Studies Towards Purification of Auger Electron Emitter Er

Total Page:16

File Type:pdf, Size:1020Kb

Studies Towards Purification of Auger Electron Emitter Er Studies towards purification of Auger electron emitter 165Er – a possible radiolanthanide for cancer treatment Master’s thesis Salla Tapio Department of Chemistry University of Helsinki 30 November 2018 Tiedekunta – Fakultet – Faculty Koulutusohjelma – Utbildningsprogram – Degree programme Matemaattis-luonnontieteellinen tiedekunta Kemia Tekijä – Författare – Author Salla Tapio Työn nimi – Arbetets titel – Title Studies towards purification of Auger electron emitter 165Er – a possible radiolanthanide for cancer treatment Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Pro Gradu -työ 11/2018 87 Tiivistelmä – Referat – Abstract Syöpä on maailmanlaajuisesti yksi yleisimmistä kuolinsyistä ja syöpäkuolemien määrän odotetaan yhä nousevan johtuen väestönkasvusta sekä elämäntavoista, jotka lisäävät syöpäriskiä. Vaikka useita hoitomuotoja on tarjolla, tarvitaan jatkuvasti uusia, entistä tehokkaampia vaihtoehtoja. Kohdennettu radionukliditerapia on sisäisen sädehoidon muoto, jossa sädehoito voidaan kohdistaa selektiivisesti syöpäsoluihin käyttäen radiolääkeaineita. Radiolääkeaineet ovat molekyylejä, jotka sisältävät sekä sädehoitoon sopivan radionuklidin että biomolekyyliosan, joka sitoutua syöpäsolun pinnan proteiineihin. Uusia tapoja tuottaa ja puhdistaa sisäiseen sädehoitoon sopivia radionuklideja tutkitaan jatkuvasti. Hoidon kohdentamiseen käytettävien biomolekyylien leimaamiseen tarvitaan kemiallisesti ja radionuklidisesti puhtaita radionuklidiprekursoreita. Radionuklideja tuotetaan usein pommittamalla stabiilia kohtiomateriaalia protoneilla, joten kiinnostuksen kohteena olevan radioisotoopin erottaminen kohtiomateriaalista on erityisen tärkeä osa nuklidituotantoa. Auger elektroneja emittoiva Erbium-165 on potentiaalinen radiolantanidi syöpähoitoon. Sen tuottaminen vaatii Erbiumin kemiallista erottamista joko Holmiumista tai Tuliumista. LN hartsit ovat ekstraktiokromatografiahartseja, jotka on kehitetty erityisesti lantanidierotuksia varten. Tässä työssä tutkittiin niiden sopivuutta Holmium/Erbium ja Erbium/Tulium –erotuksiin. Erotusmahdollisuuksien arvioimiseksi, näiden kolmen lantanidin pidättymiskapasiteetit määritettiin jokaisessa LN hartsissa. Lisäksi suoritettiin pylväserotuskokeita. Avainsanat – Nyckelord – Keywords Sisäinen sädehoito, Auger emitteri, radiolantanidi, LN hartsi Säilytyspaikka – Förvaringställe – Where deposited E-thesis Muita tietoja – Övriga uppgifter – Additional information Tiedekunta – Fakultet – Faculty Koulutusohjelma – Utbildningsprogram – Degree programme Faculty of science Chemistry Tekijä – Författare – Author Salla Tapio Työn nimi – Arbetets titel – Title Studies towards purification of Auger electron emitter 165Er – a possible radiolanthanide for cancer treatment Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Master’s thesis 11/2018 87 Tiivistelmä – Referat – Abstract Cancer is one of the most common causes of death worldwide and the amount of cancer deaths is expected to increase due to population growth and lifestyle choices that increase cancer risk. Even though there is a great variety of treatment approaches available, new and more efficient options are in high demand. Targeted radionuclide therapy is a form of internal radiation therapy that can be used to selectively target cancer cells. It utilizes radiopharmaceuticals, molecules that contain a radionuclide and a targeting vector part (biomolecule) which can bind to certain entities expressed on cancer cell surfaces. Ways to produce and purify new radionuclides suitable for cancer therapy are constantly investigated. Radionuclide precursors of high chemical and radionuclidic purity are needed for radiolabelling of the biomolecules used as targeting vectors. Radionuclides are often produced by proton irradiation of stable target material and separation of the radioisotope of interest from the target material is a vital part of nuclide production. Auger electron emitter Erbium-165 is a potential radiolanthanide for cancer treatment. Its production would require separation of Erbium from either Holmium or Thulium, adjacent lanthanides to Erbium. LN resins are extraction chromatography resins developed especially for lanthanide separations. In this work, the suitability of these resins for Holmium/Erbium and