Isolation and Identification of Lactic Acid Bacteria and Their Exploration in Non-Dairy Probiotic Drink

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Identification of Lactic Acid Bacteria and Their Exploration in Non-Dairy Probiotic Drink Int.J.Curr.Microbiol.App.Sci (2017) 6(4): 1023-1030 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 4 (2017) pp. 1023-1030 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.604.127 Isolation and Identification of Lactic Acid Bacteria and their Exploration in Non-Dairy Probiotic Drink Mamta Thakur1*, H.W. Deshpande2 and M.A. Bhate3 1Department of Food Trade and Business Management, College of Food Technology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani - 431 402 (Maharashtra) India 2Department of Food and Industrial Microbiology, College of Food Technology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani - 431 402 (Maharashtra) India 3Department of Microbiology, Shivaji College, Parbhani- 431 402 (Maharashtra) India *Corresponding author ABSTRACT Lactic acid bacteria were isolated from the curd and pickle samples. The K e yw or ds morphological and biochemical characteristics and sugar fermentation pattern were employed to identify lactic acid bacteria. The isolates from both curd and Biochemical tests, pickle were identified as rods/bacilli. Both the isolates were Gram positive, non- Carbohydrate fermentation, motile, catalase negative and exhibited negative pattern of citrate utilization, H2S formation, indole production, oxidase test, urease activity, NH production from Identification, Lactic 3 acid bacteria, Probiotic arginine and VP reaction. Phenotypic methods, especially determination of sugar pomegranate drink. fermentation patterns, were found to be more effective than biochemical tests for the differentiation of bacilli isolates at the strain level using Bergey's Manual of Article Info Determinative Bacteriology. Fermentation profile of nine different sugars was Accepted: taken as base for identifying isolates. The isolate from curd was identified to be L. 12 March 2017 delbrueckii ssp. bulgaricus while other was Lactobacillus plantarum. The Available Online: genotypic identification also supported the results of phenotypic methods. Thus 10 April 2017 identified cultures were then incorporated in pasteurized pomegranate juice and allowed to ferment for preparing the drink with optimum level of probiotic culture. Introduction Industrialization of biotechnological distributed in nature and able to promote transformation of the foodstuffs has increased fermentation by utilization of food nutrients the economic importance of lactic acid and produce a variety of substances like bacteria (LAB) because they play a crucial organic acids, aromatic compounds, health role in the sensorial and safety aspects of benefit-substances, etc (O'Shea et al., 2011). fermented foods. Further, interest in the use of LAB is characterized as gram-positive, non- LAB has significantly increased globally due motile, non sporulating bacteria that produce to their nutraceutical role (Leisner et al., lactic acid as a major product of fermentative 1999). Lactic acid bacteria are widely metabolism (Pelinescu et al., 2009). They are 1023 Int.J.Curr.Microbiol.App.Sci (2017) 6(4): 1023-1030 Generally Recognized as Safe and can be Isolation of lactic acid bacteria used well for medical and veterinary applications (Hoque et al., 2010). Some After, weighing and homogenization of each species of the genus Lactobacillus, sample, 1:10 dilution was subsequently made Lactococcus, Pediococcus and Leuconostoc using sterile normal saline (0.85%) followed are included in this group. by making a 10 fold serial dilution. The 0.1 mL from each dilution was then sub-cultured To comprehend the emerging requirement of aseptically into MRS (deMan Rogosa and probiotics, many studies focused on isolating Sharpe) agar (Guessas and Kihal, 2004) using the probiotic potential LAB from different pour plate technique, all plates were then resources of fermented foods (Kalui et al., incubated at 37˚C for 24-48 hours in 2009). anaerobic condition to provide an optimal environmental for growing Lactobacilli. Dairy is a very nutritious substrate for LAB but expanding trend of vegan lifestyles; the Only the Gram positive and rod shape isolates issues of lactose intolerance and demand for were then purified by streak plating using the low-fat and low-cholesterol foods have MRS medium. After several subcultures, created a need for non-dairy probiotic finally the single colony of LAB was isolated