Michael F. Atiyah Mathematics' Deep Reasons by Claudio Bartocci

Total Page:16

File Type:pdf, Size:1020Kb

Michael F. Atiyah Mathematics' Deep Reasons by Claudio Bartocci Michael F. Atiyah Mathematics’ Deep Reasons by Claudio Bartocci The age of unification How will the mathematics of the last fifty years appear to the eyes of future historians? As difficult as it is to make predictions that depend in large part on developments to come (Lakatos docet), we can hazard a guess that the second half of the twentieth century will probably be considered a period of extraordinary proliferation of new ideas, and at the same time, of the rediscovery of the fundamental unity of mathematics. In the first half of the century, marked by the triumphant of Hilbert’s program culminating in the great undertaking of the Bourbaki group, there was a widespread tendency – we might say – towards specialization and therefore towards the parcelling out of mathematical knowledge: doubtless, it was this tendency that made possible the rapid development of disciplines such as general topology, group theory, mathematical logic, differential geometry, functional analysis, algebraic and differential topology, commutative algebra and algebraic geometry (even if this last was destined to change its face in later years). On the contrary, the second fifty years are characterized above all as an “era of unification, where borders are crossed over, techniques have been moved from one field into the other, and things have become hybridised to an enormous extent”:1 cross-fertilization has prevailed as the dominant paradigm. There are many examples that lend support to this thesis: the admirable theoretical edifice constructed by Grothendieck; the development of research areas such as global analysis; the omnipresence of category theory methods; arithmetic geometry or Alain Connes’s non-commutative geometry; the formidable results obtained by mathematicians such as Vladimir Arnol’d, Yuri I. Manin, Shing Tung Yau, Simon K. Donaldson, Vaughan Jones, Edward Witten, Richard Borcherds, Robert Langlands and Andrew Wiles. But perhaps more than anyone else, the person who demonstrated how fruitful it can be to delve into different disciplinary contexts in order to arrive at fundamental discoveries, to dig down to the roots of problems that are apparently distinct in order to identify the profound reason that unites them, is Michael Francis Atiyah, without a doubt one of the most prolific and influential mathematicians of the past century. From algebraic geometry to K-theory Born in London on 22 April 1929 to a Lebanese father and Scottish mother, Atiyah spent the years of his boyhood in Khartoum, Sudan and Cairo.2 In 1945, at the end of World War II, his family moved to England; the young Michael was sent to Manchester Grammar School, beacuse it was reputed to be the best school for mathematics in England. After having spent two-years in the National Service, he enrolled at Trinity College in Cambridge: his first article, written in 1952 under the guidance of J. A. Todd, regarded a question of projective geometry. Having begun his doctoral studies, still at Cambridge, Atiyah chose as his supervisor one of the greatest English mathematicians, William V. D. Hodge, who in 1941 had published his famous treatise on harmonic integrals. Hodge directed him to the work of Chern on characteristic classes; Atiyah went to discover the new ideas – developed above all by the French school (André Weil, Henri Cartan, Jean- Pierre Serre) – which were emerging in those years in algebraic geometry.3 He got acquainted with vector bundles, coherent sheaves and their cohomology, and became a voracious reader of the Comptes rendus. In 1955-1956 Atiyah spent a long period Institute of Advanced Study in Princeton, where he came to know Raoul Bott, Friedrich Hirzebruch and Isadore M. Singer and Serre, and would broaden his horizons in an atmosphere that was very stimulating intellectually. The author warmly thanks Sir Michael Atiyah for reading a preliminary version of this article and for pointing out a few inaccuracies. 1 M. F. Atiyah, “Mathematics in the XXth Century”, Bulletin of the London Mathematical Society, 34 (2002), pp. 1- 15. 2 Atiyah himself provided detailed information about his life and his research activities in a series of talks, recorded in March of 1997, available (along with their transcripts) on the website http://peoplesarchives.com. See also M. F. Atiyah, Siamo tutti matematici, Di Renzo, Rome, 2007. 