Erbium/Thulium separations was investigated. In order to assess the possibility of separating the lanthanides of interest on LN resins, the retention capacities of the lanthanide were determined on each resin. In addition, column separation experiments were performed. Avainsanat – Nyckelord – Keywords TRNT, Auger electron emitter, radiolanthanide, LN resin Säilytyspaikka – Förvaringställe – Where deposited E-thesis Muita tietoja – Övriga uppgifter – Additional information Acknowledgements I would first like to thank Paul Scherrer Institute and group leader Dr. Nick van der Meulen for giving me the opportunity to carry out my Master’s thesis work in the Radionuclide Development Group at PSI and Dr. van der Meulen for his constant guidance and advice during my thesis work. I am grateful to MSc Nadezda Gracheva, the co–supervisor of my thesis work, for sharing her knowledge in the field of study with me and for her patience in guiding me and answering my many questions. I would also like to thank other members of the Radionuclide Development Group, Dr. Zeynep Talip and MSc Roger Hasler, as well as all other colleagues and friends at PSI for their assistance and support. I wish to express my gratitude to my supervisors, Prof. Anu Airaksinen and Dr. Kerttuli Helariutta, and all my friends at the University of Helsinki for their inspiration and support. I would also like to thank Dr. Helariutta for making me believe in myself and encouraging me to pursue a Master’s thesis position abroad. Finally, I would like to thank my family, my spouse, and dear friends who have always given me strength and courage. I am deeply grateful to them for constantly reminding me what is truly important in life. I would not be where I am today without their endless love and support. 4 Contents Part I: Introduction 9 1 Available therapies for cancer treatment 9 2 Application of radionuclides in nuclear medicine: historical overview 12 3 Radiopharmaceuticals in nuclear medicine 13 4 Radionuclides for cancer diagnosis and therapy 15 4.1 Radionuclides for diagnosis . 16 4.1.1 Imaging modalities for diagnosis . 16 4.1.2 Radionuclides for single photon emission computed tomography . 19 4.1.3 Radionuclides for positron emission tomography . 21 4.2 Radionuclides for therapy . 22 4.3 Radionuclides for theranostics . 28 4.4 Possible use of Auger electron emitters in targeted radionuclide therapy . 29 5 Novel Auger electron emitter for radiotherapy, Erbium-165 32 5.1 Decay characteristics of Erbium-165 . 32 5.2 Prospects in production of Erbium-165 . 33 5.3 Chromatographic methods for lanthanide separation and their ap- plication for Er/Tm, Er/Ho separations . 36 5.4 The concept of distribution coefficients . 42 5 6 Aim of Thesis 44 Part II: Experimental 45 7 Materials and methods 45 7.1 Retention capacities . 45 7.1.1 Sample preparation for determination of retention capacities 45 7.1.2 Sample preparation for ICP–OES measurements . 46 7.1.3 Calculations for determination of retention capacities . 47 7.2 Column separation experiments . 48 8 Results and discussion 50 8.1 Retention capacities . 50 8.2 Column separation experiments . 57 8.2.1 Column separation of Ho and Tm . 57 8.2.2 Column separation of Er and Tm . 61 8.2.3 Er concentration experiment . 66 Part III: Conclusions and outlook 67 A Results of inductively coupled plasma optical emission spectroscopy measurements 85 6 List of abbreviations α–HIBA = α-hydroxy-isobutyric acid BBE = Biological bystander effect CT = computed tomography DNA = Deoxyribonucleic acid DOTATATE = DOTA-Tyr3-octreotate DOTMP = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminomethylene phospho- nic acid DTPA = diethylenetriaminepentaacetic acid EC = electron capture EDTMP = ethylenediamine tetra(methylene phosphonic acid) FDA = United States Food and Drug Administration FDG = 2-(F-18)fluoro-2-deoxyglucose HA = hydroxypaptite HDEHP = bis(2-ethyl-1-hexyl)phosphoric acid HEH[EHP] = 2-ethyl-1-hexyl(2-ethyl-1-hexyl)phosphonic acid HMPAO = hexamethylpropyleneamine oxime H[DTMPP] = bis(2,4,4- trimethyl-1-pentyl)phosphinic acid HP = High purity IC = internal conversion 7 ICP–OES = inductively coupled plasma optical emission spectroscopy LET = Linear energy transfer mCRPC = metastatic castration-resistant prostate cancer MIGB = iodine-123 meta-iodobenzylguanidine MRI = magnetic resonance imaging PET = positron emission tomography PM = personalized medicine PRRT = peptride-receptor