<<

Journal of Science ot tet ata,M 25,USA 02454, MA Waltham, 415 Street, University, South Brandeis Biology, Center, of Research Department Sciences Medical Basic Rosenstiel Goode* L. Bruce and Breitsprecher Dennis glance a at Formins Glance a at Science Cell xadn oyo ieaueo this the on rapidly summarizing a literature family, organize of diverse to body aim expanding we accompanying been the poster, regulate on and recently directly Here, dynamics. have to shown and the of in roles rearrangements instrumental controlling have that machines polymerization actin conserved are Formins 10.1242/jcs.107250 doi: 1–7 126, ß Science Cell of Journal ( correspondence for *Author 03 ulse yTeCmayo ilgssLtd Biologists of Company The by Published 2013. [email protected] ) 02) ic hn ebr fti large this of members al., then, et cell Since Sagot 2002a; Pruyne 2002b). al., et polarized 2002; Sagot 2002; al., al., direct et et (Evangelista that growth cables actin omnpoete htapyt most advances to recent apply highlighting and that formins, properties common fatnflmns n htteeactivities essential these that are and filaments, actin assembly of the budding nucleate directly al., formins in that et studies Kohno 1990; Subsequent 1994; Castrillon 1996). al., 1992; Wasserman, in al., and et et defects tissue when Jackson-Grusby (Mass and that, severe cell morphogenesis and genes polarity, cause as , yeast mutated, and mice structure, the levels. formin cellular at and regulation molecular and activity understanding mechanism, in omn eefrtietfe nflies, in identified first were Formins acaoye cerevisiae Saccharomyces nvivo in o h sebyof assembly the for revealed rti aiy(noe y1 ee in in genes in 15 two by mammals, (encoded family protein 07 lc ta. 08 aue tal., al., et et Matusek 2008; Yang al., et 2005; 2005; Block al., 2007; Mellor, et of and Schirenbeck assembly (Pellegrin the al., for filopodia required et cells, are animal Ingouff In formins 2010). 2004; al., et Cheung Wu, 2005; 2003; and al., et Cheung Dong 2002; al., transport et 2001; and Evangelista Chang, intracellular and rings Feierbach 1999; direct (Chang, cytokinetic that of in cables role assembly essential an the have formins yeast, In formins of functions Cellular ae rcse a lutae nthe in illustrated (as Poster). cytoskeleton- processes an of in based range roles wide crucial increasingly have to melangastor demonstrated Drosophila acaoye pombe Saccharomyces .cerevisiae S. Sepse insert) poster (See aebeen have ) n i in six and , three , 1 Journal of Cell Science e uat stosta r aal of capable are activity. an formin that each develop disrupting tools separately Thus, to as mutants is below). new challenge (see future important binding (MT) microtubule and required. depolymerization bundling, severing, actin e.g. are assembly, activities actin exhibit activities beyond determined formins their been some Moreover, yet of not which has it formins, X ta. 04 ue l,2007; al., et other Lu the for However, of 2004; 2012). many al., al., activities et Ramabhadran these et in (Xu impair have point that which investigating mutations 2012), by al., demonstrated been et al., et Stastna Andre Ramabhadran 2010; 2012; 2012; al., al., et et Madrid Delgado 2010; al., et ta. 05 tm ta. 00.DF are DRFs Rose 2010). al., 2005a; et Otomo al., 2005; et al., et Otomo 2003; and Li Higgs, 2001; (Alberts, Poster) (see domain) C- autoregulatory GTPase- (Diaphanous are a DAD and terminal DID domain) N-terminal adjacent inhibitory an subset (Diaphanous an (GBD), domain binding have largest vertebrate which 15 they the Diaphanous the where formins, Of cells, cytoskeletal in reorganization. roles at in diverse activated their perform sites and recruited different are formins Formins of activation and Localization formins Andre 2008; of al., activities et these nucleation (Bartolini elongation of actin the Some and on depend neurons. spine heart functions dendritic in and 2011a; morphogenesis al., 2011b), formation 2008), et al., kidney Boyer et 2010; Boyer 2011), al., al., et (Brown Li al., 2010; et al., et et (Iskratsch Lai morphogenesis neural al., et and Sato 2001; 2006; gastrulation al., Shi et to (Habas 2007; closure tube 2009), al., et al., Eisenmann et 2000; in (Yayoshi-Yamamoto al., physiological motility et system cell in immune from the roles also ranging 2002; Formins processes essential phagocytic 2007). al., al., and have et et 2008) (Brandt al., cups cytokinetic (Severson et 2011), Watanabe rings Schuh, 2011; actin 2008), Pfender al., 2008; al., al., et et Li 2008; al., et 2002; et al., Azoury et (Leader long- Takeya transport for vesicle range used 2006; networks actin 2003; cytoplasmic Sato al., al., 2006; et et Lappalainen, Peng and 2001; 2003; Tominaga, Hotulainen al., and et Satoh (Ishizaki Gasteier 2001; fibers al., stress 2012), et 2008; al., al., lamellipodia et et Sarmiento 2010), Block 2007; al., al., et et (Yang Harris 2008; 2 ora fCl cec 2 (1) 126 Science Cell of Journal rltdfris(DRFs), formins -related nvivo in ucin of functions ´ s-Delgado ´ s- uoniie hog DID–DAD and crystallographic through Recent interactions. autoinhibited oooydmi rtis1ad3 and 1 formin the 2011), domain al., homology et B Aurora (Cheng by kinase phosphorylated is to mDia3) referred as hereafter diaphanous (DIAPH2, 2 protein homolog formin In the release 2009). mammals, al., its et (Wang facilitates autoinhibition from which by C-termini kinase, and Prk1 N- its at phosphorylated a addition, In with 2012). the al., formin interact et (Buttery to Bnr1 function controls shown that kinase control was septin-associated sequences Bnr1 the of in one partners Indeed, recruitment. separate and cues of binding combination two a that suggesting least formin the independently target at that sequences localization harbor regulate yet each also and the Poster), Bnr1 example, formin can (see For 2012) formins. factors al., additional 2007; et al., et 1997; Martin Block 2006; al., al., et Mellor, 2002; Seth and 2005; Pellegrin al., et 2002; et al., Nakano et for Watanabe Tolliday 2001; al., (Evangelista cell 1997; et Ishizaki the assembly al., in et actin locations localized different to 2012), al., required formins. activate are et fully factors to Maiti other However, (Li that 2003; suggesting incomplete Higgs, noticeably and these interactions. is releasing activation by 2012). GBD formin DID–DAD to al., the Rho- et activates active Maiti 2010; of 2010; autoinhibited al., Binding al., et et to (Nezami the Otomo C-terminus actin the of polymerize ability in physically the N-terminus obstructs the that, conformation, show studies microscopy electron single-particle Da n Da,a ela h plant the Moreover, as well 2012). al., as al., mDia2, their et and et mDia1 Block (Chhabra promotes 2009; targeting which myristoylated, membrane and farnesylated FRL3) respectively, as also known also are 2011). (FMNL2, formin-like 2 al., and protein et (INF2) Staus formin-2 2008; (ROCK) are Inverted al., by et kinase FHOD1 (Takeya phosphorylation protein and al., Rho-associated through et mDia2 Iskratsch activated and 2010; al., 2012), 2008; al., et et casein Iskratsch (Hannemann CK2) and subunit as known (PRKG1) 2 cGMP-dependent 1 kinase kinase by are protein respectively) FHOD3, phosphorylated and (FHOD1 ait fRoGPssrcutDRFs recruit Rho-GTPases of variety A .cerevisiae S. nvivo in .pombe S. a CN21 also (CSNK2A1, Goe l,2010), al., et (Gao R n1is Bni1 DRF omnCdc12 formin .cerevisiae S. h H oanfrsaring-shaped a 2005). forms al., et domain Kovar ATP–actin FH2 2003; 2002b; The al., 1997; al., et of et al., Sagot Kovar 1997; et al., (Chang majority et Imamura that and cells in protein monomers the monomers abundant actin small binds a of multiple , consist complexes contains recruit that and that motifs extended and proline-rich be to FH1 unstructured, predicted FH2 The known and is regions. FH1 and tail domain the the All actin and/or by domains with mediated 2012). are formins MTs al., of 2011; interactions et al., et Scott Skillman 2010; al., et 2008; Machaidze and al., et Moseley Esue 2006; Barko 2006; Higgs, Higgs, 2005; and and Harris Chhabra 2004; and/or al., 2005; actin al., Goode, et and severing et Michelot (Harris below) include bundling, depolymerization (see formins in filament binding of activities MT subsets Additional different filament profilin- actin (3) elongation. of them and acceleration protecting proteins dependent capping while from filaments actin oan(ieoe l,20) otformins Most 2005). al., et (Rivero domain is exception Dictyostelium known respectively) Scho only The 2010; 2 2010). FH2, Geyer, al., and et and (Chesarone 1 (see (FH1 the homology design domains are formin features modular C-terminal signature a Their poster). with multi-domain dimeric proteins large, are Formins formins of activities Biochemical as serve signalling cases, pathways. multiple from some These inputs their in convergent localization on activation, that 2012). and depend and interactions formins and diverse al., localization of that activation show 2010; et observations al., al., et Gisbergen Martinie phospholipid Gorelik 2010; et 2011; al., II bind et (Cheung Ramalingam class directly and membranes formin1 formin, AFH1, formins fatnasml,()processive of (2) ends barbed assembly, growing on actin movement nucleation (1) of activities: three following In localization. main of their have directing and domains. in halves variable roles more N-terminal are (WH2)-like formins the homology 2 comparison, syndrome that, region and/or regions domains Wiskott-Aldrich tail DAD include C-terminal sometimes, have also otprfe omn xii the exhibit formins purified Most ´ ta. 00 arse l,2010; al., et Harris 2010; al., et oC hc ak nFH1 an lacks which ForC, ` ee l,21;van 2011; al., et re nce and ¨nichen Journal of Cell