products (Ranadheera et al., 2010). by observing their colony morphology and Gram staining, catalase and motility test. The Fresh fruits and vegetables are considered culture was kept in MRS agar slant and stored good matrices and can provide ideal at 4 °C for long term storage (Hawaz, 2014). substrates for probiotics, since they contain minerals, vitamins, antioxidants and fibers Identification of lactic acid bacteria and do not contain any dairy allergens (Luckow and Delahunty, 2004). Pomegranate The isolated colony was identified using (Punica granatum L.), known to be a Gram staining, biochemical tests and superfruit, has health-promoting properties carbohydrate fermentation profile (Chris et with antimicrobial, anticancer, antioxidant al., 2006). and antimutagenic effects (Negi et al., 2003). Biochemical identification In the present investigation, lactic acid bacteria were the isolated and identified from Strains with Gram positive, catalase negative curd and pickle in order to use them as starter and no motility were further used for for developing probiotic drink based on identification (Sharpe, 1979). Utilization of pomegranate juice. citrate, hydrolysis of arginine, production of hydrogen sulfide and indole were determined Materials and Methods (Samelis et al., 1994). Further, methyl reduction test, oxidase test, urease test and VP The curd, mango pickle and freshly harvested reaction were also performed. pomegranate fruits (var. Bhagwa) were procured from local market of Parbhani Carbohydrate fermentation profile (Maharashtra) India. Pomegranate juice was prepared by blending the juicy arils in the All the strains were also tested for domestic mixer. Its total soluble solids was fermentation of sugars viz. glucose, fructose, maintained to 13oBx and stored at 4oC before lactose, sucrose, maltose, mannitol, salicin, use. 1024 Int.J.Curr.Microbiol.App.Sci (2017) 6(4): 1023-1030 agarose and sorbitol by adding the specific was allowed to ferment in incubator at 37oC sugar to the basal carbohydrate media. Acid for 7 h. After incubation, the drink was kept at production was indicated by a change in color refrigeration temperature for future use. and gas production was detected by observation of gas collection in the inverted Microbial analysis of probiotic Durham tubes (Tserovska et al., 2002). pomegranate drink Molecular identification of lactic acid The viable count of mixed culture was bacteria determined by the standard plate count method using Man-Rogosa-Sharpe agar The isolated bacteria were sent to Agharkar (MRS agar) and the results were expressed as Research Institute, Pune where strains of CFU/ml juice. The yeast and mold count of promising probiotic LAB were identified by drink was determined using potato dextrose 16S rRNA multiplex PCR analysis agar medium. The coli-form and basically E. (Markiewicz and Biedrzycka, 2005). This was coli are the indicator microbes of water in confirmation to the morphological, contamination by feces. The coli-form gives biochemical and carbohydrate fermentation red pink color colonies on the MacConkey tests performed in Department of Food and agar (Chris et al., 2006). Industrial Microbiology, College of Food Technology, V.N.M.K.V., Parbhani Results and Discussion (Maharashtra) India. Isolation of lactic acid bacteria Preparation of starter culture Bacteria were isolated with MRS agar media L. plantarum and L. bulgaricus was cultivated at 37°C under anaerobic conditions for 48 separately in the MRS broth for 24-h at 37oC. hours. The isolated colonies from curd were To obtain the biomass, 10 mL of the named as Isolate A and from pickle were as separately cultivated MRS broths were mixed Isolate B (Fig. 1). The isolated colonies were in equal proportion (1:1) and centrifuged at then screened for further identification. 4000 rpm for 10 min. The obtained biomass was washed with sterile saline solution twice Identification of lactic acid bacteria species to remove the residual MRS media. Thus, inoculum was prepared. The complete findings of morphological and biochemical characterization of the isolates It was then introduced into pasteurized are presented in table 1. pomegranate juice (100 mL) for making it 10% concentration of probiotics. The Both the isolates gave purple/violet color with inoculated juice was then incubated at 37oC staining showing Gram positive nature (Fig. for 24 h and was treated as starter culture for 2). Because Gram positive cell wall contain preparation of final drink. thick layer of peptidoglycan with numerous teichoic acid cross linking which resists the Preparation of probiotic pomegranate decolorization, thus remaining purple in color. drink The isolates coming from MRS plates were all rods with long and rounded ends. They Above prepared starter culture (10mL) was appeared mostly as a chain of 3-4 cells or then added to the pasteurized pomegranate single or in pairs. juice (100 mL) to obtain 10% inoculation. It 1025 Int.J.Curr.Microbiol.App.Sci (2017) 6(4): 1023-1030 The hanging drop method showed that the were found by Forouhandeh (2010) in the bacteria were non-motile which one of the isolation
