Beyond Population – Using Different Types of Density to Understand Land Use (Student Version)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Farmland Investments and Water Rights: the Legal Regimes at Stake
Farmland Investments and Water Rights: The legal regimes at stake Makane Moïse Mbengue Susanna Waltman May 2015 www.iisd.org/gsi www.iisd.org © 2015 The International Institute for Sustainable Development Published by the International Institute for Sustainable Development. International Institute for Sustainable Development The International Institute for Sustainable Development (IISD) contributes to sustainable development by advancing policy recommendations on international trade and investment, economic policy, climate change and energy, and management of natural and social capital, as well as the enabling role of communication technologies in these areas. We report on international negotiations and disseminate knowledge gained through collaborative projects, resulting in more rigorous research, capacity building in developing countries, better networks spanning the North and the South, and better global connections among researchers, practitioners, citizens and policy-makers. IISD’s vision is better living for all—sustainably; its mission is to champion innovation, enabling societies to live sustainably. IISD is registered as a charitable organization in Canada and has 501(c)(3) status in the United States. IISD receives core operating support from the Government of Canada, provided through the International Development Research Centre (IDRC), from the Danish Ministry of Foreign Affairs and from the Province of Manitoba. The Institute receives project funding from numerous governments inside and outside Canada, United Nations agencies, -
Impacts of Technology on U.S. Cropland and Rangeland Productivity Advisory Panel
l-'" of nc/:\!IOIOO _.. _ ... u"' "'"'" ... _ -'-- Impacts of Technology on U.S. Cropland w, in'... ' .....7 and Rangeland Productivity August 1982 NTIS order #PB83-125013 Library of Congress Catalog Card Number 82-600596 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword This Nation’s impressive agricultural success is the product of many factors: abundant resources of land and water, a favorable climate, and a history of resource- ful farmers and technological innovation, We meet not only our own needs but supply a substantial portion of the agricultural products used elsewhere in the world. As demand increases, so must agricultural productivity, Part of the necessary growth may come from farming additional acreage. But most of the increase will depend on intensifying production with improved agricultural technologies. The question is, however, whether farmland and rangeland resources can sustain such inten- sive use. Land is a renewable resource, though one that is highly susceptible to degrada- tion by erosion, salinization, compaction, ground water depletion, and other proc- esses. When such processes are not adequately managed, land productivity can be mined like a nonrenewable resource. But this need not occur. For most agricul- tural land, various conservation options are available, Traditionally, however, farm- ers and ranchers have viewed many of the conservation technologies as uneconom- ical. Must conservation and production always be opposed, or can technology be used to help meet both goals? This report describes the major processes degrading land productivity, assesses whether productivity is sustainable using current agricultural technologies, reviews a range of new technologies with potentials to maintain productivity and profitability simultaneously, and presents a series of options for congressional consideration. -
Assessing Biodiversity in Arable Farmland by Means of Indicators: an Overview
AGRONOMIE – ENVIRONNEMENT Assessing biodiversity in arable farmland by means of indicators: an overview Christian BOCKSTALLER Abstract: Maintaining biodiversity is one of the key issues of sustainable agriculture. It is ¸ Francoise LASSERRE-JOULIN now stated that innovation to enhance biodiversity in arable land requires operational Sophie SLEZACK-DESCHAUMES assessment tools like indicators. The goal of the article is to provide an overview of Severine PIUTTI available indicators. Besides measured indicators and simple indicators based on Jean VILLERD management data, we focus on predictive indicators derived from operational models Bernard AMIAUD and adapted to ex ante assessment in innovative cropping design. The possibility of use Sylvain PLANTUREUX for each indicator type is discussed. Key words: environmental assessment, indicator, model, validation, biodiversity, INRA, UMR 1121 ecosystemic services Nancy-Universite - INRA, IFR 110, Nancy-Colmar, BP 20507, 68021 Colmar France <[email protected]> Maintaining biodiversity is one of the intensification, among them extensifica- Indicators can be basic variables (e.g. key issues of sustainable development, tion and even suppression of chemical amount of input) or simple combination and agriculture is highly concerned in input like in organic farming (Hole et al., of these variables (balance, ratio) as well this perspective. The term was first 2005), reconsideration of field margin as field measurements, the former being suggested in 1985 at a conference on management to enhance semi-natural also called ‘‘indirect’’ and the latter biological diversity in the USA and was area of farmland (Marshall and Moonen, ‘‘direct’’ indicator regarding biodiver- popularized since the Rio Conference in 2002). It is now stated that this process of sity (Burel et al., 2008). -
