Sequential Monte Carlo methods for system identification (a talk about strategies) \The particle filter provides a systematic way of exploring the state space" Thomas Sch¨on Division of Systems and Control Department of Information Technology Uppsala University. Email:
[email protected], www: user.it.uu.se/~thosc112 Joint work with: Fredrik Lindsten (University of Cambridge), Johan Dahlin (Link¨opingUniversity), Johan W˚agberg (Uppsala University), Christian A. Naesseth (Link¨opingUniversity), Andreas Svensson (Uppsala University), and Liang Dai (Uppsala University).
[email protected] IFAC Symposium on System Identification (SYSID), Beijing, China, October 20, 2015. Introduction A state space model (SSM) consists of a Markov process x ≥ f tgt 1 that is indirectly observed via a measurement process y ≥ , f tgt 1 x x f (x x ; u ); x = a (x ; u ) + v ; t+1 j t ∼ θ t+1 j t t t+1 θ t t θ;t y x g (y x ; u ); y = c (x ; u ) + e ; t j t ∼ θ t j t t t θ t t θ;t x µ (x ); x µ (x ); 1 ∼ θ 1 1 ∼ θ 1 (θ π(θ)): (θ π(θ)): ∼ ∼ Identifying the nonlinear SSM: Find θ based on y y ; y ; : : : ; y (and u ). Hence, the off-line problem. 1:T , f 1 2 T g 1:T One of the key challenges: The states x1:T are unknown. Aim of the talk: Reveal the structure of the system identification problem arising in nonlinear SSMs and highlight where SMC is used. 1 / 14
[email protected] IFAC Symposium on System Identification (SYSID), Beijing, China, October 20, 2015.