Science ta. 02 oa ta. 03 Zigmond, 2003; (Pruyne al., et filaments Kovar actin 2002; al., the of et to affinity ends high 2004). barbed with al., bind et dimers (Xu FH2 a dimer generating two tethered segments, flexibly ‘post’ of the interactions and by which ‘lasso’ together held in are halves dimer, anti-parallel hc ih xli o formins how profilin, explain assembly enhance actin of might and nucleate presence the monomers which in actin nucleation formins of regions bind tail C-terminal shown the have that studies recent More the 2010). et al., (Chesarone cells for in polymerization monomers, available actin is that substrate actin predominant using when FH2-domain-mediated inefficient profilin-bound very actin it that is nucleation shown however, for was Subsequently, affinity is monomers. binding alone domain detectable FH2 nucleation the for sufficient that on Poster), basis (see and 2003) the stabilizing al., dimers et actin (Pring actin and trimers formed nucleate capturing was spontaneously by formins it Initially, filaments that out. worked proposed is being filaments actin still of formins assembly the which nucleate by mechanism precise The nucleation actin of Mechanism 2007; 2010; al., al., 2012). et et al., Harris Lu et 2008; Ramabhadran 2004; al., al., et Bartolini et Xu 2004; assembly compromises actin and formins activities reduces respective elongation the of mDia2, strongly and nucleation mDia1, INF2) actin Bni1, Daam1, al., in these FRL2, et of (e.g. Mutation Otomo 2007). 2004; residues al., al., conserved et Lu et 2005b; (Xu a Bni1) (K1601 residue in lysine by the conserved and a by Bni1) other in marked (I1431 residue the isoleucine one of actin-binding half sites; different functional two contains each dimer and 2004), ntepeec fpoii a involve may profilin of presence 2008). the Pollard, in formins through and triggered 2012). nucleation (Paul Thus, nucleation to Michelot, contribute and might complex FH1 profilin-actin the between and interactions achieved Moreover, actin be of (Blanchoin can stimulation tight robust both, nucleation, which and by means control powerful a co-factors is nucleation and interplay formins the between Thus, promote below). and (see actin nucleation affinity bind high can that with formins factors monomers of other with regions interact tail In the 2012). Higgs, addition, and Heimsath 2011; al., et nvivo in nvitro in Siaae al., et (Shimada nvivo in u lacks but nvivo in (Gould atr rnceto rmtn factors promoting co- nucleation (NPFs) on or dependence The factors stronger their 2012). that observed lamellipodial reflect formins been al., some has by and et nucleation weaker (Block Arp2/3 filopodial to extension the filaments those by drive elongate nucleated and are complex barbed that the filament actin of ends free edge capture leading to primary is the the cell at that FMNL2 of proposed role has controlled the filament Indeed, study actin nucleation. one or more to than rather formin instances, elongation a and some of dedication slower in nucleation a for Block reflect 2008; may diverse differences al., and These 2012). et al., of FRL2) et (Vaillant efficiencies 1% as nucleation below known have Daam1, FMNL2 as (also such 2008), FMNL3 formins, dimer al., other et formin (Neidt whereas second filament) a (every of nucleates efficiency 50% nucleation over a with For nucleator drastically. vary example, can of activities strength the these elongation, FH2 and nucleation and FH1 regions. tail the their and domains, by contributions nld u6Bi,SieFN(Spir pairs Spire–FMN NPF-formin formin Bud6–Bni1, actin the Such include to domain. mutiple proximity FH2 organize in monomers monomer and actin for effectively binding, profilin NPFs with However, Scott compete 2011). 2008; Pollard, al., and et Paul 2008; (Neidt al., nucleation et formin reduces of and efficiency trimers, the and dimers of nucleation. into self-association actin actin the that suppresses to barrier Profilin the constitutes overcome profilin formins help fne ta. 01 cu,21)but, 2011) Schuh, 2004; 2011; al., al., et et Pfender (Schumacher meshworks co-function FMN vivo and Spire Breitsprecher 2012). 2011; al., et al., al., et et Graziano Okada 2010; capping 2004; al., and/or et profilin (Moseley protein of presence the in to shown interact been directly also have furrows, and pseudocleavage respectively, and cables actin assemble to together 2011; function 2012). APC–mDia1 al., 2009; al., et al., et Graziano 2004; et Tu 2010; al., Webb et al., 2007; Okada protein al., et et Quinlan coli (Moseley (APC)–mDia1 polyposis in adenomateous Cappuccino and lhuhms omn rmt actin promote formins most Although omnitrcigNF r eivdto believed are NPFs Formin-interacting oasml yolsi actin cytoplasmic assemble to nvivo in nvivo in .pombe S. . eurmns ..teneed the e.g. requirements, nvitro in nvivo In nvitro in d1 sapotent a is Cdc12 Drosophila oasml actin