The Impact of Coal Mining on Agriculture in the Delmas, Ogies and Leandra Districts a Focus on Maize Production
0 Evaluating the impact of coal mining on agriculture in the Delmas, Ogies and Leandra districts A focus on maize production A report by BFAP Compiled for the Maize Trust May 2012 1 Table of Contents Executive summary .................................................................................................................... 5 Introduction ................................................................................................................................ 7 An overview of agriculture in Mpumalanga .............................................................................. 8 Cash crop production ..................................................................................................... 8 Arable land potentials for Mpumalanga ........................................................................ 9 Current mining and prospecting ................................................................................... 10 Pilot study area ............................................................................................................. 12 Economic impact of mining on agriculture ............................................................................. 14 Potential loss in maize production ............................................................................... 14 Potential loss in soybean production............................................................................ 16 Economic impact on livestock production ................................................................... 18 Environmental -
Evaluating On-Farm Biodiversity: a Comparison of Assessment Methods
sustainability Article Evaluating On-Farm Biodiversity: A Comparison of Assessment Methods Vanessa Gabel 1,2,*, Robert Home 1 , Sibylle Stöckli 1, Matthias Meier 1, Matthias Stolze 1 and Ulrich Köpke 2 1 Research Institute of Organic Agriculture (FiBL), CH-5070 Frick, Switzerland; robert.home@fibl.org (R.H.); sibylle.stoeckli@fibl.org (S.S.); matthias.meier@fibl.org (M.M.); matthias.stolze@fibl.org (M.S.) 2 Institute of Organic Agriculture, University of Bonn, D-53115 Bonn, Germany; [email protected] * Correspondence: vanessa.gabel@fibl.ch; Tel.: +41-(0)62-8650414 Received: 27 November 2018; Accepted: 13 December 2018; Published: 17 December 2018 Abstract: Strategies to stop the loss of biodiversity in agriculture areas will be more successful if farmers have the means to understand changes in biodiversity on their farms and to assess the effectiveness of biodiversity promoting measures. There are several methods to assess on-farm biodiversity but it may be difficult to select the most appropriate method for a farmer’s individual circumstances. This study aims to evaluate the usability and usefulness of four biodiversity assessment methods that are available to farmers in Switzerland. All four methods were applied to five case study farms, which were ranked according to the results. None of the methods were able to provide an exact statement on the current biodiversity status of the farms, but each method could provide an indication, or approximation, of one or more aspects of biodiversity. However, the results also showed that it is possible to generate different statements on the state of biodiversity on the same farms by using different biodiversity assessment methods. -
The European Environment State and Outlook 2020
05. Land and soil 2 Land and soil © Kayhan Guc, Sustainably Yours/EEA 3 par A PART 2 Key messages • Land and its soils are the • Land recycling accounts for only • European policy aims to develop foundation for producing food, feed 13 % of urban developments in the EU. the bioeconomy but while new uses and other ecosystem services such as The EU 2050 target of no net land take for biomass and increasing food regulating water quality and quantity. is unlikely to be met unless annual and fodder consumption require Ecosystem services related to land use rates of land take are further reduced increasing agricultural output, land are critical for Europe’s economy and and/or land recycling is increased. for agricultural use has decreased. quality of life. Competition for land and This leads to growing pressures on intensive land use affects the condition • Soil degradation is not well the available agricultural land and soil of soils and ecosystems, altering their monitored, and often hidden, but it is resources which are exacerbated by capacity to provide these services. It widespread and diverse. Intensive land the impacts of climate change. also reduces landscape and species management leads to negative impacts diversity. on soil biodiversity, which is the key • The lack of a comprehensive driver of terrestrial ecosystems’ carbon and coherent policy framework for • Land take and soil sealing continue, and nutrient cycling. There is increasing protecting Europe’s land and soil predominantly at the expense evidence that land and soil degradation resources is a key gap that reduces the of agricultural land, reducing its have major economic consequences, effectiveness of the existing incentives production potential. -
