System Identification 1 the Basic Ideas

Total Page:16

File Type:pdf, Size:1020Kb

System Identification 1 the Basic Ideas System Identication Lennart Ljung Department of Electrical Engineering Linkoping University S Linkoping Sweden email ljungisyliuse May The Basic Ideas Basic Questions Ab out System Identication What is System Identication System Identication allows you to build mathematical mo dels of a dynamic system based on measured data How is that done Essentially by adjusting parameters within a given mo del until its out put coincides as well as p ossible with the measured output How do you know if the mo del is any go o d A go o d test is to tak e a close lo ok at the mo dels output compared to the measurements on a data set that wasnt used for the t Validation Data Can the quality of the mo del be tested in other ways It is also valuable to lo ok at what the mo del couldnt repro duce in the data the residuals There should be no correlation with other available information such as the systems input What mo dels are most common The techniques apply to very general mo dels Most common mo dels are dierence equations descriptions such as ARX and ARMAX mo dels as well as all typ es of linear statespace mo dels Lately blackb ox non linear structures such as Artical Neural Networks Fuzzy mo dels and so on have been much used Do you have to assume a mo del of a particular typ e For parametric mo dels you have to sp ecify the structure However if you just assume that the system is linear you can directly estimate its impulse or step resp onse using Correlation Analysis or its frequency resp onse using Sp ectral Analysis This allows useful comparisons with other estimated mo dels How do you know what mo del structure to try Well you dont For real life systems there is never any true mo del anyway You have to be generous at this point and try out several dierent structures Can nonlinear mo dels be used in an easy fashion Yes Most common mo del nonlinearities are such that the measured data should b e nonlinearly transformed like squaring a voltage input if you think that its the p ower that is the stimulus Use physical insight ab out the system you are mo deling and try out such transformations on mo dels that are linear in the new variables and you will cover a lot What do es this article cover After reviewing an archetypical situation in this section we describ e the basic techniques for parameter estimation in arbitrary mo del struc tures Section deals with linear mo dels of blackb ox structure and Section deals with particular estimation metho ds that can be used in addition to the general ones for such mo dels Physically param eterized mo del structures are describ ed in Section and nonlinear black box mo dels including neural networks are discussed in Section The nal Section deals with the choices and decisions the user is faced with Is this really all there is to System Identication Actually there is a huge amount written on the sub ject Exp erience with real data is the driving force to further understanding It is im portant to remember that any estimated mo del no matter how good it lo oks on your screen has only picked up a simple reection of real ity Surprisingly often however this is sucient for rational decision making Background and Literature System Identication has its ro ots in standard statistical techniques and many of the basic routines have direct interpretations as well known statis tical metho ds such as Least Squares and Maximum Likeliho o d The control community to ok an active part in the development and application of these basic techniques to dynamic systems right after the birth of mo dern con trol theory in the early s Maximum likeliho o d estimation was applied to dierence equations ARMAX mo dels byAstrom and Bohlin and thereafter a wide range of estimation techniques and mo del parameteriza tions ourished By now the areaiswell matured with established and well understo o d techniques Industrial use and application of the techniques has b ecome standard See Ljung for a common software package The literature on System Identication is extensive For a practical user ori ented intro duction we may mention Ljung and Glad Texts that go deep er into the theory and algorithms include Ljung and Soderstrom and Stoica A classical treatment is Box and Jenkins These books all deal with the mainstream approach to system identica tion as describ ed in this article In addition there is a substantial literature on other approaches such as set memb ership compute all those mo dels that repro duce the observed data within a certain given error b ound estima tion of mo dels from given frequency resp onse measurementSchoukens and Pintelon online mo del estimation Ljung and Soderstrom nonparametric fre quency domain metho ds Brillinger etc Tofollow the developmentin the eld the IFAC series of Symp osia on System Identication Budap est Cop enhagen is a go o d source An Archetypical Problem ARX Mo dels and the Linear Least Squares Metho d The Mo del We shall generally denote the systems input and output at time t by ut and y t resp ectively Perhaps the most basic relationship b etween the input and output is the linear dierence equation y t a y t a y t nb ut b ut m n m Wehavechosen to represent the system in discrete time primarily since