assemble to n1Bd and Bni1–Bud6 , ih also might and ) ora fCl cec 2 1 3 (1) 126 Science Cell of Journal in arse l,20;Kvre l,2006; al., et Kovar 2004; al., 2003; al., et et in Harris (Kovar and profilin degrees of absence elongation variable the different to filament factors, depolymerization slow to gating Owing formins 2008). in al., et differences Neidt 2006; al., and et elegans mDia1 for Caenorhabditis elongation) (uninhibited Pollard, (capped) and 0 almost for (Paul from ranges factor’ formin and state 2009a) ‘gating closed a the its versus time is open of the in Pollard, fraction spends and 2004; 2006; The Paul al., al., 2006; 2009a). et al., et Kovar et Xu 2005b; Vavylonis al., 2004; et 2004; al., Otomo al., et et Romero Moseley and 2004; Kozlov 2003; (see Bershadsky, al., not et does (Zigmond that Poster) a state’ and ‘closed or addition capped monomer actin state’ allows ‘open an that between switch is to dimer believed FH2 the movements, filament. these the the During with of subunits dimer actin domain terminal two two FH2 the the of of halves contacts involve alternating actin to thought transient, of The is dissociates. mechanism thousands finally tracking it of before tens subunits of the permits addition which tracks end, the barbed processively growing nucleated, the domain is FH2 filament dimeric actin an elongation Once filament actin of Mechanisms or similar whether use determine mechanisms. pairs distinct to NPF–formin be other will important goal An 2012). next al., et (Breitsprecher iaetfo apn protein capping from the protects it filament where end, the barbed along growing actin processively site moving nucleation mDia1 the and at actin remaining APC recruiting separate, mainly with mDia1 upon and APC being polymerization, Subsequently, for APC monomers. molecules with responsible APC of and phases associate, study early mDia1 the This nucleation, during 2012). that, al., level revealed et total single-molecule (TIRF) the (Breitsprecher triple-color at fluorescence microscopy actin using reflection internal co-assemble by filaments pairs how of question we the NPF–formin assembly address recently, to begun to More have actin required Spire–FMN. through collaborative are factors suggesting activate 2011), additional al., et that Zeth 2011; al., et FMN of vitro than activity in rather nucleation the inhibits enhances Spire perplexingly, .pombe S. Qilne l,20;Vizcarra 2007; al., et (Quinlan d1 onal 1 nearly to Cdc12 Y- (Kovar CYK-1 Journal of Cell Science xeietlsuisaenee to needed further of capable Thus, are are formins whether 2011). determine studies are al., that experimental et formins observed immobilized (Mizuno tightly were by elongated filaments rotations helical of which which fluorescence in study, and polarization single-molecule different been a recently employed 2005). in release has al., model challenged to et this end (Shemesh However, barbed stress the torsional instead, filament around they, during slip that rotate suggesting formins formins, faithfully elongation, that conclusion not the immobilized do to led passively ‘rotation addressed which microscopy the TIRF initially and as single-filament was to using and referred paradox’, been has problem This membrane- formins. for which immobilized achieve bound, rpm, to 1000 difficult over be at may ‘spin’ a to cause formin would this polymerization, actin of yartto f1 ere.At degrees. accompanied 14 of is rotation end a by barbed untethered the an on by formin taken step each filament, FH2 formin movement. drive filament to processive the sufficient of be to end actin seems barbed energy, of the at free addition subunits the of accompanies release al., which et the Breitsprecher and Thus, 2011; 2012). Paul 2010; al., al., et 2007; et Mizuno al., Ramalingam 2009b; et al., Pollard, et Michelot on (Kovar ATP subunits 2006; of actin hydrolysis added the newly on nor on profilin neither depends 2012), processivity shown the formin been that to has it transfer Importantly, Pollard, end. actin barbed optimize to and it possibly from domain distal FH2 low- more (Courtemanche are the sites with high-affinity to domain order, and nearest FH1 specific sites a affinity the profilin- in in the arranged sites Furthermore, 2009). binding FH1– Neidt al., 2009; and et al., et FH2– (Ezezika profilin–actin not between direct is involve domains interactions might FH2 but the understood, to fully delivered FH1 (see are the 2009) subunits from and al., actin How Paul et Poster). Vidali 2008; al., 2009b; of Pollard, et Pollard, Kovar and rate 2004; Paul the al., 2006; et over Romero al., tenfold et 2003; (Kovar ends to barbed free at up elongation profilin–actin of barbed FH2-capped end of the addition to recruit monomers the actin accelerate and domains complexes FH1 Block 2012). 