Recommended publications
  • Rapid Identification of Clinical Isolates of Klebsiella Pneumoniae Using MALDI-TOF MS from North India
    Bulletin of Pure and Applied Sciences Print version ISSN 0970 0765 Vol.39A (Zoology), No.1, Online version ISSN 2320 3188 January-June 2020: P.194-199 DOI 10.5958/2320-3188.2020.00022.4 Original Research Article Available online at www.bpasjournals.com Rapid Identification of Clinical Isolates of Klebsiella pneumoniae using MALDI-TOF MS from North India 1Sunil Kumar Abstract: 2Zainab Saifi Infections caused by multi-drug resistant (MDR) 3Anil Kumar Sharma Klebsiella pneumoniae are increasing day by day. K. pneumoniae poses a severe public health concern 4 * Sushil Kumar Upadhyay and causes wide array of healthcare associated infections with limited treatment options. The Author’s Affiliation: quick detection of these isolates is of prime 1,2,3,4 Department of Biotechnology, Maharishi importance for the adoption of proper antibiotic Markandeshwar (Deemed to be University), treatment and control measures. Also the mis- Mullana-Ambala, Haryana 133207, India identification using standard lab-based methods is quite common and hence, the clinical *Corresponding author: significance of K. pneumoniae complex members is Dr. Sushil Kumar Upadhyay, inaccurately defined. Here, authors evaluated the Assistant Professor, Department of potential of MALDI-TOF (Matrix-Assisted Laser Biotechnology, Maharishi Markandeshwar Desorption Ionization-Time of Flight) MS (Mass (Deemed to be University), Mullana-Ambala, Spectrometry) to discriminate and quick Haryana 133207, India identification K. pneumoniae complex members. Thus, this study aimed at full MALDI-based E-mail: approach to rapidly detect the K. [email protected] pneumoniae isolates up to species level. We also ORCID: https://orcid.org/0000-0002-1229-4275 explored the antibiotic resistance profile of K.
    [Show full text]
  • Characterization and Antibiotic Sensitivity Profile of Bacteria Isolated from Patients with Respiratory Tract Infections in Bangladesh
    Characterization and Antibiotic Sensitivity Profile of Bacteria Isolated from Patients with Respiratory Tract Infections in Bangladesh Shukla Promite1, Sajal K. Saha2, Sunjukta Ahsan1 and Marufa Zerin Akhter1 1Department of Microbiology, University of Dhaka, Dhaka, Bangladesh 2Department of General Practice, Monash University, Building 1, 270 Ferntree Gully Road, Notting Hill VIC 3168, Australia (Received: October 08, 2017; Accepted: December 15, 2017; Published (web): December 23, 2017) ABSTRACT: The study was aimed to characterize bacterial isolates from respiratory tract infections (RTI) and investigate their antibiotic sensitivity profile. Selective media and biochemical tests were used to characterize 40 bacterial isolates. Antibiotic sensitivity testing was conducted using Kirby-Bauer disc diffusion method. About 42.5% (17) RTI patients were infected by Klebsiella pneumoniae, 30% (12) by Escherichia coli and 27.5% (11) by Pseudomonas aeruginosa with no significant gender variation (p-value <0.578). Overall, 47% (out of 20) antibiotics were sensitive, whereas 48% were resistant. Surprisingly, 18% P. aeruginosa and 20% K. pneumoniae were carbapenem-resistant and 4 out of 7 cephalosporin antibiotics were highly resistant irrespective of pathogens. E. coli showed better sensitivity to nitrofurantoin (78%) and levofloxacin (89%), while K. pneumoniae was insensitive to cotrimoxazole (88%), gentamycin (77%) and piperacillin/tazobactam (66%). On the other hand, P. aeruginosa did not respond to P. aeruginosa to nalidixic acid (60%) and ciprofloxacin (60%). This study concludes that nitrofurantoin, levofloxacin, cotrimoxazole, gentamycin and piperacillin/tazobactam antibiotics could be better alternative in treating bacterial RTIs. Key words: Antibiotic sensitivity, bacterial pathogens, RTIs, Bangladesh. INTRODUCTION Antibiotic resistance (AR) is a global public The rise of AR in Bangladesh is probably due to 1 health concern.