ob served data are always collected by sampling It is thus more straightforward to relate observed data to discrete time mo dels Nothing prevents us how ever from working with continuous time mo dels we shall return to that in Section In we assume the sampling interval to be one time unit This is not essential but makes notation easier A pragmatic and useful way to see is to view it as a way of determining the next output value given previous observations y ta y t a y t nb ut b ut m n m For more compact notation we intro duce the vectors T a a b b n m T t y t y t n ut ut m With these can be rewritten as T t y t To emphasize that the calculation of y t from past data indeed dep ends on the parameters in we shall rather call this calculated value ytj and write T ytj t The Least Squares Metho d Now supp ose for a given system that we do not know the values of the parameters in but that we have recorded inputs and outputs over a time interval t N N Z fu yuN yN g An obvious approach is then to select in through so as to t the calculated values ytj as well as p ossible to the measured outputs by the least squares metho d N min V Z N where N X N V Z y t ytj N N t N X T y t t N t We shall denote the value of that minimizes by N N arg min V Z N N arg min means the minimizing argument ie that value of which min imizes V N Since V is quadratic in we can nd the minimum value easily by setting N the derivative to zero N X d N T V Z ty t t N d N t which gives N N X X T ty t t t t t or N N X X T ty t t t N t t Once the vectors t are dened the solution can easily b e found bymodern numerical software such as MATLAB Example First order dierence equation Consider the simple model y t ay t but This gives us the estimate according to and P P P a y t y t ut y ty t N P P P y t ut u t y tut b N All sums are from t to t N A typical convention is to take values outside the measuredrange to bezero In this case we would thus take y The simple mo del and the well known least squares metho d form the archetyp e of System Identication Not only that they also give the most commonly used parametric identication metho d and are much more versatile than p erhaps p erceived at rst sight In particular one should realize that can directly be extended to several dierent inputs this just calls for a redenition of t in and that the inputs and outputs do not have to be the raw measurements On the contrary it is often most imp ortant to think over the physics of the application and come up with suitable inputs and outputs for formed from the actual measurements Example An immersion heater Consider a process consisting of an immersion heater immersed in a cooling liquid We measure v t The voltage applied to the heater r t The temperature of the liquid y t The temperature of the heater coil surface Suppose we need a model for how y t depends on r t and v t Some sim ple considerations based on common sense and high school physics Semi physical modeling reveal the fol lowing The change in temperature of the heater coil over one sample is pro portional to the electrical power in it the inow power minus the heat loss to the liquid The electrical power is proportional to v t The heat loss is proportional to y t r t This suggests the model y ty t v t y t r t which ts into the form y t y t v t r t This is a two input v and r and one output model and corresponds to choosing T t y t v t r t in Some Statistical Remarks Mo del structures such as that are linear in are known in statistics as linear regression and the vector t is called the regression vector its comp onents are the regressors Regress here alludes to the fact that we try to calculate or describ e y t by going back to t Mo dels such as where the regression vector t contains old values of the variable For that reason to be explained y t are then partly autoregressions the mo del structure has the standard name ARXmo del Autoregression with extra inputs There is a rich statistical literature on the prop erties of the estimate N under varying assumptions See eg Drap er and Smith So far we have just viewed and as curvetting In Section
Recommended publications
  • Prediction Error Methods and Pseudo-Linear Regressions
    System Identification Lecture 10: Prediction error methods and pseudo-linear regressions Roy Smith 2016-11-22 10.1 Prediction e k p q H z p q v k y k p q u k p q G z p q ` p q Typical assumptions G z and H z are stable, p q p q H z is stably invertible (no zeros outside the unit disk) p q e k has known statistics: known pdf or known moments. p q One-step ahead prediction Given ZK u 0 , y 0 , . , u K 1 , y K 1 , “ t p q p q p ´ q p ´ qu what is the best estimate of y K ? p q 2016-11-22 10.2 Prediction v k e k p q H z p q p q Noise model invertibility Given, v k , k 0,...,K 1, can we determine e k , k 0,...,K 1? p q “ ´ p q “ ´ 8 Inverse filter: Hinv z : e k hinv i v k i p q p q “ i 0 p q p ´ q ÿ“ We also want the inverse filter to be causal and stable: 8 hinv k 0, k 0, and hinv k . p q “ ă k 0 | p q| ă 8 ÿ“ If H z has no zeros for z 1, then, p q | | ě 1 Hinv z . p q “ H z p q 2016-11-22 10.3 Prediction v k e k p q H z p q p q One step ahead prediction Given measurements of v k , k 0,...,K 1, can we predict v K ? p q “ ´ p q Assume that we know H z , how much can we say about v K ? p q p q Assume also that H z is monic (h 0 1).