2009; al., al., et et Neidt 2008; al., et Neidt 4 wn otehlclptho h actin the of pitch helical the to Owing the however, profilin, of presence the In ora fCl cec 2 (1) 126 Science Cell of Journal nvivo in rates ocso osrit htaeapplied. are that constraints or the on forces depending slipping or rotating either osiuieyatv Daconstructs mDia of active Expression 2010). al., et constitutively Li 2010; Deeks 2002; al., 2001; al., et et al., Leader 2001; et al., et Ishizaki Kato 2000; Chang, al., et 1999; Lee 1999; al., et (Kikyo organization dynamics and MT regulate also formins that vivo In dynamics microtubule of Regulation 2008). filopodia al., extending et in (Beli mDia2 of that WAVE– circuit formation with the lamellipodia regulatory in of complex activity a Arp2/3 mDia2, the of balances inhibit part that directly as to has possibly the shown complex been Moreover, WAVE Poster). Arp2/3-activating (see arrest elongation of or slow binding to 2011), the complexes profiling–actin with al., interfere et might formin which (Mason (srGAPs) for GTPase-activating of proteins ligands, Slit–Robo the its FH1-domain group example are and 2012). potential regulators al., et in 2009) Another (Bartolini mDia1 cells al., with mammalian interactions et antagonistic in from (Chesarone genetic Bud14 its with by formins interactions suggested might as ends, itself displace filament In protein growth. competitively of cell capping time defects and same addition, more-severe organization the even at cable in proteins cables; to actin both results required of of are overgrowth loss Smy1 the (Chesarone- and prevent speed Poster). Bud14 (see both normal 2011) al., et the Cataldo half down with it to interferes slowing domain, elongation, filament ends FH2 actin Bnr1 binds the also myosin- to which the filament Bnr1 Smy1, (2) protein 2009); passenger al., catalyzes from et (Chesarone which displacement domain, FH2 for cerevisiae two described S. been date, 1 have To formin than mechanisms 2003). such longer Borisy, of in no and (Pollard typically filaments rate are actin cells and/or because These limit processivity duration to mechanisms 2012). the regulatory for 2008; al., need al., that, et suggest et properties Neidt 2006; Breitsprecher al., 50 over et are (Kovar that polymers produce for actin and filaments dissociating, of without ends minutes growing to attached vitro In processivity formin of Regulation bevtoshv ogsuggested long have observations omn eanprocessively remain formins , n1 1 u1 id oits to binds Bud14 (1) Bnr1: nvivo in .cerevisiae S. hr sa is there , m nvivo In long m m m , htfi oplmrz ci tl idt and to MTs bind stabilize al., still actin et polymerize mutants to Eng fail mDia that 2004; 2008). al., al., et et (Palazzo Bartolini 2006; Wen MTs 2001; stabilizes al., and Zaoui et 2008; 2010) al., (Yamana al., et et periphery Goulimari 2006; cell al., et the MT to promotes actin 2001), targeting and al., et MTs (Ishizaki of fibers co-alignment in results rmtsM tblzto oreorient INF2 and to (Andre 2011), stabilization centrosomes al., al., MT et et promotes (Yasuda Cheng polymerization 2004; actin of independent to attachment mediates MT mDia3 Furthermore, 2008). al., et aho e ifrn amla formins mammalian different ten of overexpression of upon More each induced 2008). is acetylation cells MT al., that in shown et was and it (Young recently, arrays MTs MT with acetylation vivo and 1 bundling their colocalizes promotes formin inverted (INF1) Furthermore, 2012). hrceiainhsdmntae that biochemical demonstrated and genetic has of characterization years Ten perspectives both and Conclusions at investigation levels. cellular future and biochemical for Cheng area an 2008; ripe representing thereby al., al., 2011), al., et et al., the et Bartolini et Lewkowicz 2004; al., and (Feierbach 2008; et yeast) Wen (CLIP- EB1, in 2004; 170 tea1p protein and 170; linker proteins APC cytoplasmic tracking plus-end formins (+TIPs) MT is of the view interaction with some This the by filaments. on that supported actin effects and their suggesting (Gaillard MTs coordinate INF2 2011), can of formins al., not mDia1 but et of mDia2 activities have inhibits and assembly MTs studies actin of the presence these the that addition, regulating shown in In these roles MTs. distinct that have suggesting formins as and – affinities well formin binding as stoichiometries their revealed – how in MTs differences with have in interact domains studies differences surprising These al., with et Gaillard INF2 2008; 2011). al., and et the (Bartolini mDia2 MTs of mDia1, interactions formins molecular the define al., et Thurston 2012). 