    [Show full text]
  • Technical Report the Vitek Analyser for Routine Bacterial Identification And
    316 J Clin Pathol 1998;51:316–323 Technical report J Clin Pathol: first published as 10.1136/jcp.51.4.316 on 1 April 1998. Downloaded from The Vitek analyser for routine bacterial identification and susceptibility testing: protocols, problems, and pitfalls N Shetty, G Hill, G L Ridgway Abstract covered, maintenance and quality control Automated and semiautomated technol- costs, and the presence of a versatile software ogy in microbiology has seen great ad- package. This report describes our experiences vances in recent years. The choice of with the Vitek system (bioMerieux, UK) in the automated equipment for the identifica- one year since its inception into a busy micro- tion and susceptibility testing of bacteria biology diagnostic laboratory in the United in a routine diagnostic laboratory depends Kingdom. It is worth noting that the choice on speed, accuracy, ease of use, and cost and range of antibiotics on susceptibility factors. The Vitek analyser (bioMerieux, testing cards were custom made for the UK) was installed in a busy diagnostic University College London Hospitals teaching hospital laboratory in London. (UCLH). This report describes one year’s experience. Changes to work practice as a result of incorporating the equipment into Identification and susceptibility testing the laboratory, and the advantages and on the Vitek system disadvantages of automation in key areas Identification of microorganisms is accom- are described in detail, together with pos- plished by biochemical methods. A turbido- sible solutions to problems. The Vitek metrically controlled suspension of pure colo- analyser was found to be valuable for the nies in saline is inoculated into identification http://jcp.bmj.com/ speed and accuracy with which results cards.
    [Show full text]
  • Pasteurella Multocida Isolated from Cattle
    Journal of Applied Pharmaceutical Science Vol. 3 (04), pp. 106-110, April, 2013 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2013.3419 ISSN 2231-3354 Antibiotic Susceptibility and Molecular Analysis of Bacterial Pathogen Pasteurella Multocida Isolated from Cattle Azmat Jabeen, Mahrukh Khattak, Shahzad Munir*, Qaiser Jamal, Mubashir Hussain Department of Microbiology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan. ARTICLE INFO ABSTRACT Article history: Pasteurella multocida is a Gram negative, non motile and coccobacillus bacterium. It has 5 strains i.e. A, B, D, Received on: 01/02/2013 E and F and 16 serotypes (1-16). In present study, we analyzed Pasteurella multocida B: 2 strains, responsible Revised on: 19/02/2013 for Hemorrhagic Septicemia (HS) in cattle, on morphological/microbial, biochemical, molecular level and to Accepted on: 15/03/2013 check the antibiotic sensitivity of the Pasteurella multocida. Microbial analysis showed that while grown on Available online: 27/04/2013 Brain Heart Infusion agar plates and Blood Agar Base Medium, grayish lustrous colonies of Pasteurella multocida were observed. Gram staining showed that Pasteurella multocida are gram negative. Microscopic Key words: observations revealed it to be coccobacillus and it was non- motile. Identification was conducted by Pasteurella multocida, conventional biochemical tests and percentage identification of Analytical Profile Index was 96 %. Antibiotic Hemorrhagic Septicemia, sensitivity with different antibiotics was checked by disk diffusion method and was found resistant to Analytical Profile Index, Augmentin, Amoxicillin and Aztreonam and was more susceptible to Ceftiofur. On molecular level its DNA Antibiotic sensitivity. was extracted and was run with marker having range from 0.5 – 10 kb.
    [Show full text]
  • Identification of Pasteurella Species and Morphologically Similar Organisms
    UK Standards for Microbiology Investigations Identification of Pasteurella species and Morphologically Similar Organisms Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 1 of 28 © Crown copyright 2015 Identification of Pasteurella species and Morphologically Similar Organisms Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 2 of 28 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Pasteurella species and Morphologically Similar Organisms Contents ACKNOWLEDGMENTS .........................................................................................................