    [Show full text]
  • 10. Prediction Error Methods (PEM)
    EE531 - System Identification Jitkomut Songsiri 6. Prediction Error Methods (PEM) • description • optimal prediction • examples • statistical results • computational aspects 6-1 Description idea: determine the model parameter θ such that "(t; θ) = y(t) − y^(tjt − 1; θ) is small y^(tjt − 1; θ) is a prediction of y(t) given the data up to time t − 1 and based on θ general linear predictor: y^(tjt − 1; θ) = N(L; θ)y(t) + M(L; θ)u(t) where M and N must contain one pure delay, i.e., N(0; θ) = 0;M(0; θ) = 0 example: y^(tjt − 1; θ) = 0:5y(t − 1) + 0:1y(t − 2) + 2u(t − 1) Prediction Error Methods (PEM) 6-2 Elements of PEM one has to make the following choices, in order to define the method • model structure: the parametrization of G(L; θ);H(L; θ) and Λ(θ) as a function of θ • predictor: the choice of filters N; M once the model is specified • criterion: define a scalar-valued function of "(t; θ) that will assess the performance of the predictor we commonly consider the optimal mean square predictor the filters N and M are chosen such that the prediction error has small variance Prediction Error Methods (PEM) 6-3 Loss function let N be the number of data points sample covariance matrix: 1 XN R(θ) = "(t; θ)"T (t; θ) N t=1 R(θ) is a positive semidefinite matrix (and typically pdf when N is large) loss function: scalar-valued function defined on positive matrices R f(R(θ)) f must be monotonically increasing, i.e., let X ≻ 0 and for any ∆X ⪰ 0 f(X + ∆X) ≥ f(X) Prediction Error Methods (PEM) 6-4 Example 1 f(X) = tr(WX) where W ≻ 0 is a weighting matrix f(X + ∆X) = tr(WX) + tr(W ∆X) ≥ f(X) (tr(W ∆X) ≥ 0 because if A ⪰ 0;B ⪰ 0, then tr(AB) ≥ 0) Example 2 f(X) = det X f(X + ∆X) − f(X) = det(X1/2(I + X−1/2∆XX−1/2)X1/2) − det X = det X[det(I + X−1/2∆XX−1/2) − 1] " # Yn −1/2 −1/2 = det X (1 + λk(X ∆XX )) − 1 ≥ 0 k=1 −1/2 −1/2 the last inequalty follows from X ∆XX ⪰ 0, so λk ≥ 0 for all k both examples satisfy f(X + ∆X) = f(X) () ∆X = 0 Prediction Error Methods (PEM) 6-5 Procedures in PEM 1.