2008; al., al., et 2008; Bartolini et 2004; (Wen al., MTs the altering of by state et post-translational and/or 2011) al., (Bartolini et formins Gaillard their binding Thus, through both direct 2012). MTs stabilize to al., appear et (Thurston iceia tde aebgnto begun have studies Biochemical ossetwt oei stabilizing in role a with consistent , nvitro in ´ and -egd tal., et s-Delgado nvivo in (Bartolini in Journal of Cell Science omto yetrn noacmlxwt mDia2. with filopodium complex M. inhibit a Biol. Innocenti, into jointly Cell and entering Arp2/3 by D. and formation Xu, WAVE D., (2008). Mascheroni, P., Beli, tblt yatgnzn h ci ciiyo mDia1. of activity actin microtubule Cell the Biol. promotes Mol. antagonizing G. by protein G. stability Gundersen, Actin-capping and N. (2012). Ramalingam, activity. F., stabilizes nucleation Bartolini, J., actin G. mDia2 its Biol. Schmoranzer, G. formin of Gundersen, B., and independently The L. J. B. (2008). Goode, Moseley, L., Cassimeris, F., and of domains properties Bartolini, homology formin DAAM. biochemical the Drosophila of the function biological of Miha Characterization T., Matusek, Barko oiinn nmueoctsrle nadynamic a on relies H. oocytes filaments. M. P., actin Rassinier, mouse of Verlhac, meshwork V., in and Georget, positioning W., B. K. Leader, Lee, J., Azoury, eyoiae irtblsncsayfrcentrosome for cells. T necessary in reorientation microtubules detyrosinated A. M. Sa Andre membrane lymphocytes. plasma T the human to of Lck of A. transport M. MAL-mediated Alonso, and A. J. aeadtoa ciiis(..actin (e.g. and activities formins additional localization many have Furthermore, partners, regulation. their their do of as binding strength greatly, and directly vary the nucleation activities that species but filament elongation, different actin catalyze in formins emnldahnu-eae omnhmlg protein Andre homology domain. formin autoregulatory diaphanous-related S. terminal A. Alberts, References DC1 biologists.org/lookup/suppl/doi:10.1242/jcs.107250/-/ at online available material Supplementary months. 12 after release for B.G. PMC to in Deposited GM083137] number Institutes [grant National Health the of and D.B. Deutsche BR to the 4116/1-1] number by [grant supported Forschungsgemeinschaft was work This Funding reading. critical for Ydenberg C. and Rodal their WethankJ.Eskin,B.Graziano,R.Jaiswal,A. transform Acknowledgements ways. of can their variety a of consider in activities which context to roles. the ligands, important in cellular activities is formin its it is Moreover, about drawing of it before well conclusions properties individually reasons, the formin not these each characterize to attention For still crucial more Poster). and deserve are (see stabilization and that understood MT bundling) and and severing bundling, depolymerization, filament ez . ora,I,Gnesn .G n Alonso, and G. G. Gundersen, I., Correas, A., ´enz, ,S,Bgi . ale,M . obs R., Gombos, F., M. Carlier, B., Bugyi, S., ´, 181 sDlao . Anto L., ´s-Delgado, sDlao . Anto L., ´s-Delgado, 523-536. , 21) N2pooe h omto of formation the promotes INF2 (2012). 10 849-857. , 23 20) dniiaino carboxyl- a of Identification (2001). 4032-4040. , .Bo.Chem. Biol. J. l,J n yta,M. Nyitrai, and J. ´ly, .Bo.Chem. Biol. J. .Cl Biol. Cell J. n .M,Mdi,R,Byrne, R., Madrid, M., O. ´n, n .M,Broii . Ruiz- F., Bartolini, M., O. ´n, 21) omnIF regulates INF2 Formin (2010). Blood ur Biol. Curr. 116 285 5919-5929. , 198 276 13154-13169. , 20) Spindle (2008). 1025-1037. , 18 2824-2830. , 1514-1519. , http://jcs. nvivo in .Cell J. (2010). Nat. har,E .adHgs .N. H. Higgs, and S. E. Chhabra, rc al cd c.USA Sci. tubes. pollen Acad. in Natl. growth Proc. tip-focused M. controls H. actin and Wu, subapical assembly nucleates and formin Y. transmembrane Zou, A S., (2010). Niroomand, Y., membrane. A. Cheung, cell actin tube pollen supernumerary Cell from stimulates formin formation formin cable a Arabidopsis M. as H. an Wu, acting and Y. A. by Cheung, dynamics and damper. actin structure L. controls B. Smy1 cable protein Goode, passenger myosin and The L. (2011). Blanchoin, Gue R., Wedlich-Soldner, M., and actin Chesarone-Cataldo, L. the B. remodel 62-74. Goode, to and . G. formins microtubule A. Unleashing DuPage, (2010). A., M. Chesarone, lnhi,L n ihlt A. assembly. actin Michelot, during effort Biol. and team a cytoskeleton: L. Blanchoin, oe,O,Nv,F,Pase,E,Fnlt B., Funalot, E., C., Arrondel, Plaisier, H., E. F., Cong, G., Te Benoit, Nevo, O., Gribouval, O., segmental Boyer, focal dominant autosomal of glomerulosclerosis. cause major al. a et Te are C. F., G., Presne, Touchard, Nevo, A., B., Karras, Gilbert-Dussardier, O., J., Gribouval, Dantal, J., G., M. Benoit, O., Cdc42. Boyer, of downstream Biol. migration B., and Baum, L., protrusion J. al. Rohn, et P., C. Duwe, Brakebusch, R., Geffers, F., Ku Kage, D., Breitsprecher, J., Block, mDia2/Drf3. Ha J. E., Faix, T. Stradal, Ko J., Block, abded ybd4i rtclfratncable actin for critical is bud14 function. by and architecture ends Goode, barbed and B. L. J. Moseley, B. J., C. Gould, M., Chesarone, Da naheigmtpaecrmsm alignment. chromosome H., Cell metaphase Dev. Yu, achieving L., in Rozier, mDia3 Y. S., Mao, and Ahmad, H. J., Deng, Zhang, L., Cheng, opnn ftecl iiinrn n neat with a