinated site, where P5+ sits in end member fluorapatite, can accommodate cations such as Si4+, C4+, , As5+, V5+, and S6+. And lastly the X site, or anion column site, is often occupied by more than one constituent with the most to least common being F, OH, Cl, and C. Because of this flexible crystal structure and crystal chemistry, fluorapatite has been studied extensively for a variety of applications, including biomedical, environmental remediation, and multiple materials science applications (Rakovan & Pasteris 2015). Because of its ubiquity in rock forming environments, large stability field, and affinity for many trace elements including lanthanides and actinides, fluorapatite has long been used in geochronologic and petrogenetic studies (Piccoli & Candela 2002, Braund et al. 2017, Chakhmouradian et al. 2017). These same characteristics are reasons for interest in using apatite as a sequestration agent for heavy metals and as a solid nuclear waste form (Ewing & Wang 2002, Luo et al. 2011, Rigali et al. 2016, Li et al. 2017). Naturally occurring fluorapatite has been found with significant quantities of U and Th, up to 0.40wt %, and perhaps most notably Pu at the Oklo natural reactor in Gabon (Bros et al. 1996, Horie et al. 2004). Both studies concluded that fissiongenic LREE and nucleogenic Pu were selectively trapped in the fluorapatite grains while the reactor was at its peak and have remained in the crystal structure over the last ~2.0Ga years (Bros et al. 1996, Horie et al. 2004). The retention of these elements within the apatite grains is especially interesting when considering the dissolution of uraninite during this time span. Studies such as Rakovan and Hughes (2000), Rakovan et al. (2002), Luo et al. (2009), and Luo et al. (2011) have utilized single-crystal X-ray diffraction (SCXRD) and extended X-ray absorption fine structure (EXAFS) techniques to assess the site preference of fissiongenic elements such as U and Th in the apatite structure, and have yielded significant insight into the accommodation of these elements by the fluorapatite structure. 2- Substitution of the CO3 ion into apatite has also been of great interest and debate, mainly among those studying apatite for biomedical applications (Reigner et al. 1994, Fleet & Liu 2003, Fleet 2017). Because of the often-small size of natural and synthetic apatite crystals that are heavily 2- 2- substituted by the CO3 ion, samples which do contain significant CO3 content and have crystals of large enough size for single-crystal X-ray diffraction studies are of considerable interest to those studying this aspect of apatite crystal chemistry (Fleet 2014). A suite of 12 apatite group minerals from the Poudrette Quarry in the Mont Saint-Hilaire igneous complex have been examined with electron probe microanalyses, single-crystal X-ray diffraction, Fourier transform
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Kosnarite Kzr2(PO4)3 C 2001-2005 Mineral Data Publishing, Version 1
    Kosnarite KZr2(PO4)3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal, pseudocubic. Point Group: 32/m. As rhombohedral pseudocubic crystals, to 0.9 mm, with {1012} and tiny {0001}. Physical Properties: Cleavage: Perfect on {1012}. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4.5 D(meas.) = 3.194(2) D(calc.) = 3.206 Optical Properties: Transparent to translucent. Color: Pale blue to blue-green, bluish gray, nearly colorless. Streak: White. Luster: Vitreous. Optical Class: Uniaxial (+). ω = 1.656(2) = 1.682(2) Cell Data: Space Group: R3c. a = 8.687(2) c = 23.877(7) Z = 6 X-ray Powder Pattern: Mt. Mica, Maine, USA. 4.329 (100), 3.806 (90), 2.928 (90), 6.41 (50), 4.679 (50), 2.502 (50), 1.903 (45) Chemistry: (1) (2) (3) P2O5 43.3 42.2 42.04 ZrO2 44.5 47.9 48.66 HfO2 0.5 0.9 FeO 0.2 < 0.1 MnO 1.0 < 0.1 Na2O 1.4 < 0.1 K2O 8.7 9.25 9.30 Rb2O 0.25 0.2 F 0.20 0.2 −O=F2 0.08 0.08 Total 99.97 100.57 100.00 (1) Mt. Mica, Maine, USA; by electron microprobe, total Fe as FeO, total Mn as MnO; corresponds to (K0.93Na0.08Rb0.01)Σ=1.02(Zr1.81Na0.15Mn0.07Fe0.01Hf0.01)Σ=2.05 [P1.02(O3.98F0.02)Σ=4.00]3. (2) Black Mountain, Maine, USA; by electron microprobe, total Fe as FeO, total Mn as MnO; corresponds to (K0.99Rb0.01)Σ=1.00(Zr1.96Hf0.02)Σ=1.98 [P1.00(O3.98F0.02)Σ=4.00]3.