    [Show full text]
  • Time-To-Positivity, Type of Culture Media and Oxidase Test Performed on Positive Blood Culture Vials to Predict Pseudomonas Aeru
    Original Nazaret Cobos-Trigueros1 Time-to-positivity, type of culture media and oxidase Yuliya Zboromyrska2 Laura Morata1 test performed on positive blood culture vials to predict Izaskun Alejo2 Cristina De La Calle1 Pseudomonas aeruginosa in patients with Gram-negative Andrea Vergara2 Celia Cardozo1 bacilli bacteraemia 1 Maria P. Arcas 1 1 Department of Infectious Diseases, Hospital Clínic, IDIBAPS, Barcelona University, Barcelona, Spain. Alex Soriano 2Department of Clinical Microbiology, Hospital Clínic, Barcelona University, Barcelona, Spain. Francesc Marco2 Josep Mensa1 Manel Almela2 Jose A. Martinez1 ABSTRACT Tiempo de positividad, tipo de medio de cultivo y prueba de oxidasa realizada en Introduction. The aim of this study was to determine the viales de hemocultivo positivos para predecir usefulness of oxidase test and time-to-positivity (TTP) in aer- Pseudomonas aeruginosa en pacientes con obic and anaerobic blood culture vials to detect the presence bacteriemia por bacilos gramnegativos of Pseudomonas aeruginosa in patients with Gram-negative bacilli (GNB) bacteraemia. RESUMEN Material and methods. TTP was recorded for each aer- obic and anaerobic blood culture vial of monomicrobial bac- Introducción. El objetivo del estudio fue determinar la utili- teraemia due to GNB. Oxidase test was performed in a pellet dad de la prueba de oxidasa y del tiempo de positividad del hemo- of the centrifuged content of the positive blood culture. An cultivo (TPH) para detectar la presencia de Pseudomonas aerugino- algorithm was developed in order to perform the oxidase test sa en pacientes con bacteriemia por bacilos gramnegativos (BGN). efficiently taking into account TTP and type of vial. Material y métodos. Se registró el TPH de cada vial ae- Results.
    [Show full text]
  • Laboratory Diagnosis of Urinary Tract Infections Using Diagnostics Tests in Adult Patients
    International Journal of Research in Medical Sciences Akmal Hasan SK et al. Int J Res Med Sci. 2014 May;2(2):415-421 www.msjonline.org pISSN 2320-6071 | eISSN 2320-6012 DOI: 10.5455/2320-6012.ijrms20140508 Research Article Laboratory diagnosis of urinary tract infections using diagnostics tests in adult patients Akmal Hasan SK1*, Naveen Kumar T2, Radha Kishan N3, Neetha K3 1Department of Medical Microbiology, Mamata Medical College, Khammam, Andhra Pradesh, India 2Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Hyderabad, Andhra Pradesh, India 3 Department of Biochemistry, Apollo Institute of Medical Sciences and Research, Hyderabad, Andhra Pradesh, India Received: 26 December 2013 Accepted: 07 January 2014 *Correspondence: Dr. Akmal Hasan SK, E-mail: [email protected] © 2014 Akmal Hasan SK et al. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: The primary aim of this study was to evaluate laboratory diagnosis of urinary tract infection using diagnostics tests in adult patients. Methods: Among the diagnostic tests, urinalysis is useful mainly for excluding bacteriuria. For isolation of pathogenic bacteria semiquantitative culture techniques was used and biochemical tests were done to differentiate Gram +ve and Gram –ve bacteria. Results: The incidence of pathogenic infection caused by Escherichia coli accounts for 216 cases (60%) followed by Pseudomonas, Staphylococcus aureus and Klebsiella. Conclusion: Physicians should distinguish urinary tract infections caused by different organisms for an effective treatment and appropriate clinical information gives clues for better diagnostic evaluation and their susceptibility to antimicrobial agents as well addressing host factors that contribute to the occurrence of infection.