interacts and is ring yeast, division fission cell in profilin. the cytokinesis of for component P. Nurse, required and protein D. Drubin, F., Chang, oeeto h omncc2 nfsinyeast. fission in cdc12p formin Tech. the Res. Microsc. of movement F. division. cell of Chang, site the to cdc12p F. limb Chang, A. the of products S. gene. the and with deformity Drosophila similarity Wasserman, of in domains cytokinesis and shares for required H. is Diaphanous D. Castrillon, Cell kinase. septin-associated Pellman, MARK/Par1-family and E. Stokasimov, K., D. Kono, R. M., S. M. segmental Buttery, focal Pollak, cause INF2 and gene Higgs, glomerulosclerosis. M. formin L., the J. A. in Mutations Henderson, Uscinski, J., N., S. H. Schlo Tonna, H., J., Tsukaguchi, actin E. L. collaborative Brown, imaging. B. single-molecule of Goode, 336 by and P., mechanism defined J. J. assembly launcher Gelles, Bombardier, J., Rocket R., C. Jaiswal, Gould, D., formation. cup Breitsprecher, phagocytic Biol. and J. cell in T., R. interact Watanabe, Grosse, G., and Griffiths, K. S., Kaibuchi, Marion, T., D. Brandt, Med. glomerulopathy. J. with Engl. disease Charcot-Marie-Tooth in ci iaet n ceeae ohplmrzto and polymerization both severs accelerates depolymerization. that and formin filaments motif-containing actin 2 homology WASP t,M . oten .e al. et R. Montjean, J., M. ˆte, slr .A,Ubn . ml,J . ote,K and K. Rottner, V., J. Small, E., Urban, A., S. ¨stler, 21) euaino h omnBr yspisada and septins by Bnr1 formin the of Regulation (2012). 1164-1168. , . 16 22 22 23 20) ipaeeto omn rmgrowing from formins of Displacement (2009). 257-269. , R643-R645. , 1005-1012. , 4041-4053. , e.Cell Dev. .Cl Biol. Cell J. 20) iooi omto nue yactive by induced formation Filopodia (2008). 20 19) oeeto yoiei factor cytokinesis a of Movement (1999). 342-352. , 178 .Microsc. J. 20) irtbl n actin-dependent and Microtubule (2000). 365 Development 193-200. , 2377-2388. , .Bo.Chem. Biol. J. 21 .A.Sc Nephrol. Soc. Am. J. a.Genet. Nat. 49 217-230. , 137 nof,J . ekr .J., D. Becker, S., J. ¨ndorff, 21) ML rvsactin-based drives FMNL2 (2012). 161-167. , 21) uoaBrgltsformin regulates B Aurora (2011). 231 169-182. , e.Cell Dev. a.Rv o.Cl Biol. Cell Mol. Rev. Nat. 107 506-517. , 21a.Mttosi INF2 in Mutations (2011a). 120 20) i1adIQGAP1 and Dia1 (2007). 16390-16395. , 20) vrxrsinof Overexpression (2004). nsh . efr,R., Geffers, J., ¨nisch, 42 rn . u .H., J. Yu, C., ´rin, h,S,Wnehf,M., Winterhoff, S., ¨hn, 21b.IF mutations INF2 (2011b). 281 3367-3377. , 72-76. , ur Biol. Curr. 16 26754-26767. , 20) N2I a Is INF2 (2006). 292-302. , 19) d1p a cdc12p, (1997). 22 21) Actin (2012). 239-245. , 9 o.Biol. Mol. 849-852. , Science (2012). (1994). (2010). Curr. Curr. Plant ora fCl cec 2 1 5 (1) 126 Science Cell of Journal ˆte, 11 N. , omnBrphstolclzto ein htshow septin that with regions association distinct localization structures. temporally two and A. has spatially Bretscher, Bnr1p and W. formin Liu, L., Gao, and mDia1, microtubules. INF2, with formins mDia2 N. the H. of Higgs, interactions and Differential M. Gurel, Vantard, E., L., Neumanne, Blanchoin, F. P., V., Ramabhadran, plus Chang, J., microtubule Gaillard, the and by tea1p. protein complex F. end formin a Verde, of Regulation B., Feierbach, es omnfrpi elplrt,atncbeformation cable actin division. polarity, cell symmetric cell and in for3p formin F. yeast Chang, fission and fission B. of Feierbach, structures for crystal profilin. substituting from yeast insights from profilin: profilin Pollard, yeast and human A., R. D. D. prevents Kovar, Kaiser, D. J., J., B. Lu, T. Nolen, S., A., N. Z. Younger, Corbin, C., O. Ezezika, ice,S . eg . ilr . hn,J., formin Zhang, diaphanous-related R., mammalian S. mice. Sigler, D., knock-out A. mDia1 in Hildebrand, J., Alberts, and A., Peng, responses A. R. K. M., Siminovitch, West, S. M., Kitchen, K. Eisenmann, yeast. of in modes signaling distinct by Rho regulated is A. assembly Bretscher, actin dependent and D. Pruyne, Y., Dong, needn ci iaetasml oplrz cell polarize to assembly yeast. in filament growth actin A. C. independent Boone, Bretscher, C., D. Amberg, and D., Pruyne, M., Evangelista, .J,Aae,N,Pige .R,Ptr .adBoone, and M. Peter, R., J. Chow, Pringle, S., N., M. Adames, Longtine, J., K., C. Blundell, M., Evangelista, 334. fibroblasts. not migrating Cell but G. through in stabilization G. reorientation GSK3beta microtubule MTOC Gundersen, promote regulates to and mDia PKCs M. novel formin T. The Huckaba, (2006). H., C. Eng, identified newly a contains and actin domain. both microtubule-binding microtubules, with interacts AtFH4 and formin plant The S., K. (2010). Bell, A., Cvrckova Smertenko, K., M., Oparka, Fendrych, domain J., D. M. Deeks, (FH1) formins. by T. 1 elongation Chem. filament Homology Pollard, actin in Formin function and of Determinants N. Courtemanche, and protein. A. formin S. associated