3 Cf. Jean Dieudonné, History of algebraic geometry, Wadsworth, Monterey 1985, chap. VIII. C. Bartocci –Michael F. Atiyah: Mathematics’ deep reasons– 1 Until 1959 the most part of Atiyah’s works were in algebraic geometry: of particular note, for example, is the 1957 article on the classification of vector bundles on an elliptic curve. In later years – after his return to Europe – his interests would turn above all to topology. This reorientation was principally due to the influence of the German mathematician Friedrich Hirzebruch, organizer of the famous Arbeitstagung in Bonn, in which Atiyah was a faithful participant. Hirzebruch had extended (and reinterpreted in a topological key) the classic Riemann-Roch theorem to algebraic manifolds of higher dimensions and, making use of Thom’s cobordism theory, had defined particular combinations of “characteristic numbers” that assume integer values not only for algebraic manifolds, but for all differentiable manifolds as well. Hirzebruch’s results, united to Grothendieck’s profound generalization of the theorem of Hirzebruch-Riemann-Roch and to Bott’s theorem of periodicity,4 are the ingredients at the base of topological K-theory, which Atiyah (in collaboration with Hirzebruch) set out between 1959 and 1962.5 Atiyah himself recalls: “… I saw that by mixing all these things together you ended up with some interesting topological consequences, and because of that we then thought it would be useful to introduce the topological K-group as a formal apparatus in which to carry this out”.6 K-theory – which can be thought of as a kind of generalized cohomology theory constructed beginning with the isomorphism classes of vector bundles – immediately showed itself to be a useful and versatile tool for tackling problems of various natures: one of the most remarkable example was the solution by Frank Adams in 1962 of the problem of the maximum number of nowhere vanishing and (pointwise) linearly independent tangent vector fields on an odd-dimensional sphere (by the famous “hairy ball theorem”, the 2n- sphere has no non-vanishing vector field for n ≥ 1). At the International Congress of Mathematicians in Stockholm in 1962, Atiyah presented the numerous, and in large part unexpected, applications of K-theory, and in conclusion, mentioned the new interpretation which admits the notion of “symbol of an elliptic operator” into this theory. In the unifying framework of “K-theory” converged methods and ideas coming from algebraic geometry, topology and functional analysis: the “index theorem” – already clearly stated in the summer of 1962 but still awaiting proof –, will be the culmination of a long series of researches. The index theorem Atiyah spent the years from 1957 to 1961 in Cambridge as a lecturer and tutorial fellow at Pembroke College, overburdened with many hours of teaching. In 1960 the topologist Henry Whitehead died at 55, and his chair in Oxford remained vacant: Atiyah applied for the chair unsuccessfully (the favorite was one of Whitehead’s students, Graham Higman) and as makeshift solution, which in any case freed him from excessive teaching duties, he accepted a position as a reader. Less than two years later, with the death of Titchmarsh, the prestigious chair of Savilian Professor would become free, and Atiyah was called to hold it.7 In the attempt to extend results valid in the case of algebraic manifolds to differentiable manifolds, Hirzebruch had proven that a certain combination of characteristic classes – the so-called Â-genus –, which is in general a rational number, turns out to be an integer in the case of spin manifolds (that is, manifolds whose second Stiefel-Whitney class is null). This result naturally falls in the context of K-theory, but its explanation appeared a real mystery at the time. 4 Bott’s theorem of periodicity regards the homotopy groups of the groups U(n) as n " ! . 5 For mathematical details not included here, see M. F. Atiyah, “K-theory past and present” in Sitzungsberichte der Berliner Mathematischen Gesellschaft, Berliner Mathematischen Gesellschaft, Berlin 2001, pp. 411-417 and M. F. Atiyah, “Papers on K-theory”, in Collected Works, vol. 2, Oxford University Press, New York, 1988, pp. 1-3. 6 M. F. Atiyah, http://www.peoplesarchives.com (Part 7, 36). 