    [Show full text]
  • Antibiotic Susceptibility Pattern of Bacterial Uropathogens Isolated
    ANTIBIOTIC SUSCEPTIBILITY PATTERN OF BACTERIAL UROPATHOGENS ISOLATED FROM PATIENTS IN NAKURU LEVEL 5 HOSPITAL, KENYA GEORGE TIBI GACHUHI (B.Sc.) I56/CE/20963/2010 A Thesis Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science (Microbiology) in the School of Pure and Applied Sciences of Kenyatta University JULY, 2017 ii DECLARATION This thesis is my own original work and has not been presented for the award of a degree in any other university. George Tibi Gachuhi Signature…………………………. Date………………….. Department of Microbiology APPROVAL BY SUPERVISORS This thesis has been submitted for examination with our approval as University supervisors. Dr John Maingi Signature………………………………… Date…………………………………. Department of Microbiology Kenyatta University Dr. Anthony Kebira Signature…………………………………………Date…………………………. Department of Microbiology Kenyatta University iii DEDICATION This research project is dedicated to my beloved wife Salome Tibi and our beloved children Victor, Grace, Martha, Daisy, Caleb and Ann for their support, encouragement and prayer during my time of my study. iv ACKNOWLEDGEMENTS I thank God for His love, guidance and wisdom to be able to successfully complete my research project. I would like to appreciate a number of people who helped me during the preparation and writing of this research project especially Dr. John Maingi and Dr. Anthony Kebira of Kenyatta University, Department of Microbiology. Thank you for your advice and guidance. They have not only been outstanding supervisors, but credible role models. Their guidance, support and encouragement right from the proposal development to the final report would not have been successfully completed without them. I am greatly indebted to the staff at Nakuru Level 5 Hospital especially Dr.
    [Show full text]
  • ® 20 E TM 07584J - En - 2010/05
    20 100 / 20 160 07584J - en - 2010/05 ® TM IVD 20 E Identification system for Enterobacteriaceae and other non-fastidious Gram-negative rods SUMMARY AND EXPLANATION Material API 20 E is a standardized identification system for - Pipettes or PSIpettes Enterobacteriaceae and other non-fastidious, Gram- - Ampule protector negative rods which uses 21 miniaturized biochemical - Ampule rack tests and a database. The complete list of those - General microbiology laboratory equipment organisms that it is possible to identify with this system is given in the Identification Table at the end of this package POSSIBLE ADDITIONAL REAGENTS insert. - API OF Medium (Ref. 50 110) : Test for the determination of fermentative or oxidative PRINCIPLE metabolism. The API 20 E strip consists of 20 microtubes containing - API M Medium (Ref. 50 120) : dehydrated substrates. These tests are inoculated with Test for motility of facultative anaerobic bacteria. a bacterial suspension that reconstitutes the media. During incubation, metabolism produces color changes WARNINGS AND PRECAUTIONS that are either spontaneous or revealed by the addition of • For in vitro diagnostic use and microbiological reagents. control. The reactions are read according to the Reading Table • For professional use only. and the identification is obtained by referring to the • This kit contains products of animal origin. Certified Analytical Profile Index or using the identification software. knowledge of the origin and/or sanitary state of the animals does not totally guarantee the absence of CONTENT OF THE KIT transmissible pathogenic agents. It is therefore Kit for 25 tests (ref. 20 100) recommended that these products be treated as - 25 API 20 E strips potentially infectious, and handled observing the usual - 25 incubation boxes safety precautions (do not ingest or inhale).