    [Show full text]
  • Geology of the Hugo Pegmatite Keystone, South Dakota
    Geology of the Hugo Pegmatite Keystone, South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-B Geology of the Hugo Pegmatite Keystone, South Dakota By J. J. NORTON, L. R. PAGE, and D. A. BROBST PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-P A detailed structural and petrologic study of a pegmatite containing seven zones and two replacement bodies UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abstract.. _ ________________________________________ 49 Mineral distribution and paragenesis of the entire Introduction. ______________________________________ 49 pegmatite_ _ ______________________-___---------_ 96 General geology. ___________________________________ 52 Comparison of the zonal sequence with that in other Metamorphic rocks_ ____________________________ 52 pegmatites. ______________________________________ 97 Roy and Monte Carlo pegmatites.- _ __---__-______ 53 Replacement features-______________________________ 100 Structure __________________________________________ 53 Review of the evidence for replacement in pegma­ Pegmatite units ____________________________________ 53 tites __ _____________________________________ 100 Zone 1 : Albite-quartz-musco vite pegmatite ________ 56 Replacement in the Hugo pegmatite.____-_____-_- 102
    [Show full text]
  • MINERALIZATION in the GOLD HILL MINING DISTRICT, TOOELE COUNTY, UTAH by H
    MINERALIZATION IN THE GOLD HILL MINING DISTRICT, TOOELE COUNTY, UTAH by H. M. EI-Shatoury and J. A. Whelan UTAH GEOLOGICAL AND MINERALOGIC~4L SURVEY affiliated with THE COLLEGE OF MINES AND MINERAL INDUSTRIES University of Utah~ Salt Lake City~ Utah Bulletin 83 Price $2.25 March 1970 CONTENTS Page ABSTRACT. • • . • . • . • . • • . • . • . • • • . • • . • . • .. 5 INTRODUCTION 5 GENERAL GEOLOGY. .. 7 ECONOMIC GEOLOGY. 7 Contact Metasomatic Deposits. 11 Veins. • . 11 Quartz-Carbonate-Adularia Veins 11 Quartz Veins . 15 Calcite Veins. 15 Replacement Deposits . 15 Replacement Deposits in the Ochre Mountain Limestone 15 Replacement Deposits in the Quartz Monzonite 17 HYDROTHERMAL ALTERATION. 17 Alteration of Quartz Monzonite. • 17 Alteration of Limestones. 22 Alteration of the Manning Canyon Formation 23 Alteration of the Quartzite. 23 Alteration of Volcanic Rocks. 23 Alteration of Dike Rocks. 23 Alteration of Quartz-Carbonate Veins . 23 OXIDATION OF ORES. 23 Oxidation of the Copper-Lead-Arsenic-Zinc Replacement Deposits 24 Oxidation of Tungsten and Molybdenum Deposits. 24 Oxidation of the Lead-Zinc Deposits 25 MINERALOGY. 25 CONTROLS OF MINERAL LOCALIZATION 25 ZONAL ARRANGEMENT OF ORE DEPOSITS. 25 GENESIS OF ORE DEPOSITS. 29 DESCRIPTION OF PROPERTIES. 29 The Alvarado Mine. 29 The Cane Spring Mine 30 The Bonnemort Mine 32 The Rube Gold Mine . 32 The Frankie Mine 32 The Yellow Hammer Mine 33 The Rube Lead Mine . 34 FUTURE OF THE DISTRICT AND RECOMMENDATIONS. .. 34 ACKNOWLEDGMENTS. .. 36 REFERENCES. • . .. 36 2 ILLUSTRATIONS Page Frontis piece Figure I. Index map showing location and accessibility to the Gold Hill mining district, Utah . 4 2. Geologic map of Rodenhouse Wash area, showing occurrence of berylliferous quartz-carbonate-adularia veins and sample locations.