radionuclide therapy PSI = Paul Scherrer Institute PSMA = prostate-specific membrane antigen RIT = radioimmunotherapy ROS = reactive oxygen species TRNT = targeted radionuclide therapy SPECT = single photon emission computed tomography 8 Part I: Introduction 1 Available therapies for cancer treatment Cancer is caused by a gene change (mutation) that makes the abnormal mutated cells to divide and grow faster than normal cells.1 Cancer is currently one of the most common causes of death worldwide and the burden it produces on society is expected to increase in the future. This is due to population growth and aging as well as lifestyle choices that increase cancer risk. In 2012 the number of new cancer cases and cancer deaths worldwide was estimated at 14.1 million and 8.2
Recommended publications
  • Recent Advances in Multi-Modality Molecular Imaging of Small Animals
    8/3/2016 Recent Advances in Multi-modality Molecular Imaging of Small Animals Benjamin M. W. Tsui, Ph.D. Department of Radiology August 3, 2016 1 Outline Introduction Early developments of molecular imaging (MI) of small animals (SA) Development of multi-modality MI of SA – Instrumentation – Image reconstruction and processing methods Recent advances Comparing Biomedical Imaging Techniques US MRI X-ray CT SPECT PET OPTICAL Anatomical Yes Yes Yes No No No Functional Yes Yes No Yes Yes Yes Resolution Sub- Sub- Sub- <1 mm ~1 mm Sub- millimeter millimeter millimeter (0.6 – 0.3mm) micron Molecular No Good No Excellent Excellent Excellent Target Molecular targeting No Poor No Good Excellent Poor sensitivity Translational Yes Yes Yes Yes Yes No 1 8/3/2016 Traditional Nuclear Medicine Imaging Techniques an important function imaging modality Activity labels tracer or biomarkers w/ radioisotope distribution administers radio-tracer into patient Gamma detects photon emissions using position- photons sensitive detectors Collimator Provides localization & biodistribution information of radiotracers - e.g., perfusion, potassium analog, monoclonal antibody Scintillation Clinical applications crystal Scintillation - e.g., cardiac and kidney functions, cancer Camera Positioning Photomultiplier detection, neurological disorders circuitry tube array EMISSION COMPUTED TOMOGRAPHY (ECT) an important function imaging modality Nuclear imaging combined with computed tomography (Image reconstruction from multiple projections) Categories of ECT - PET
    [Show full text]
  • Preclinical SPECT Imaging Based on Compact Collimators and High Resolution Scintillation Detectors
    Preklinische SPECT-beeldvorming gebaseerd op compacte collimatoren en hogeresolutiescintillatiedetectoren Preclinical SPECT Imaging Based on Compact Collimators and High Resolution Scintillation Detectors Karel Deprez Promotoren: prof. dr. S. Vandenberghe, prof. dr. R. Van Holen Proefschrift ingediend tot het behalen van de graad van Doctor in de Ingenieurswetenschappen Vakgroep Elektronica en Informatiesystemen Voorzitter: prof. dr. ir. J. Van Campenhout Faculteit Ingenieurswetenschappen en Architectuur Academiejaar 2013 - 2014 ISBN 978-90-8578-672-6 NUR 954, 959 Wettelijk depot: D/2014/10.500/18 Department of Electronics and Information Systems Medical Image and Signal Processing (MEDISIP) Faculty of Engineering and Architecture Ghent University MEDISIP IBiTech Campus Heymans, Blok B De Pintelaan 185 9000 Ghent Belgium Promotors Prof. dr. Stefaan Vandenberghe Prof. dr. Roel Van Holen Board of examiners Prof. dr. ir. Patrick De Baets, Ghent University, chairman Dr. Michael Tytgat, Ghent University / CERN, secretary Prof. dr. Luc Van Hoorebeke, Ghent University Prof. dr. Dennis Schaart, Delft University of Technology, The Netherlands Prof. dr. Carlo Fiorini, Politecnico di Milano, Italy Dr. Samuel Espana˜ Palomares, Advanced Imaging Unit, Centro Nacional de Inves- tigaciones Cardiovasculares (CNIC), Spain Dr. Peter Bruyndonckx, Bruker MicroCT, Belgium This work was supported by the 7th Framework Programme (FP7) of the European Union through the SUBLIMA project (Grant Agreement No 241711) Acknowledgements The work presented in this dissertation started in 2008, shortly after the birth of my daughter, and was finished in early 2014. Before I started at the university I had been working for several years as a electronics design engineer at Barco and Gemidis. The first thing that struck me when I started at the university was the content of my work.