    [Show full text]
  • Limited Vs Full Microbiological Investigation for the Management of Symptomatic Polymicrobial Urinary Tract Infection in Adult Spinal Cord- Injured Patients
    Spinal Cord (1997) 35, 534 ± 539 1997 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/97 $12.00 Limited vs full microbiological investigation for the management of symptomatic polymicrobial urinary tract infection in adult spinal cord- injured patients Rabih O Darouiche, Michael Priebe and Jill E Clarridge Baylor College of Medicine and the Veterans Aairs Medical Center, 2002 Holcombe Boulevard, Houston, Texas 77030, USA Spinal cord-injured (SCI) patients often suer from symptomatic polymicrobial urinary tract infection (UTI). The objective of this study was to evaluate the clinical outcome and cost- savings associated with antibiotic therapy based on limited vs full microbiological investigation of urine cultures in adult SCI patients with symptomatic polymicrobial UTI (52 organisms growing in urine cultures). In the ®rst part of the study, a total of 40 evaluable patients were prospectively randomized in a single-blinded fashion to receive antibiotic therapy based on either limited (21 patients) or full microbiologic investigation (19 patients) of urine cultures. The practicality of a limited microbiological investigation was further examined in the second part of the study where 12 consecutive patients with symptomatic polymicrobial UTI initially had only limited microbiological investigation of urine cultures and received antibiotic therapy accordingly. When analyzing all patients in the study, the likelihood of adequate clinical response was not signi®cantly dierent between those who received antibiotic therapy based on limited (28/33=85%) vs full (18/19=95%) microbiological investigation of urine cultures (P=0.40). An average of 183 US dollars could be saved per patient by managing symptomatic polymicrobial UTI based on a limited vs a full microbiological investigation.
    [Show full text]
  • Oxidase Test
    Microbiology Laboratory (BIOL 3702L) Page 1 of 3 OXIDASE TEST Principle and Purpose Oxidase enzymes are key components of the electron transport system and have a critical role in aerobic respiration. In particular, cytochrome c oxidase, which is usually only present in aerobic organisms, uses molecular oxygen as an electron acceptor generating water as a consequence of the reduction-oxidation reaction. The oxidase test, as conducted within this exercise, will detect the activity of cytochrome oxidase or indophenol oxidase. Not all microbes possess these enzymes. The presence or absence of oxidases can be used to distinguish between various species of cocci as well as Gram-negative bacilli. Among the cocci, Micrococcus, Neiserria and Moraxella are oxidase positive, whereas most species of Staphylococcus, Streptococcus, and Enterococcus are oxidase negative. An example of an oxidase negative bacillus is Pseudomonas, whereas enterobacteria are generally oxidase positive. In the present exercise, students will use a commercial product, OxiSticks™ Oxidase Swabs (Fig. 1; Hardy Diagnostics), which are impregnated with N,N,N',N'-tetramethyl-p- phenylenediamine dihydrochloride (TMPD). If present in a test organism, cytochrome c oxidase or indophenol oxidase will be reduced Figure 1. Oxidase Swab Test. The by this reagent, i.e., accept an electron from development of a blue/purple color within TMPD. The TMPD then forms a product that 10-20 seconds is indicative of a positive is dark purple/blue to maroon in color within oxidase reaction. 30 seconds. Learning Objectives Upon completion of this exercise, a student should be able to: • Understand the underlying mechanism of the oxidase test; • Properly conduct the oxidase test; and • Accurately interpret the results of this test.
    [Show full text]
  • Supplementary Materials A
    Supplementary Materials A. Different tests for identification of bacteria Gram’s staining: This test categorizes organisms into two large groups: Gram-positive and Gram- negative. In this test, there are basically four steps: primary staining with crystal violet to a heat-fixed smear, followed by the addition of mordant (Gram’s iodine), rapid decolorization with alcohol or mixture of alcohol and acetone, and finally counterstaining with safranin. Gram-positive bacteria appear as purple, and Gram-negative bacteria appear as pink or red. Spore staining: This staining helps to determine whether the bacterium is a spore producer or not. The staining method uses malachite green as the primary stain and safranin as the counterstain. If spores are present, they appear as bright green, while vegetative cells appear as brownish red to pink. Catalase test: This test determines whether the bacterium contains a catalase enzyme or not. For this, the bacterium inoculum is taken with the non-iron loop and smeared on the surface of the glass slide. Then, 2-4 drops of hydrogen peroxide are added to the smear. If bubbles are observed, the bacterium is catalase-positive; otherwise, it is regarded as catalase-negative. Oxidase test: This test determines the presence of cytochrome oxidase enzyme. For this, an inoculum of pure bacterial culture is added to the surface of the test strip, impregnated with the reagent. Purple color observed within 5-10 seconds indicates that the bacterium has the oxidase enzyme. Methyl red–Voges Proskauer (MR-VP) test: This consists of two tests. 1. The MR test is useful for determining the fermentation pathway for glucose utilization.
    [Show full text]