    [Show full text]
  • 5 Identification Using Prediction Error Methods
    5 Identification using Prediction Error Methods The previous chapters have shown how the dynamic behaviour of a civil engineering structure can be modelled by a discrete-time ARMAV model or an equivalent stochastic state space realization. The purpose of this chapter is to investigate how an estimate of a p-variate discrete-time model can be obtained from measurements of the response y(tkk). It is assumed that y(t ) is a realization of a Gaussian stochastic process and thus assumed stationary. The stationarity assumption implies that the behaviour of the underlying system can be represented by a time-invariant model. In the following, the general ARMAV(na,nc), for na nc, model will be addressed. In chapter 2, it was shown that this model can be equivalently represented by an m- dimensional state space realization of the innovation form, with m na#p. No matter how the discrete-time model is represented, all adjustable parameters of the model are assembled in a parameter vector , implying that the transfer function description of the discrete-time model becomes y(tk ) H(q, )e(tk ), k 1, 2, ... , N (5.1) T E e(tk )e (tks ) ( ) (s) The dimension of the vectors y(tkk) and e(t ) are p × 1. Since there is no unique way of computing an estimate of (5.1), it is necessary to select an appropriate approach that balances between the required accuracy and computational effort. The approach used in this thesis is known as the Prediction Error Method (PEM), see Ljung [71]. The reason for this choice is that the PEM for Gaussian distributed prediction errors is asymptotic unbiased and efficient.
    [Show full text]
  • Wavelet Analysis for System Identification∗
    Wavelet analysis for system identification∗ 大阪教育大学・数理科学 芦野 隆一 (Ryuichi Ashino) Mathematical Sciences, Osaka Kyoiku University 大阪電気通信大学・数理科学研究センター 萬代 武史 (Takeshi Mandai) Research Center for Physics and Mathematics, Osaka Electro-Communication University 大阪教育大学・情報科学 守本 晃 (Akira Morimoto) Information Science, Osaka Kyoiku University Abstract By the Schwartz kernel theorem, to every continuous linear sys- tem there corresponds a unique distribution, called kernel distribution. Formulae using wavelet transform to access time-frequency informa- tion of kernel distributions are deduced. A new wavelet based system identification method for health monitoring systems is proposed as an application of a discretized formula. 1 System Identification A system L illustrated in Figure 1 is an object in which variables of different kinds interact and produce observable signals. The observable signals g that are of interest to us are called outputs. The system is also affected by external stimuli. External signals f that can be manipulated by the observer are called inputs. Others are called disturbances and can be divided into those, denoted by w, that are directly measured, and those, denoted by v, that are only observed through their influence on the output. Mathematically, a system can be regarded as a mapping which relates inputs to outputs. Hereafter, we will use the terminology “system” rather ∗This research was partially supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Scientific Research (C), 15540170 (2003– 2004), and by the Japan Society for the Promotion of Science, Japan-U.S. Cooperative Science Program (2003–2004). 1 Unmeasured Measured disturbance v disturbance w System L Output g Input f Figure 1: System L.
    [Show full text]
  • Localization and System Identification of a Quadcopter AU V
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-2014 Localization and System Identification of a Quadcopter AU V Kenneth Befus Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Aeronautical Vehicles Commons, Navigation, Guidance, Control and Dynamics Commons, and the Propulsion and Power Commons Recommended Citation Befus, Kenneth, "Localization and System Identification of a Quadcopter AU V" (2014). Master's Theses. 499. https://scholarworks.wmich.edu/masters_theses/499 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. LOCALIZATION AND SYSTEM IDENTIFICATION OF A QUADCOPTER UAV by Kenneth Befus A thesis submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Science in Engineering Department of Mechanical and Aeronautical Engineering Western Michigan University June 2014 Doctoral Committee: Kapseong Ro, Ph.D., Chair Koorosh Naghshineh, Ph.D. James W. Kamman, Ph.D. LOCALIZATION AND SYSTEM IDENTIFICATION OF A QUADCOPTER UAV Kenneth Befus, M.S.E. Western Michigan University, 2014 The research conducted explores the comparison of several trilateration algorithms as they apply to the localization of a quadcopter micro air vehicle (MAV). A localization system is developed employing a network of combined ultrasonic/radio frequency sensors used to wirelessly provide range (distance) measurements defining the location of the quadcopter in 3-dimensional space. A Monte Carlo simulation is conducted using the extrinsic parameters of the localization system to evaluate the adequacy of each trilateration method as it applies to this specific quadcopter application.