    [Show full text]
  • CROSS SECTIONS of (N,P), (N,Α), (N,2N) REACTIONS on ISOTOPES
    CROSS SECTIONS OF (n, p), (n, α), (n, 2n) REACTIONS ON ISOTOPES OF Dy, Er, Yb AT En= 14.6 MEV А.O. Kadenko, O.M. Gorbachenko, V.A. Plujko, G.I. Primenko Nuclear Physics Department, Taras Shevchenko National University, Kyiv, Ukraine Abstract The cross sections of the neutron reactions at En= 14.6 MeV on the isotopes of Dy, Er, Yb with emission of neutrons, proton and alpha-particle were studied by the use of new experimental data and different theoretical approaches. New and improved experimental data were obtained by the neutron- activation technique. Present experimental results and evaluated nuclear data from EXFOR, TENDL, ENDF data libraries were compared with different systematics and calculations within codes of EMPIRE 3.0 and TALYS 1.2. Contribution of pre-equilibrium decay was studied. The recommendations on validity of different systematics for estimations of cross-sections of considered reactions are given. 1. Introduction Studies of the nuclear reaction cross sections induced by neutrons provides an opportunity to get information on the excited states of atomic nuclei and nuclear reaction mechanisms [1]. In addition, nuclear reaction cross section data are necessary in applied applications such as the design of fusion reactors protection and modernization of existing nuclear power plants [2, 3]. In particular, they allow to calculate the activity and the degree of radiation damage to structural elements of nuclear reactors [3]. Practical interest in cross sections of nuclear reactions caused by their wide use in experimental nuclear physics methods, such as the method of boundary indicators in measuring the spectrum of neutrons in the reactor core of a nuclear reactor, or neutron activation analysis.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Periodic Table of Elements
    The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 The origin of the elements Univ.-Ass. Dipl.-Ing. Dr. techn. Ille C. Gebeshuber Institut für Allgemeine Physik Technische Universität Wien Wiedner Hauptstrasse 8-10/134 1040 Wien Tel. +43 1 58801 13436 FAX: +43 1 58801 13499 Internet: http://www.ille.com/ © 2007 © Photographs of the elements: Mag. Jürgen Bauer, http://www.smart-elements.com 1 The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 I. The Periodic table............................................................................................................... 5 Arrangement........................................................................................................................... 5 Periodicity of chemical properties.......................................................................................... 6 Groups and periods............................................................................................................. 6 Periodic trends of groups.................................................................................................... 6 Periodic trends of periods................................................................................................... 7 Examples ................................................................................................................................ 7 Noble gases .......................................................................................................................
    [Show full text]
  • The Radioactivity of Some Ruthenium and Erbium
    THE RADIOACTIVITY OF SOME RUTHENIUM AND ERBIUM ISOTOPES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By BASANT LAL SHARMA, B. Sc., M. Sc. The Ohio State University 1959 Approved by: " - y n - L . t o J Z ------------------ x a s i s e r ----------^ -------- Department of Physics and Astronomy Acknowledgm ent I take this opportunity to express my sincere appreciation to Professor M. L. Pool for his interest, suggestions, and encouragement throughout this work. Table of Contents Page General Introduction ................................................................................................. 1 Instrumentation ................................................................................................................................ PART I RADIOACTIVE DECAY OF Ru106 AND THE ESTIMATION OF THE THERMAL NEUTRON ACTIVATION CROSS SECTION OF Ru105 Introduction........................................................................................................................................... 8 Experimental D ata............................................................................................. 11 Calculation of the Thermal Neutron Activation Cross Section of R u ^ ^.....................................................................................................23 Results and Discussion............................................................................................... 28 Bibliography ...........................................