    [Show full text]
  • Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review
    materials Review Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review Kamil Pajor, Lukasz Pajchel and Joanna Kolmas * Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland * Correspondence: [email protected] Received: 29 July 2019; Accepted: 20 August 2019; Published: 22 August 2019 Abstract: Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials. Keywords: hydroxyapatite; fluorapatite; dentistry; calcium phosphates 1. Introduction In recent decades, one has been able to observe huge progress in the field of dentistry. This results not only from the development of dental techniques and methods of therapy but also from significant developments in biomaterial engineering. The science of biomaterials is constantly increasing due to innovative modifications of already known materials or completely new biomaterials for applications in dentistry. Biodegradable polymers, bioactive ceramics, bioglass or metals covered with a layer of material facilitating osseointegration and, above all, composite materials are the main directions in the development of dental biomaterials [1–4].
    [Show full text]
  • Evaluation of a Fluorapatite-Spinel Ceramic As a Bone Implant Denginur Aksaci Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 Evaluation of a fluorapatite-spinel ceramic as a bone implant Denginur Aksaci Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Materials Science and Engineering Commons Recommended Citation Aksaci, Denginur, "Evaluation of a fluorapatite-spinel ceramic as a bone implant " (1981). Retrospective Theses and Dissertations. 6961. https://lib.dr.iastate.edu/rtd/6961 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to ubtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • Phosphorus-From Discovery to Commodity
    Indian Journal of Chemical Technology Vol. 12, January 2005, pp. 108-122 Phosphorus-From discovery to commodity Jaime Wisniak* Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105 Phosphorus is nearly the most widely and evenly distributed element on the surface of the earth, and probably the most subdivided. From a laboratory curiosity in the seventeeth century, it became recognized as a fundamental element of life and a large chemical commodity, improving agriculture and industry like very few other discoveries by men have done. Discovery of phosphorus nor the phenomenon was really new. Organic Mankind has been aware of luminiscent phosphorescent materials were known to Aristotle, phenomena for thousands of years; they are and a lithophosphorus was the subject of a book mentioned in different mythology and in the Bible. published in 1640, based on a discovery made by a Glowworms and fireflies, and the luminescent shoemaker, Vicenzo Casciarol, on Mons Padernus, organisms in sea water or on decaying fish and wood near Bologna in 16303. Casciarol claimed that the were long familiar sights and attracted the curiosity of stone was so heavy that he thought it contained a men. The Greeks called the planet Venus by the name heavy metal and that after it had been calcined in Phosphorus (morning star, from the Greek φϖζ = charcoal fire and cooled, it glowed in the darkness light + φερω = to bear), because it was visible before with a reddish light. The stone was called sunrise and after sundown. Venus took the name litheosphorus and also Bologna stone or lapis phosphorus in the morning and Hesperus in the bononiensis.
    [Show full text]
  • ADA Fluoridation Facts 2018
    Fluoridation Facts Dedication This 2018 edition of Fluoridation Facts is dedicated to Dr. Ernest Newbrun, respected researcher, esteemed educator, inspiring mentor and tireless advocate for community water fluoridation. About Fluoridation Facts Fluoridation Facts contains answers to frequently asked questions regarding community water fluoridation. A number of these questions are responses to myths and misconceptions advanced by a small faction opposed to water fluoridation. The answers to the questions that appear in Fluoridation Facts are based on generally accepted, peer-reviewed, scientific evidence. They are offered to assist policy makers and the general public in making informed decisions. The answers are supported by over 400 credible scientific articles, as referenced within the document. It is hoped that decision makers will make sound choices based on this body of generally accepted, peer-reviewed science. Acknowledgments This publication was developed by the National Fluoridation Advisory Committee (NFAC) of the American Dental Association (ADA) Council on Advocacy for Access and Prevention (CAAP). NFAC members participating in the development of the publication included Valerie Peckosh, DMD, chair; Robert Crawford, DDS; Jay Kumar, DDS, MPH; Steven Levy, DDS, MPH; E. Angeles Martinez Mier, DDS, MSD, PhD; Howard Pollick, BDS, MPH; Brittany Seymour, DDS, MPH and Leon Stanislav, DDS. Principal CAAP staff contributions to this edition of Fluoridation Facts were made by: Jane S. McGinley, RDH, MBA, Manager, Fluoridation and Preventive Health Activities; Sharon (Sharee) R. Clough, RDH, MS Ed Manager, Preventive Health Activities and Carlos Jones, Coordinator, Action for Dental Health. Other significant staff contributors included Paul O’Connor, Senior Legislative Liaison, Department of State Government Affairs.