    [Show full text]
  • Sequential Monte Carlo Methods for System Identification (A Talk About
    Sequential Monte Carlo methods for system identification (a talk about strategies) \The particle filter provides a systematic way of exploring the state space" Thomas Sch¨on Division of Systems and Control Department of Information Technology Uppsala University. Email: [email protected], www: user.it.uu.se/~thosc112 Joint work with: Fredrik Lindsten (University of Cambridge), Johan Dahlin (Link¨opingUniversity), Johan W˚agberg (Uppsala University), Christian A. Naesseth (Link¨opingUniversity), Andreas Svensson (Uppsala University), and Liang Dai (Uppsala University). [email protected] IFAC Symposium on System Identification (SYSID), Beijing, China, October 20, 2015. Introduction A state space model (SSM) consists of a Markov process x ≥ f tgt 1 that is indirectly observed via a measurement process y ≥ , f tgt 1 x x f (x x ; u ); x = a (x ; u ) + v ; t+1 j t ∼ θ t+1 j t t t+1 θ t t θ;t y x g (y x ; u ); y = c (x ; u ) + e ; t j t ∼ θ t j t t t θ t t θ;t x µ (x ); x µ (x ); 1 ∼ θ 1 1 ∼ θ 1 (θ π(θ)): (θ π(θ)): ∼ ∼ Identifying the nonlinear SSM: Find θ based on y y ; y ; : : : ; y (and u ). Hence, the off-line problem. 1:T , f 1 2 T g 1:T One of the key challenges: The states x1:T are unknown. Aim of the talk: Reveal the structure of the system identification problem arising in nonlinear SSMs and highlight where SMC is used. 1 / 14 [email protected] IFAC Symposium on System Identification (SYSID), Beijing, China, October 20, 2015.
    [Show full text]
  • What Is System Identification
    What is System identification Using experimental data obtained from input/output relations to model dynamic systems. disturbances input output System Different approaches to system identification depending on model class Linear/Non-linear Parametric/Non-parametric ¾Non-parametric methods try to estimate a generic model. (step responses, impulse responses, frequency responses) ¾Parametric methods estimate parameters in a user-specified model. (transfer functions, state-space matrices) 1 System identification System identification includes the following steps: Experiment design: its purpose is to obtain good experimental data, and it includes the choice of the measured variables and of the character of the input Signals. Selection of model structure: A suitable model structure is chosen using prior knowledge and trial and error. Choice of the criterion to fit: A suitable cost function is chosen, which reflects how well the. model fits the experimental data. Parameter estimation: An optimisation problem is solved to obtain the numerical values of the model parameters. Model validation: The model is tested in order to reveal any inadequacies. 2 Procedure of system identification Experimental design Data collection Data pre-filtering Model structure selection Parameter estimation Model validation Model ok? No Yes 3 Different mathematical models Model description: Transfer functions State-space models Block diagrams (e.g. Simulink) Notation for continuous time models Complex Laplace variable ‘s’ and differential operator ‘p’ ∂x(t) x&()t
    [Show full text]
  • Statistical System Identification and Classification Using Laguerre
    Statistical System Identification and Classification Using Laguerre Functions by Pramoda Sachinthana Jayasinghe A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Master of Science Department of Statistics University of Manitoba Winnipeg Copyright c 2019 by Pramoda Sachinthana Jayasinghe Abstract This research focuses on developing classification methods to automatically identify partial discharge (PD) signals from multiple sources and developing new system identification techniques to help increase the accuracy of these classifications. We use a Laguerre functional basis to approximate PD signal waveforms, obtained through a lab experiment. To perform the approximation, we considered multiple approaches, such as using objective functional methods and a deterministic method. In the process of signal approximation, we developed methods of selecting a proper scaling factor for Laguerre functions. We evaluated the use of the Laguerre basis expansion coefficients to classify PD signals into their respective sources. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and support vector machines (SVM) were used as classifiers in this analysis. It was observed that these methods can classify partial discharge signals with high accuracies, even when the signals are visually indistinguishable. We also developed two methods for system identification, based on a deterministic approach in the form of a recursive formula and a stochastic method based on a group Lasso model. The aim of system identification was to improve the classification accuracies by removing the effect of the system from the observed PD waveforms. Through numerical evaluations we showed that there are situations where classification after system identification can improve classification accuracies.