7 See N. Hitchin, “Geometria a Oxford: 1960-1990”, in La matematica. Tempi e luoghi, vol. 1, ed. by C. Bartocci and P. Odifreddi, Einaudi, Torino, 2007, pp. 711-734; much information about the genesis of the index theorem was drawn from this essay. C. Bartocci –Michael F. Atiyah: Mathematics’ deep reasons– 2 In January 1962 Isadore Singer decided to spend (at his own expense) a period of time in Oxford. Two days after his arrival, Atiyah and Singer had this exchange: ATIYAH: Why is the genus an integer for spin manifolds? SINGER: What’s up, Michael? You know the answer much better than I. 8 ATIYAH: There’s a deeper reason. Singer has a thorough knowledge of differential geometry and analysis, disciplines in which Atiyah was instead less well-versed. The key to the problem was found in a few months: the answer lay in the Dirac operator. As Atiyah tells it: I knew the formula, Hirzebruch’s work, I knew what the answer was; what I had to guess was the problem. We had to find out what was this object. We knew from algebraic geometry, what it should look like in algebraic cases. We knew that it had to do with spinors because of Hirzebruch’s formula. So the question was, there should be some differential equation which would play the role of the Cauchy-Riemann equations in the spinor case which ought to fit the left-hand side of the equation.9 The differential operator “rediscovered” by Atiyah and Singer, whose construction is based on an in- depth study of the geometric properties of spin manifolds, is closely related to the operator, well known to physicists for about thirty years, that appears in Dirac’s equations.
Recommended publications
  • MY UNFORGETTABLE EARLY YEARS at the INSTITUTE Enstitüde Unutulmaz Erken Yıllarım
    MY UNFORGETTABLE EARLY YEARS AT THE INSTITUTE Enstitüde Unutulmaz Erken Yıllarım Dinakar Ramakrishnan `And what was it like,’ I asked him, `meeting Eliot?’ `When he looked at you,’ he said, `it was like standing on a quay, watching the prow of the Queen Mary come towards you, very slowly.’ – from `Stern’ by Seamus Heaney in memory of Ted Hughes, about the time he met T.S.Eliot It was a fortunate stroke of serendipity for me to have been at the Institute for Advanced Study in Princeton, twice during the nineteen eighties, first as a Post-doctoral member in 1982-83, and later as a Sloan Fellow in the Fall of 1986. I had the privilege of getting to know Robert Langlands at that time, and, needless to say, he has had a larger than life influence on me. It wasn’t like two ships passing in the night, but more like a rowboat feeling the waves of an oncoming ship. Langlands and I did not have many conversations, but each time we did, he would make a Zen like remark which took me a long time, at times months (or even years), to comprehend. Once or twice it even looked like he was commenting not on the question I posed, but on a tangential one; however, after much reflection, it became apparent that what he had said had an interesting bearing on what I had been wondering about, and it always provided a new take, at least to me, on the matter. Most importantly, to a beginner in the field like I was then, he was generous to a fault, always willing, whenever asked, to explain the subtle aspects of his own work.
    [Show full text]
  • FIELDS MEDAL for Mathematical Efforts R
    Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study,
    [Show full text]
  • Bfm:978-1-4612-2582-9/1.Pdf
    Progress in Mathematics Volume 131 Series Editors Hyman Bass Joseph Oesterle Alan Weinstein Functional Analysis on the Eve of the 21st Century Volume I In Honor of the Eightieth Birthday of I. M. Gelfand Simon Gindikin James Lepowsky Robert L. Wilson Editors Birkhauser Boston • Basel • Berlin Simon Gindikin James Lepowsky Department of Mathematics Department of Mathematics Rutgers University Rutgers University New Brunswick, NJ 08903 New Brunswick, NJ 08903 Robert L. Wilson Department of Mathematics Rutgers University New Brunswick, NJ 08903 Library of Congress Cataloging-in-Publication Data Functional analysis on the eve of the 21 st century in honor of the 80th birthday 0fI. M. Gelfand I [edited) by S. Gindikin, 1. Lepowsky, R. Wilson. p. cm. -- (Progress in mathematics ; vol. 131) Includes bibliographical references. ISBN-13:978-1-4612-7590-9 e-ISBN-13:978-1-4612-2582-9 DOl: 10.1007/978-1-4612-2582-9 1. Functional analysis. I. Gel'fand, I. M. (lzraU' Moiseevich) II. Gindikin, S. G. (Semen Grigor'evich) III. Lepowsky, J. (James) IV. Wilson, R. (Robert), 1946- . V. Series: Progress in mathematics (Boston, Mass.) ; vol. 131. QA321.F856 1995 95-20760 515'.7--dc20 CIP Printed on acid-free paper d»® Birkhiiuser ltGD © 1995 Birkhliuser Boston Softcover reprint of the hardcover 1st edition 1995 Copyright is not claimed for works of u.s. Government employees. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior permission of the copyright owner.