    [Show full text]
  • Microbially Mediated Transformations of Phosphorus in the Sea: New Views of an Old Cycle
    MA06CH12-Karl ARI 5 November 2013 15:33 Microbially Mediated Transformations of Phosphorus in the Sea: New Views of an Old Cycle David M. Karl Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, Hawaii 96822; email: [email protected] Annu. Rev. Mar. Sci. 2014. 6:279–337 Keywords The Annual Review of Marine Science is online at biogeochemistry, subtropical gyre, nutrients, primary production marine.annualreviews.org This article’s doi: Abstract 10.1146/annurev-marine-010213-135046 Phosphorus (P) is a required element for life. Its various chemical forms by University of Hawaii at Manoa Library on 01/06/14. For personal use only. Copyright c 2014 by Annual Reviews. are found throughout the lithosphere and hydrosphere, where they are Annu. Rev. Marine. Sci. 2014.6:279-337. Downloaded from www.annualreviews.org All rights reserved acted on by numerous abiotic and biotic processes collectively referred to as the P cycle. In the sea, microorganisms are primarily responsible for P assimilation and remineralization, including recently discovered P reduction-oxidation bioenergetic processes that add new complexity to the marine microbial P cycle. Human-induced enhancement of the global P cycle via mining of phosphate-bearing rock will likely influence the pace of P-cycle dynamics, especially in coastal marine habitats. The inextricable link between the P cycle and cycles of other bioelements predicts future impacts on, for example, nitrogen fixation and carbon dioxide sequestration. Additional laboratory and field research is required to build a comprehensive understanding of the marine microbial P cycle. 279 MA06CH12-Karl ARI 5 November 2013 15:33 1.
    [Show full text]
  • Roscherite-Group Minerals from Brazil
    ■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.
    [Show full text]
  • Synthesis and Characterization of Strontium Fluorapatite
    UNLV Retrospective Theses & Dissertations 1-1-2005 Synthesis and characterization of strontium fluorapatite Chirantha Prageeth Rodrigo University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Rodrigo, Chirantha Prageeth, "Synthesis and characterization of strontium fluorapatite" (2005). UNLV Retrospective Theses & Dissertations. 1813. http://dx.doi.org/10.25669/mwff-o6ha This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. SYNTHESIS AND CHARACTERIZATION OF STRONTIUM FLUORAPATITE by Chirantha Prageeth Rodrigo Bachelor of Science University of Colombo, Sri Lanka 2001 A thesis submitted in partial fulfillment of the requirements for the Master of Science Degree in Chemistry Department of Chemistry College of Sciences Graduate College University of Nevada, Las Vegas August 2005 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1428601 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • Tavistockite and Bialite Discredited
    MINERALOGICAL MAGAZINE, MARCH 1969, VOL. 37, NO. 285 Tavistockite and bialite discredited P. G. EMBREY AND E. E. FEJER Department of Mineralogy, British Museum (Natural History) SUMMARY. Specimens of tavistockite fall into two groups: true tavistockite from the George and Charlotte mine, Tavistock, Devon, and wavellite from the Stenna Gwyn mine, St. Austell, Cornwall. Both were sold as tavistockite by the discoverer, Richard TaIling. Tavistockite proper is a fluorapatite, as shown by optical and X-ray examination, and the alumina and water in the original analysis are certainly derived from kaolinite with which the apatite is intimately associated. The published optical properties attributed to tavistockite were determined by E. S. Larsen on Stenna Gwyn material, and are those of wavellite. Re-examination of a portion of Buttgenbach's type bialite, which he related to tavistockite on optical grounds, shows it to be wavellite. TAVISTOCKITE has been a doubtful species from the time it was first described in 1865 by A. H. Church! as 'Hydrated Calcium-aluminic Phosphate (?)'. Its apparent validity has been established by successive appearances in all the standard works on systematic mineralogy, starting with J. D. Dana's renaming as tavistockite in 1868.2 The present study is perhaps as much historical as mineralogical, since Church's original material cannot be traced and other specimens present a confused picture both in naming and in locality. We have studied seventeen specimens (see table) that are or have at one time been labelled tavistockite, and find that they fall into two distinct groups that may readily be characterized by the mineral assemblages present.
    [Show full text]