    [Show full text]
  • System Identification Via Polynomial Transformation Method
    System Identification via Polynomial Transformation Method Prof Pradip Sircar Department of Electrical Engineering Indian Institute of Technology Kanpur Email address: [email protected] Abstract We propose a method based on minimum-variance polynomial approximation to extract system poles from a data set of samples of the impulse response of a linear system. The method is capable of handling the problem under general conditions of sampling and noise characteristics. The superiority of the proposed method is demonstrated by statistical comparison of its performance with the performances of two exiting methods in the special case of uniform sampling. Keywords - Minimum-variance polynomial approximation; System identification; Impulse response; Complex exponential signal Introduction In the all-pole model for linear systems, the characterization of the impulse response by a sum of weighted complex exponential signals, and then estimating the complex frequency- and amplitude- parameters of the signal is equivalent to determining the poles and residues at the poles, respectively, of the system. This particular problem arises in the diversified fields of control, electromagnetics, geophysics, NMR spectroscopy, etc., and is, therefore, of eminent importance. The parameter estimation of complex exponential signals, when the noise corrupted signal samples are provided at non-uniform spacing, has been attempted in [1], [2]. This problem has special significance because non-uniform sampling can be preferred over uniform sampling for various considerations like sampling efficiency, SNR enhancement on the sampled set of signal values, etc. To deal with the non-uniform sampling case, the idea of applying the orthogonal polynomial approximation together with the minimum error-variance criterion to find a closed-form expression for the approximating signal has been introduced in [1], [2].
    [Show full text]
  • A Novel Logistic-NARX Model As Aclassifier for Dynamic Binary
    Neural Comput & Applic DOI 10.1007/s00521-017-2976-x ORIGINAL ARTICLE A novel logistic-NARX model as a classifier for dynamic binary classification Jose Roberto Ayala Solares1 · Hua-Liang Wei1 · Stephen A. Billings1 Received: 12 October 2016 / Accepted: 24 March 2017 © The Natural Computing Applications Forum 2017 Abstract System identification and data-driven modeling outcomes. Furthermore, the NARX approach allows for the techniques have seen ubiquitous applications in the past inclusion of lagged terms and interactions between them in decades. In particular, parametric modeling methodologies a straight forward manner resulting in interpretable mod- such as linear and nonlinear autoregressive with exoge- els where users can identify which input variables play an nous input models (ARX and NARX) and other similar important role individually and/or interactively in the clas- and related model types have been preferably applied to sification process, something that is not achievable using handle diverse data-driven modeling problems due to their other classification techniques like random forests, support easy-to-compute linear-in-the-parameter structure, which vector machines, and k-nearest neighbors. The efficiency of allows the resultant models to be easily interpreted. In the proposed method is tested with five case studies. recent years, several variations of the NARX methodol- ogy have been proposed that improve the performance of Keywords Nonlinear system identification · Dynamic the original algorithm. Nevertheless, in most cases, NARX systems · Binary classification · NARX models · Logistic models are applied to regression problems where all out- regression put variables involve continuous or discrete-time sequences sampled from a continuous process, and little attention has been paid to classification problems where the output sig- 1 Introduction nal is a binary sequence.