    [Show full text]
  • Mathematics and Materials
    IAS/PARK CITY MATHEMATICS SERIES Volume 23 Mathematics and Materials Mark J. Bowick David Kinderlehrer Govind Menon Charles Radin Editors American Mathematical Society Institute for Advanced Study Society for Industrial and Applied Mathematics 10.1090/pcms/023 Mathematics and Materials IAS/PARK CITY MATHEMATICS SERIES Volume 23 Mathematics and Materials Mark J. Bowick David Kinderlehrer Govind Menon Charles Radin Editors American Mathematical Society Institute for Advanced Study Society for Industrial and Applied Mathematics Rafe Mazzeo, Series Editor Mark J. Bowick, David Kinderlehrer, Govind Menon, and Charles Radin, Volume Editors. IAS/Park City Mathematics Institute runs mathematics education programs that bring together high school mathematics teachers, researchers in mathematics and mathematics education, undergraduate mathematics faculty, graduate students, and undergraduates to participate in distinct but overlapping programs of research and education. This volume contains the lecture notes from the Graduate Summer School program 2010 Mathematics Subject Classification. Primary 82B05, 35Q70, 82B26, 74N05, 51P05, 52C17, 52C23. Library of Congress Cataloging-in-Publication Data Names: Bowick, Mark J., editor. | Kinderlehrer, David, editor. | Menon, Govind, 1973– editor. | Radin, Charles, 1945– editor. | Institute for Advanced Study (Princeton, N.J.) | Society for Industrial and Applied Mathematics. Title: Mathematics and materials / Mark J. Bowick, David Kinderlehrer, Govind Menon, Charles Radin, editors. Description: [Providence] : American Mathematical Society, [2017] | Series: IAS/Park City math- ematics series ; volume 23 | “Institute for Advanced Study.” | “Society for Industrial and Applied Mathematics.” | “This volume contains lectures presented at the Park City summer school on Mathematics and Materials in July 2014.” – Introduction. | Includes bibliographical references. Identifiers: LCCN 2016030010 | ISBN 9781470429195 (alk. paper) Subjects: LCSH: Statistical mechanics–Congresses.
    [Show full text]
  • The Abel Prize 2003-2007 the First Five Years
    springer.com Mathematics : History of Mathematics Holden, Helge, Piene, Ragni (Eds.) The Abel Prize 2003-2007 The First Five Years Presenting the winners of the Abel Prize, which is one of the premier international prizes in mathematics The book presents the winners of the first five Abel Prizes in mathematics: 2003 Jean-Pierre Serre; 2004 Sir Michael Atiyah and Isadore Singer; 2005 Peter D. Lax; 2006 Lennart Carleson; and 2007 S.R. Srinivasa Varadhan. Each laureate provides an autobiography or an interview, a curriculum vitae, and a complete bibliography. This is complemented by a scholarly description of their work written by leading experts in the field and by a brief history of the Abel Prize. Interviews with the laureates can be found at http://extras.springer.com . Order online at springer.com/booksellers Springer Nature Customer Service Center GmbH Springer Customer Service Tiergartenstrasse 15-17 2010, XI, 329 p. With DVD. 1st 69121 Heidelberg edition Germany T: +49 (0)6221 345-4301 [email protected] Printed book Hardcover Book with DVD Hardcover ISBN 978-3-642-01372-0 £ 76,50 | CHF 103,00 | 86,99 € | 95,69 € (A) | 93,08 € (D) Out of stock Discount group Science (SC) Product category Commemorative publication Series The Abel Prize Prices and other details are subject to change without notice. All errors and omissions excepted. Americas: Tax will be added where applicable. Canadian residents please add PST, QST or GST. Please add $5.00 for shipping one book and $ 1.00 for each additional book. Outside the US and Canada add $ 10.00 for first book, $5.00 for each additional book.