    [Show full text]
  • Imaging Technologies for Preclinical Models of Bone and Joint Disorders
    Tremoleda et al. EJNMMI Research 2011, 1:11 http://www.ejnmmires.com/content/1/1/11 REVIEW Open Access Imaging technologies for preclinical models of bone and joint disorders Jordi L Tremoleda1*, Magdy Khalil1, Luke L Gompels2, Marzena Wylezinska-Arridge1, Tonia Vincent2 and Willy Gsell1 Abstract Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers.
    [Show full text]
  • Hybrid Gamma Camera Imaging: Translation from Bench to Bedside
    Hybrid Gamma Camera Imaging: Translation from Bench to Bedside A thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy by Aik Hao Ng MMed.Phys. Radiological Sciences, Division of Clinical Neuroscience, School of Medicine September 2017 Declaration I, Aik Hao Ng declare that the work presented in this thesis is my own original work based on the research undertaken during my PhD study period unless otherwise referenced or acknowledged. ii “Life is like riding a bicycle. To keep your balance, you must keep moving.” - Albert Einstein Abstract There is increasing interest in the use of small field of view (SFOV) portable gamma cameras in medical imaging. A novel hybrid optical-gamma camera (HGC) has been developed through a collaboration between the Universities of Leicester and Nottingham. This system offers high resolution gamma and optical imaging and shows potential for use at the patient bedside, or in the operating theatre. The aim of this thesis was to translate the HGC technology from in vitro laboratory studies to clinical use in human subjects. Pilot studies were undertaken with the HGC as part of this thesis. Furthermore, efforts have been made to transform the HGC technologies into a new medical device, known as Nebuleye. Initial physical evaluation of the pre-production prototype camera was carried out as part of the device developmental process, highlighting some aspects of the design that require further modification. A complete and rigorous testing scheme to assess the pre-production prototype camera has been developed and successfully implemented. The newly introduced tests enabled the system uniformity, system sensitivity, detector head shielding leakage, optical-gamma image alignment and optical image quality of the hybrid camera to be assessed objectively.
    [Show full text]
  • First Search for $2\Varepsilon $ and $\Varepsilon\Beta^+ $ Decay Of
    First search for 2ε and εβ+ decay of 162Er and new limit on 2β− decay of 170Er to the first excited level of 170Yb P. Bellia, R. Bernabeia,b,1, R.S. Boikoc,d, F. Cappellae, V. Caracciolof , R. Cerullia, F.A. Danevichc, A. Incicchittie,g, B.N. Kropivyanskyc, M. Laubensteinf , S. Nisif , D.V. Podac,h, O.G. Polischukc, V.I. Tretyakc aINFN sezione Roma “Tor Vergata”, I-00133 Rome, Italy bDipartimento di Fisica, Universita` di Roma “Tor Vergata”, I-00133 Rome, Italy cInstitute for Nuclear Research, 03028 Kyiv, Ukraine dNational University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine eINFN sezione Roma, I-00185 Rome, Italy f INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy gDipartimento di Fisica, Universita` di Roma “La Sapienza”, I-00185 Rome, Italy hCSNSM, Universit´eParis-Sud, CNRS/IN2P3, Universit´eParis-Saclay, 91405 Orsay, France Abstract The first search for double electron capture (2ε) and electron cap- arXiv:1808.01782v1 [nucl-ex] 6 Aug 2018 ture with positron emission (εβ+) of 162Er to the ground state and to several excited levels of 162Dy was realized with 326 g of highly purified erbium oxide. The sample was measured over 1934 h by the ultra-low background HP Ge γ spectrometer GeCris (465 cm3) at the Gran Sasso underground laboratory. No effect was observed, the half- 15 18 life limits were estimated at the level of lim T1/2 ∼ 10 − 10 yr. A 162 + possible resonant 0νKL1 capture in Er to the 2 1782.7 keV ex- 162 17 cited state of Dy is restricted as T1/2 ≥ 5.0 × 10 yr at 90% C.L.