    [Show full text]
  • A Bootstrap Subspace Identification Method
    Modeling, Identification and Control, Vol. 30, No. 4, 2009, pp. 203{222, ISSN 1890{1328 A Bootstrap Subspace Identification Method: Comparing Methods for Closed Loop Subspace Identification by Monte Carlo Simulations David Di Ruscio Telemark University College, P.O. Box 203, N-3901 Porsgrunn, Norway Abstract A novel promising bootstrap subspace system identification algorithm for both open and closed loop systems is presented. An outline of the SSARX algorithm by Jansson(2003) is given and a modified SSARX algorithm is presented. Some methods which are consistent for closed loop subspace system identification presented in the literature are discussed and compared to a recently published subspace algorithm which works for both open as well as for closed loop data, i.e., the DSR e algorithm as well as the new bootstrap subspace method presented in this paper. Experimental comparisons are performed by Monte Carlo simulations. Keywords: Subspace, Identification, Closed loop, Linear Systems, Kalman filter, Modeling 1. Introduction an optimized version PBSID opt presented. In Chiuso (2007b) the PBSID and PBSID opt methods are fur- Noticing that if the states of a linear dynamic system ther analyzed, and it is shown some asymptotic simi- are known then the problem of finding the model matri- larities with the SSARX and the PBSID algorithms. It ces is a linear regression problem, see e.g., Overschee is also shown that the PBSID opt algorithm is a row and de Moor(1996). Some methods for closed loop weighted version of the SSNEW algorithm in Ljung and subspace identification with state estimation along the McKelvey(1995). Furthermore, Chiuso(2007b) stated lines of the higher order ARX model approach pre- that the PBSID opt algorithm is found to be asymp- sented in Ljung and McKelvey(1995) are presented totically variance efficient on many examples but not in Jansson(2003, 2005) and Chiuso(2007a,b).
    [Show full text]
  • Part 3 – Bayesian System Identification
    Learning nonlinear dynamics using sequential Monte Carlo Part 3 { Bayesian system identification Thomas Sch¨on,Uppsala University 2020-03-11 Outline { Part 3 Aim: Show how SMC can be used in identifying nonlinear SSMs using Bayesian approach. Outline: 1. Bayesian inference and the MCMC idea 2. The Metropolis Hastings algorithm 3. Background on Bayesian system identification 4. Using unbiased estimates within Metropolis Hastings 5. Exact approximation { Particle Metropolis Hastings (PMH) 6. Outlook (if there is time) 1/43 Bayesian inference { setup for now Bayesian inference comes down to computing the target distribution π(x). More commonly our interest lies in some integral of the form: Eπ['(x) y1:T ] = '(x)p(x y1:T )dx: j j Z Ex. (nonlinear dynamical systems) Here our interest is often x = θ and π(θ) = p(θ y1:T ) j or x = (x1:T ;θ ) and π(x1:T ;θ ) = p(x1:T ;θ y1:T ). j We keep the development general for now and specialize later. 2/43 How? The two main strategies for the Bayesian inference problem: 1. Variational methods provides an approximation by assuming a certain functional form containing unknown parameters, which are found using optimization, where some distance measure is minimized. 2. Markov chain Monte Carlo (MCMC) works by simulating a Markov chain which is designed in such a way that its stationary distribution coincides with the target distribution. 3/43 MCMC and Metropolis Hastings Toy illustration { AR(1) Let us play the game where you are asked to generate samples from π(x) = x 0; 1=(1 0:82) : N − One realisation from x[t + 1]=0 :8x[t]+ v[t] where v[t] (0; 1).
    [Show full text]