    [Show full text]
  • Fall 2020 Issue
    MATHEMATICS + BERKELEY Fall 2020 IN THIS ISSUE Letter from the Chair 2 Department News 4 Happy Hours, New Horizons 3 Grad and Undergrad News 5 Prize New Faculty and Staff 7 Chair Michael Hutchings (PhD, Harvard, 1998) has been a member of the math faculty since 2001. His research is in low dimension- al and symplectic geometry and topology. He became Chair in Fall 2019. Dear Friends of Berkeley Math, Due to Covid-19, this last year has been quite extraordinary for almost everyone. I have been deeply moved by the enormous efforts of members of our department to make the most of the The department’s weekly afternoon tea in virtual 1035 Evans Hall on gather.town. Some attendees are dressed as vampires and pumpkins, others are playing pictionary. circumstances and continue our excellence in teaching and research. rejoined the department as an Assistant Teaching Professor. Yingzhou Li, who works in Applied Mathematics, and Ruix- We switched to remote teaching in March with just two days iang Zhang, who works in Analysis, will join the department of preparation time, and for the most part will be teaching as Assistant Professors in Spring and Fall 2021, respectively. remotely at least through Spring 2021. As anyone who teach- es can probably tell you, teaching online is no easier than And we need to grow our faculty further, in order to meet very teaching in person, and often much more difficult. However, high teaching demand. In Spring 2020 we had over 900 mathe- developing online courses has also given us an opportunity to matics majors, and we awarded a record 458 undergraduate de- rethink how we can teach and interact with students.
    [Show full text]
  • AMS President's Address at Abel Celebration
    AMS President’s Address at Abel Celebration James Arthur Editor’s Note: Peter Lax was awarded the 2005 Abel Prize in Oslo on May 24, 2005. AMS president James Arthur made the following remarks at the dinner that evening in honor of Lax. Your Majesty, Your Excellencies, Ladies and Gen- school. The unknown quantities are not numbers, tlemen. but functions which describe the behaviour of It is a great honour for me to respond to the physical quantities under fundamental laws of address of the minister of education. I would like nature. to express the deep gratitude of mathematicians Peter Lax is perhaps the greatest living mathe- to the Norwegian government, and to the Norwe- matician working in this venerable area. He has made gian people, for establishing the Abel Prize. The lack extraordinary contributions to our understanding of of a Nobel Prize in mathematics was long regarded differential equations and their solutions. These as an anomaly that diminished public perception range from the explanation of counterintuitive phe- of the importance of mathematics in society. The nomena in nature, such as supersonic shock waves, vision and generosity that led to the creation of the to the discovery of completely unexpected relations Abel Prize has now put mathematics on an equal between basic applied problems and a beautiful part footing with the other sciences. of pure mathematics that goes back to Niels Henrik It is also an honour and a pleasure on this Abel. glorious occasion to congratulate Professor Peter I am sure that the story of Abel is fa- Lax.
