Dynamics of Atoms and Molecules in Electromagnetic Fields
Total Page:16
File Type:pdf, Size:1020Kb
NNT: 2016SACLS035 Thèse de doctorat de l’université paris-saclay préparée à l’université paris-sud Institut des Sciences Moléculaires d’Orsay Ecole Doctorale no 572 Ondes et Matière Physique Quantique par Raijumon PUTHUMPALLY JOSEPH Quantum Interferences in the Dynamics of Atoms and Molecules in Electromagnetic Fields Thèse présentée et soutenue à Orsay, le 29 février 2016. Composition du jury : Dr Desouter-Lecomte Michèle Professeur, Université Paris Sud, France Présidente Dr Kaiser Robin Directeur de Recherche, CNRS, France Rapporteur Dr Taïeb Richard Directeur de Recherche, CNRS, France Rapporteur Dr Kirrander Adam Professeur, University of Edinburgh, UK Examinateur Dr Nguyen-Dang Thanh-Tung Professeur, Université Laval, Canada Examinateur Dr Sukharev Maxim Professeur, Arizona State University, USA Examinateur Dr Charron Eric Professeur, Université Paris Sud, France Directeur de thèse Dr Atabek Osman Directeur de Recherche, CNRS, France Membre invité QUANTUM INTERFERENCES IN THE DYNAMICS OF ATOMS AND MOLECULES IN ELECTROMAGNETIC FIELDS Raijumon Puthumpally Joseph SCOPE OF THIS THESIS Quantum interferences refer to the superposition of matter waves. They modify the physical response of a system to an incident light. In this thesis, two specific cases of laser-matter interaction where quantum interference plays a key role are discussed. Quantum interferences can be used to image quantum world. One of many ways to image molecules using quantum interference is discussed in the first part of the thesis. The method is demonstrated for symmetric linear CO2. The second part deals with collective effects in dense atomic vapors, overlapping resonances and associated quantum interferences. Once two or more transitions are broadened enough by the collective effects, they overlap and this leads to destructive interference. Effect of such interferences in the optical response of the system is discussed in detail. Keywords: Strong Field Physics, Recollision, Attosecond Dynamics, Laser Induced Electron Diffraction (LIED), Orbital Tomography, Dense Vapors, Strong Dipole-Dipole Interactions, Transparency, Dipole Induced Electromag- netic Transparency (DIET), Slow Light Preface This thesis was submitted to the Faculty of Science, Université Paris Sud, Université Paris Saclay, Orsay, as a partial fulfillment of the requirements to obtain the Doctoral degree in Quantum Physics. The work presented was carried out during the period 2012-2015 in the group of Prof. Eric Charron, Institut des Sciences Moléculaires d’Orsay, France. A part of the thesis was done in collaboration with the Computational Optics Group of Dr. Maxim Sukharev at Arizona State University, U.S.A The work was supported by the Marie Curie project CORINF (Correlated Multielectron Dynamics in the Intense Laser Field: Project ITN-2010-264951). The aim of this work was to study quantum interferences in the laser-matter interaction in the non- Relativistic regime. Quantum interferences refer to the superposition of matter waves. They modify the physical response of a system to the interacting outer world. Among many quantum interference problems, two specific cases are chosen. One of them is to make use of these interferences to image the quantum world. The second project was to investigate collective response and associated overlapping resonances in dense atomic vapors. These two problem in the two different landscapes of atomic and molecular physics provide a unique opportunity to explore many conceptual, theoretical and technical aspects. I thank my supervisor Eric Charron for offering this challenge. Raiju Puthumpally-Joseph List of Papers Published Dipole-Induced Electromagnetic Transparency R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron Physical Review Letters. 113, 163603 (2014) Theoretical Analysis of Dipole-Induced Electromagnetic Transparency R. Puthumpally-Joseph, O. Atabek, M. Sukharev, and E. Charron Physical Review A. 91, 043835 (2015) In Press Non-Hermitian wavepacket propagation in Intense Laser Fields R. Puthumpally-Joseph, M. Sukharev, and E. Charron Journal of Chemical Physics (2016)(arXiv) Submitted Imaging molecular orbitals using laser induced electron diffraction R. Puthumpally-Joseph, M. Peters, J. Viau-Trudel, T. T. Nguyen-Dang, O. Atabek, E. Charron Submitted to Physical Review A (arXiv) In Preparation Imaging orbitals of aligned Linear Molecules R. Puthumpally-Joseph, O. Atabek, and E. Charron Declaration of Authorship I, Raijumon Puthumpally Joseph, declare that this thesis titled, Quantum Interferences in the Dynamics of Atoms and Molecules in Electromagnetic Fields and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for the doctoral degree at Université Paris Sud. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. RPJ 29-02-2016 Dedicated to all who have lighted my way. Acknowledgment I feel extremely fortunate to be one of the PhD students of an excellent scientist, outstanding professor and an exceptional human being. I express my sincere gratitude to my advisor Prof: Eric Charron for the continuous supports of my research work, for his patience, motivation and wide and deep knowledge. I could not have imagined having a better advisor for my research and better mentor for last four years. Besides my advisor, I thank my collaborators. Dr: Osman Atabek taught me many aspects of research career from his own career including research ethics and consideration towards young researchers. Our discussions outside science were very interesting and informative. Dr: Maxim Sukharev partially supervised the project on collective effects in dense media and hosted my exchange visitor program in Arizona State University. He gave me a different kind of training on the field of nano-optics. I express my sincere gratitude towards them. Discussions among us were the prime source that helped me to understand different roles of a researcher as an author and reviewer of papers and projects, as a critique of an idea or concept, as a speaker and organizer of conferences and seminars and as a trainer and collaborator in research community. I enjoyed all those open-minded discussions. I thank the two referees of my thesis Dr. Richard Taieb and Dr. Robin Kaiser for their critical view into the work I did. And I convey my heartfelt thanks to all members of the jury. Being away from homeland and adapting to a community with different culture and language was difficult in the beginning. But the presence of a wonderful group of people was a real relief from many tensions and helped for keeping a healthy environment, especially Nitin chetan, Ibrahim Saideh, Andrea Le-Marec. Last but not least, I thank my family for the immense support they have given throughout these periods. I thank especially my parents Joseph and Mary for letting and supporting me to choose a carrier that I love. I also thank my best friend and wife Fency for the special care she gave throughout my life to achieve things I have dreamed of. She kept my hope, motivation and momentum. She never let me to be depressed in failures. And her courageous mind while carrying our little angel Christelle was a great relief for concentrating on the preparation of the thesis manuscript. Raiju Puthumpally-Joseph Résumé succinct en Français Les interférences quantiques apparaissant lors de la superposition cohérente d’états quantiques de la matière sont à l’origine de la compréhension et du contrôle de nombreux processus élémentaires au niveau microscopique. Dans cette thèse, deux problèmes distincts, qui ont pour origine de tels effets, sont discutés avec leurs applications potentielles : 1. La diffraction électronique induite par Laser (LIED) et l’imagerie des orbitales moléculaires que l’on peut réaliser grâce à ce processus, 2. Les effets collectifs dans des vapeurs atomiques ou moléculaires denses et un effet de transparence électromagnétique induite par interaction dipôle-dipôle (DIET) qui apparaît dans ces systèmes denses. Le manuscrit est donc constitué de deux parties distinctes qui peuvent lues indépen- damment l’une de l’autre. La première partie de cette thèse traite du mécanisme de recollision dans des molécules linéaires simples lorsque le système est exposé à un champ laser infrarouge de forte intensité. Cette interaction provoque une ionisation tunnel du système moléculaire, conduisant à la création d’un paquet d’ondes électronique dans le continuum. Ce paquet d’ondes suit une trajectoire oscillante, dirigée par le champ laser. Cela provoque une collision avec l’ion parent qui lui a donné naissance. Ce processus de diffraction peut être de nature inélastique, engendrant la génération d’harmoniques d’ordre élevé (HHG) ou l’ionisation double non-séquentielle, ou de nature élastique, processus que l’on appelle généralement “ diffraction électronique induite par laser”. La LIED porte des informations sur la molécule et sur l’état initial à partir duquel les électrons sont arrachés sous forme de motifs de diffraction formés en raison de l’interférence entre différentes voies de diffraction. Dans ce projet, une méthode est développée pour l’imagerie des orbitales moléculaires, reposant sur des spectres de photoélectrons obtenus par LIED. Cette méthode est basée sur le fait que la fonction d’ondes du continuum conserve la mémoire de l’objet à partir duquel elle a été diffractée. Un modèle analytique basé sur l’approximation de champ fort (SFA) est développé pour des molécules simples linéaires et appliqué aux orbitales moléculaires HOMO et HOMO-1 du dioxyde de carbone. L’interprétation et l’extraction des informations orbitalaires imprimées dans les spectres de photoélectrons sont présentées en détail. Par ailleurs, nous estimons que ce type d’approche pourrait être étendu à l’imagerie de la dynamique électronucléaire de tels systèmes.