    [Show full text]
  • Hu11b6 for Prostate Cancer Theranostics Oskar Vilhelmsson Timmermand1, Jörgen Elgqvist2, Kai A
    Theranostics 2019, Vol. 9, Issue 8 2129 Ivyspring International Publisher Theranostics 2019; 9(8): 2129-2142. doi: 10.7150/thno.31179 Research Paper Preclinical efficacy of hK2 targeted [177Lu]hu11B6 for prostate cancer theranostics Oskar Vilhelmsson Timmermand1, Jörgen Elgqvist2, Kai A. Beattie3, Anders Örbom1, Erik Larsson4, Sophie E. Eriksson1, Daniel L.J. Thorek5, Bradley J. Beattie6, Thuy A. Tran7,8, David Ulmert1,3,9*, Sven-Erik Strand1,4* 1. Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden 2. Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden 3. Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA 4. Division of Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden 5. Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63108, USA. 6. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 7. Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden 8. Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden 9. Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), CA, USA *Equal contribution Corresponding author: Division of Oncology, Department of Clinical Sciences Lund, Lund University, Barngatan 4, bottom floor, 221 85 Lund, Sweden. E-mail: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
    [Show full text]
  • Mikael Peterson KAPPAN Inkl Omslag
    SPECT Imaging using Pinhole Collimation System Design and Simulation Studies for Pre-Clinical and Clinical Imaging Peterson, Mikael 2017 Link to publication Citation for published version (APA): Peterson, M. (2017). SPECT Imaging using Pinhole Collimation: System Design and Simulation Studies for Pre- Clinical and Clinical Imaging. Lund University, Faculty of Science, Department of Medical Radiation Physics. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 MIKAEL PETERSON SPECT ImagingSPECT using Pinhole Collimation SPECT Imaging using Pinhole Collimation System Design and Simulation Studies for Pre- Clinical and Clinical Imaging MIKAEL PETERSON FACULTY OF SCIENCE | LUND UNIVERSITY Faculty of Science Department of Medical Radiation Physics 533771 2017 ISBN 978-91-7753-377-1 ISBN 978-91-7753-378-8 789177 9 SPECT Imaging using Pinhole Collimation System Design and Simulation Studies for Pre- Clinical and Clinical Imaging Mikael Peterson DOCTORAL DISSERTATION by due permission of the Faculty of Science, Lund University, Sweden.
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,437,795 Snyder Et Al
    US005437795A United States Patent 19 11 Patent Number: 5,437,795 Snyder et al. 45) Date of Patent: Aug. 1, 1995 (54) CHROMATOGRAPHIC SEPARATION OF 5,098,678 3/1992 Lee et al. .............................. 423/70 ERBUMISOTOPES 5,110,566 5/1992 Snyder et al. ......................... 423/70 5,124,023 6/1992 Bosserman . 210/659 (75) Inventors: Thomas S. Snyder, Oakmont; Steven 5,133,869 7/1992 Taniguchi. 210/659 H. Peterson; Umesh P. Nayak, both 5,174,971 12/1992 Snyder et al.......................... 423/70 of Murrysville; Richard J. Beleski, Pittsburgh, all of Pa. Primary Examiner-Ernest G. Therkorn 57 ABSTRACT 73 Assignee: Westinghouse Electric Corporation, Pittsburgh, Pa. A process for the partial or complete simultaneous sepa ration of isotopes of erbium, especially high thermal (21) Appl. No.: 264,810 neutron capture cross-section erbium isotopes, using 22 Filed: Jun. 23, 1994 continuous, steady-state, chromatography in which an (51) Int. Cl............................................... B01D 15/08 ion exchange resin is the stationary phase, an aqueous (52) U.S.C. .................................... 210/635; 210/656; solution of ions based on a mixture of erbium isotopes is 210/657; 210/659; 210/1982; 423/21.5; the feed phase, and an aqueous acid eluant solution is 423/263 the mobile phase. The process involves the mobile (58) Field of Search ............... 210/635,656,657, 659, phase eluting or desorbing the erbium isotopic solute 210/1982; 423/263, 21.1, 21.5 adsorbed on the stationary phase under conditions such that each of the various naturally occurring isotopes of (56) References Cited erbium is primarily eluted in an elution volume distinct U.S.
    [Show full text]