    [Show full text]
  • THÔNG TIN TOÁN HỌC Tháng 9 Năm 2014 Tập 18 Số 3 Thông Tin Toán Học (Lưu Hành Nội Bộ)
    Hội Toán Học Việt Nam THÔNG TIN TOÁN HỌC Tháng 9 Năm 2014 Tập 18 Số 3 Thông Tin Toán Học (Lưu hành nội bộ) Tổng biên tập Bản tin Thông Tin Toán Học nhằm ∙ ∙ Ngô Việt Trung mục đích phản ánh các sinh hoạt chuyên môn trong cộng đồng toán học Phó tổng biên tập Việt Nam và quốc tế. Bản tin ra thường ∙ kỳ 4 số trong một năm. Nguyễn Thị Lê Hương Thư ký tòa soạn ∙ Đoàn Trung Cường Thể lệ gửi bài: Bài viết bằng tiếng Việt. ∙ Tất cả các bài, thông tin về sinh hoạt Ban biên tập ∙ toán học ở các khoa (bộ môn) toán, Trần Nguyên An về hướng nghiên cứu hoặc trao đổi về Đào Phương Bắc phương pháp nghiên cứu và giảng dạy Trần Nam Dũng đều được hoan nghênh. Bản tin cũng Trịnh Thanh Đèo nhận đăng các bài giới thiệu tiềm năng Đào Thị Thu Hà khoa học của các cơ sở cũng như các Đoàn Thế Hiếu bài giới thiệu các nhà toán học. Bài viết Nguyễn An Khương xin gửi về tòa soạn theo email hoặc địa Lê Công Trình chỉ ở trên. Nếu bài được đánh máy tính, xin gửi kèm theo file với phông chữ Nguyễn Chu Gia Vượng unicode. Địa chỉ liên hệ ∙ Bản tin: Thông Tin Toán Học Viện Toán Học 18 Hoàng Quốc Việt, 10307 Hà Nội Email: [email protected] Trang web: http://www.vms.org.vn/ttth/ttth.htm c Hội Toán Học Việt Nam ○ Ảnh bìa 1. Xem trang 25 Trang web của Hội Toán học: Nguồn: Internet http://www.vms.org.vn 1 Cảm nhận về Đại hội Toán học Quốc tế tại Seoul Ngô Việt Trung (Viện Toán học) Năm 2009 GS Lovasz và GS Groetschel, - Tiến hành các nỗ lực đặc biệt nhằm vận Chủ tịch và Tổng thư ký Liên đoàn toán động mọi công dân trong mọi tổ chức, học thế giới đến thăm Việt Nam.
    [Show full text]
  • The Jones-Witten Invariants of Knots Astérisque, Tome 189-190 (1990), Séminaire Bourbaki, Exp
    Astérisque MICHAEL ATIYAH The Jones-Witten invariants of knots Astérisque, tome 189-190 (1990), Séminaire Bourbaki, exp. no 715, p. 7-16 <http://www.numdam.org/item?id=SB_1989-1990__32__7_0> © Société mathématique de France, 1990, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Seminaire BOURBAKI novembre 1989 42eme annee, 1989-90, n° 715 THE JONES-WITTEN INVARIANTS OF KNOTS par Michael ATIYAH 1. INTRODUCTION One of the most remarkable developments of recent years has been the work initiated by Vaughan Jones [2] [3] on knot invariants. This has all the hallmarks of great mathematics. It produces simple new invariants which solve classical problems and it involves a very wide range of ideas and techniques from practically all branches of mathematics and physics. Here is a list of the areas which have been significantly involved in the theory up to the present : combinatorics, group representations, algebraic geom- etry, differential geometry, differential equations, topology, Von Neumann algebras, statistical mechanics, quantum field theory..Moreover the subject continues to develop rapidly and a final picture has not yet emerged. Given this very wide field I have to be very selective for a one-hour presentation. I will concentrate on some aspects and I shall have to omit all the technicalities.