Population: a Critical Issue
AP Human Geography Population Population: A Critical Issue A study of population is important in understanding a number of issues in human geography. So our first main issue is a study of population. The Key Issues your book mentions are: 1. Where is the world’s population distributed? 2. Where has the world’s population increased? 3. Why is population increasing at different rates in different countries? 4. Why might the world face an overpopulation problem? Study of Population The study of population • More people are alive at is critically important this time – in excess of 7 billion - than at any for three reasons: time in human history. • The world’s population increased at a faster rate during the second half of the twentieth century than ever before in history. • Virtually all global population growth is concentrated in less developed countries. Demography The scientific study of population characteristics is called demography. The issue of Overpopulation Overpopulation is not as much an issue of the population of the world but instead, the relationship between number of people on the earth and available resources. Locally, geographers find that overpopulation is currently a threat in some regions of the world but not in others. It depends on each regions balance between population and resources. Issue 1: Distribution of World Population The Main Points of this issue are: • Population concentrations The four largest population clusters Other population clusters • Sparsely populated regions Dry lands – Cold lands Wet lands – High lands • Population density Arithmetic density Physiological density Agricultural density World Population Cartogram Fig. 2-1: This cartogram displays countries by the size of their population rather than their land area. -
Freshwater Resources
3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ........................................................................................................................................................... -
The Influence of Wind Energy and Biogas on Farmland Prices
land Article The Influence of Wind Energy and Biogas on Farmland Prices Olena Myrna, Martin Odening and Matthias Ritter * Department of Agricultural Economics, Humboldt-Universität zu Berlin, Phillippstr. 13, 10115 Berlin, Germany; [email protected] (O.M.); [email protected] (M.O.) * Correspondence: [email protected]; Tel.: +49-(0)30-2093-46851 Received: 11 December 2018; Accepted: 11 January 2019; Published: 15 January 2019 Abstract: In the context of the rapid development of renewable energy in Germany in the last decade, and increased concerns regarding its potential impacts on farmland prices, this paper investigates the impact of wind energy and biogas production on agricultural land purchasing prices. To quantify the possible impact of the cumulative capacity of wind turbines and biogas plants on arable land prices in Saxony-Anhalt, we estimate a community-based and a transaction-based model using spatial econometrics and ordinary least squares. Based on data from 2007 to 2016, our analysis shows that a higher cumulative capacity of wind turbines in communities leads to higher farmland transaction prices, though the effect is very small: if the average cumulative capacity of wind turbines per community doubles, we expect that farmland prices per hectare increase by 0.4%. Plots that are directly affected by a wind turbine or part of a regional development plan, however, experience strong price increases. Keywords: farmland prices; wind energy; biogas; hedonic pricing model; spatial econometrics 1. Introduction During the past decade, a significant increase in wind energy and biogas production has been observed in Germany. -
Natural Resource Curse in Nepal with Emphasis on Deforestation and Violence
Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 8-2011 Natural Resource Curse in Nepal with Emphasis on Deforestation and Violence Abhinav Pathak Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Economics Commons Recommended Citation Pathak, Abhinav, "Natural Resource Curse in Nepal with Emphasis on Deforestation and Violence" (2011). All Graduate Plan B and other Reports. 55. https://digitalcommons.usu.edu/gradreports/55 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. NATURAL RESOURCE CURSE IN NEPAL WITH EMPHASIS ON DEFORESTATION AND VIOLENCE SUBMITTED TO: APPLIED ECONOMICS DEPARTMENT UTAH STATE UNIVERSITY SUBMITTED BY: ABHINAV PATHAK AUGUST 2011 0 TABLE OF CONTENTS 1. INTRODUCTION…………………………………………………………………………… 3 2. LITERATURE REVIEW……………...…………………………………………………….. 8 3. RESOURCE CURSE IN NEPAL……………………........................................................... 11 4. RESOURCE CURSE HYPOTHESIS- REGRESSION……………………………………. 18 4.1 EMPIRICAL FINDINGS AND RESULTS……………………………………………. 20 5. POLICY RECOMMENDATIONS………………………………………………………… 23 6. CONCLUSION…………….……………………………………………………………….. 25 7. APPENDIX…………………………………………………………………………………. 27 8. REFERENCES……………………………………………………………………………... 32 1 LIST OF TABLES AND ILLUSTRATIONS Table 1: Gini Index: Income and Inequality……………………………………….……………..6 Table 2: Average Annual Growth Rates (%) of Gross Domestic Product (GDP), Population, and Per-capita GDP…………………………………………………………………………………. 11 Figure 1: Percent of households using different sources of fuel energy in Nepal……………….13 Table 3: Average Gross Domestic Product (GDP, %), Arable Land (hectares per person), and Net Forest Depletion (current US$)……………………………………………………………...14 Figure 2: Deforestation and Violence Trend in Nepal…………………………………………. -
Reversing the Degradation of Arable Land in the Ethiopian Highlands
Managing Africa’s Soils No. 23 Reversing the degradation of arable land in the Ethiopian Highlands Tilahun Amede, Takele Belachew and Endrias Geta May 2001 Areka Research Centre Managing Africa’s Soils No. 23 Reversing the degradation of arable land in the Ethiopian Highlands Tilahun Amede, Takele Belachew and Endrias Geta May 2001 Areka Research Centre About the authors Tilahun Amede is a systems agronomist. Having obtained a PhD from the University of Hohenheim in Germany, he served as assistant professor in Agronomy and Dryland Physiology at Awassa College of Agriculture, Ethiopia, and has been working for the International Centre of Tropical Agriculture (CIAT) – African Highlands Initiative, since 1999, based in Ethiopia. He can be contacted at PO Box 361, Awassa, Ethiopia, and by E-mail: [email protected] Takele Belachew is a soil conservation expert who works for the Areka Research Centre. Endrias Geta is a socio-economist who manages the Areka Research Centre. These two authors can be contacted at PO Box 79, Soddo, Wollayta, Ethiopia. About NUTNET NUTNET is a network that aims to improve the management of soil fertility in Africa. It is a partnership of fifteen organisations from six African and two European countries: INERA, Burkina Faso; SOS Sahel, Ethiopia; KARI, KIOF & ETC East Africa, Kenya; IER, Mali; Environment Alert & University of Makerere, Uganda; IES, Zimbabwe; IIED & IDS, United Kingdom; and AB/DLO, LEI/DLO, SC/DLO, ETC & KIT, The Netherlands. NUTNET is funded by DGIS, the Ministry of Foreign Affairs in The Netherlands. About Enhancing soil fertility in Africa: from field to policy-maker This project builds on the work done by the NUTNET network, which has been extended to include the Swedish University of Agricultural Sciences (SLU), the Universidad Complutense de Madrid (UCM) and the National Agricultural Research Foundation (NAGREF) from Greece. -
Population Distribution
Population distribution Ernesto F. L. Amaral January 30, 2020 Population and Society (SOCI 312) Outline • Introduction • World population distribution • Residential distribution and urbanization • Economic distribution • Distribution of the US population • Metropolitanization and micropolitanization • Megalopolis • Trends toward deconcentration • Consequences of population distribution 2 Introduction • In some countries, people are more likely to live in rural than urban areas • However, there is an urbanization movement throughout the world – “Without question, the dominant feature of spatial distribution in the United States and other developed countries is the concentration of population in densely settled urban areas” (Fossett 2005) • This chapter examines – How the inhabitants of the world are distributed – How most of us have become city dwellers rather than cave dwellers, as was the case thousands of years ago 3 World population distribution • About 1/3 of the earth’s land is permanently inhabited – Areas such as the Arctic, the Antarctic, vast deserts (e.g., the Sahara) have very few people – Areas with rugged mountains make it almost impossible for humans to survive • Most populated regions of the world – South Asia (mainly India) – East Asia (mainly China) • Oceania (primarily Australia) is the least 5 World 7,238 Estimated midyear Africa 1,136 Northern Africa 217 population by major Western Africa 339 Eastern Africa 378 areas and regions, Middle Africa 142 Southern Africa 61 2014 (in millions) Americas 972 Northern America 353 Central America 165 Caribbean 43 South America 410 Asia 4,351 Western Asia 255 Central Asia 67 South Asia 1,806 Southeast Asia 621 East Asia 1,601 Europe 741 Western Europe 190 Northern Europe 102 Eastern Europe 294 Southern Europe 154 Oceania 39 Source: Population Reference Bureau, 2014.