    [Show full text]
  • Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published By
    titelbild_2008:Layout 1 26.01.2009 20:19 Seite 1 Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published by Mathematisches Forschungsinstitut Oberwolfach Direktor Gert-Martin Greuel Gesellschafter Gesellschaft für Mathematische Forschung e.V. Adresse Mathematisches Forschungsinstitut Oberwolfach gGmbH Schwarzwaldstr. 9-11 D-77709 Oberwolfach-Walke Germany Kontakt http://www.mfo.de [email protected] Tel: +49 (0)7834 979 0 Fax: +49 (0)7834 979 38 Das Mathematische Forschungsinstitut Oberwolfach ist Mitglied der Leibniz-Gemeinschaft. © Mathematisches Forschungsinstitut Oberwolfach gGmbH (2009) JAHRESBERICHT 2008 / ANNUAL REPORT 2008 INHALTSVERZEICHNIS / TABLE OF CONTENTS Vorwort des Direktors / Director’s Foreword ......................................................................... 6 1. Besondere Beiträge / Special contributions 1.1 Das Jahr der Mathematik 2008 / The year of mathematics 2008 ................................... 10 1.1.1 IMAGINARY - Mit den Augen der Mathematik / Through the Eyes of Mathematics .......... 10 1.1.2 Besuch / Visit: Bundesministerin Dr. Annette Schavan ............................................... 17 1.1.3 Besuche / Visits: Dr. Klaus Kinkel und Dr. Dietrich Birk .............................................. 18 1.2 Oberwolfach Preis / Oberwolfach Prize ....................................................................... 19 1.3 Oberwolfach Vorlesung 2008 .................................................................................... 27 1.4 Nachrufe ..............................................................................................................
    [Show full text]
  • CELEBRATIO MATHEMATICA Saunders Mac Lane (2013) Msp 1
    PROOFS - PAGE NUMBERS ARE TEMPORARY 1 1 1 /2 2 3 4 5 6 7 8 CELEBRATIO 9 10 11 MATHEMATICA 12 13 14 15 16 17 18 Saunders Mac Lane 19 20 1 20 /2 21 22 23 24 25 26 JOHN G. THOMPSON 27 28 THE MAC LANE LECTURE 29 30 2013 31 32 33 34 35 36 37 38 39 1 39 /2 40 41 msp 42 1 43 44 45 http://celebratio.org/ 46 47 48 49 50 51 1 CELEBRATIO MATHEMATICA Saunders Mac Lane (2013) msp 1 THE MAC LANE LECTURE JOHN G. THOMPSON First published: 2 December 2005 Shortly after the death of Saunders Mac Lane in April, Krishna [Alladi] asked me if I would be willing to speak publicly about Saunders. I agreed to do so, but asked for time to think about and to prepare my remarks. In the meantime, Saunders’s autobiography[2005] has appeared, and it has been helpful to me. I expect that everyone here is aware of the book and the movie “A beautiful mind” which explore the life of John Nash. You will know that for many years, Nash was insane with schizophrenia. For most of us, and certainly for me, insanity is frightening and far from beautiful. I submit that Saunders had a genuinely beautiful mind. Except for an elite few of us, Mac Lane’s life and work do not have the drama and punch of Nash’s odyssey. I see my note today as a recorder, neither a hagiographer nor a debunker. Mac Lane’s mental world had great lucidity and covered much territory.
    [Show full text]
  • Love and Math: the Heart of Hidden Reality
    Book Review Love and Math: The Heart of Hidden Reality Reviewed by Anthony W. Knapp My dream is that all of us will be able to Love and Math: The Heart of Hidden Reality see, appreciate, and marvel at the magic Edward Frenkel beauty and exquisite harmony of these Basic Books, 2013 ideas, formulas, and equations, for this will 292 pages, US$27.99 give so much more meaning to our love for ISBN-13: 978-0-465-05074-1 this world and for each other. Edward Frenkel is professor of mathematics at Frenkel’s Personal Story Berkeley, the 2012 AMS Colloquium Lecturer, and Frenkel is a skilled storyteller, and his account a 1989 émigré from the former Soviet Union. of his own experience in the Soviet Union, where He is also the protagonist Edik in the splendid he was labeled as of “Jewish nationality” and November 1999 Notices article by Mark Saul entitled consequently made to suffer, is gripping. It keeps “Kerosinka: An Episode in the History of Soviet one’s attention and it keeps one wanting to read Mathematics.” Frenkel’s book intends to teach more. After his failed experience trying to be appreciation of portions of mathematics to a admitted to Moscow State University, he went to general audience, and the unifying theme of his Kerosinka. There he read extensively, learned from topics is his own mathematical education. first-rate teachers, did mathematics research at a Except for the last of the 18 chapters, a more high level, and managed to get some of his work accurate title for the book would be “Love of Math.” smuggled outside the Soviet Union.
    [Show full text]