Gerber, N. V., H. Ramabhadran, Higgs, S., E. Chhabra, ci yokltndrn oaie morphogenesis. polarized during Science cytoskeleton actin C. ciaino h euae etbaegsrlto and gastrulation vertebrate X. regulates He, Rho and of Y. activation Kato, R., A., Habas, factor. nucleation-promoting Cell Michelot, actin Biol. an Mol. as L. G., Bud6 B. of Blanchoin, function A. Goode, I., Sagot, and DuPage, B., L. J. Moseley, R., D., Breitsprecher, B. Graziano, 30-40. amino its through mDia2 domains. formin terminal of T. targeting membrane Svitkina, R. Dominguez, V., and Kameswaran, C., Yang, R., Gorelik, ROCK-dependent a via Krautkra mechanism. fibers stress actin R., induces FHOD1 T. Madrid, O. E., Schro J. Gasteier, se . ars .S,Hgs .N n it,D. cross-linking/bundling Wirtz, and formins. actin N. mammalian H. filamentous of Higgs, activity The S., E. (2008). Harris, O., Esue, 20) AGadmi1ln apa21 ocell to Galpha12/13 link dynamics. microtubule mDia1 R. and Grosse, actin and and polarity U. and LARG Engel, H., autoinhibition (2008). Knieling, in P., Goulimari, roles dual nucleation. R., plays B. Graziano, L. domain A., B. Goode, Michelot, and S., L. Blanchoin, Maiti, J., C. Gould, 19) n1,ayatfri ikn d4padthe and cdc42p linking formin yeast a Bni1p, (1997). 17 dr . uay,W,Bnco,S n Fackler, and S. Benichou, W., Muranyi, S., ¨der, 287 5004-5016. , 20) ciaino h a-idn partner Rac-binding the of Activation (2003). 276 20) noptblt ihfri Cdc12p formin with Incompatibility (2009). 7812-7820. , o.Bo.Cell Biol. Mol. ur Biol. Curr. 118-122. , .Bo.Chem. Biol. J. 20) N2i nedpamcreticulum- endoplasmic an is INF2 (2009). .Bo.Chem. Biol. J. 22 a.Cl Biol. Cell Nat. 4016-4028. , o.Bo.Cell Biol. Mol. .Cl Biol. Cell J. 21) ehnsso plasma of Mechanisms (2011). ,F,Za F., ´, 20) omn ietArp2/3- direct Formins (2002). 21 .Cl Biol. Cell J. .Bo.Chem. Biol. J. 21) ehns n cellular and Mechanism (2011). 384-390. , 21 .Cl Sci. Cell J. o.Bo.Cell Biol. Mol. 278 1253-1262. , ur Biol. Curr. .Cl Sci. Cell J. rk,V n usy .J. P. Hussey, and V. ´rsky, 284 20) oe ftefission the of Roles (2001). 38902-38912. , 165 4 21) h omnDAD formin The (2011). 2088-2097. , .Ml Biol. Mol. J. 32-41. , 22 697-707. , 20) Wnt/Frizzled (2001). 161 189-201. , o.Bo.Cell Biol. Mol. 122 282 21) h yeast The (2010). 1081-1092. , 11 123 20) Formin- (2003). 1430-1440. , 22 25152-25158. , 20) cell T (2007). 1656-1665. , 4575-4587. , 1209-1215. , mr E., ¨mer, o.Biol. Mol. 384 .Biol. J. (2011). (2004). (2012). 324- , 19 , Journal of Cell Science 423-435. Fujiwara, K., Ozaki, T., Kamei, K., Tanaka, M., Kikyo, cells. HeLa mitotic A., the in to spindle Fujita, mDia1, diaphanous, of Y., S. homolog mammalian Morishima, Narumiya, and N., T. Ishizaki, Watanabe, T., Kato, T-adAPatnb omn n profilin. and formins by N. H. ADP-actin Higgs, and D. R., ATP- Mahaffy, T. S., Pollard, E. and Harris, yeast. R., fission D. in Kovar, D. cytokinesis Cell T. Biol. during Pollard, protein Mol. Cdc12p and capping formin Q. between and J. competition Wu, Profilin-mediated R., D. Kovar, the formin. in novel expressed a defines transcript Dev. limb deformity mouse P. embryonic limb Leder, and A. variant Kuo, L., Jackson-Grusby, 10.1007/s00018-012-1154-7 E. doi. P., function print] Ehler, FHOD3. the Toselli, and muscle govern events of J., I. phosphorylation promotes Dominguez, Dwyer, distinct Two R., S., is and I. Reijntjes, Degano, FHOD3 phosphorylation T., of Iskratsch, CK2 isoform maintenance. myofibril by dos muscle-specific L., E. A. regulated a Kho, Ehler, J., and function: M., Dwyer, C. S., Remedios, Lange, Okamoto, T., cytoskeleton mDia1. Iskratsch, effector actin S. Y., Rho the Narumiya, the and by and microtubules T. Morishima, of Coordination Kato, T., T., Furuyashiki, Ishizaki, mmr,H,Fjwr,T,Fjt,Y,Hta K., Hotta, M., Y., Umikawa, Fujita, A., T., Mino, Fujiwara, K., H., Tanaka, Imamura, H., Kohno, D., nucleator actin Geelen, conserved D., evolutionarily cytokinesis. F. in an Damme, involved Berger, is Van and AtFH5 L. B., Blanchoin, M. Gue N., J. Sørensen, Gerald, Fitz M., Ingouff, cerevisiae. and Saccharomyces J. profilin in EMBO with cytoskeleton Y. interact Rho actin Takai, the which regulate of G-proteins and targets small T. downstream family Bnr1p: Sasaki, and M., K., Bni1p Umikawa, (1997). Takahashi, T., Hihara, T., K., Kamei, Tanaka, H., Imamura, mechanisms assembly cells. actin motile distinct in two by generated are P. Lappalainen, and P. Hotulainen, sabre n ci iaetcpigpoengtdby gated protein capping filament Pollard, actin and end profilin. L. barbed A. a Tichy, is R., J. Saccharomyces D. Kuhn, T. in R., D. protein Kovar, of al. binding target putative GTP et cerevisiae. a small is T. control Rho1p cytoskeletal Watanabe, in implicated H., Qadota, rti neatn ihavreyo yokltlproteins multifunctional cytoskeletal a cerevisiae. of Saccharomyces variety is in a with Bnr1p interacting domain-containing protein Y. Takai, FH and Y. Ohya, An Y., Takita, E., Inoue, T., actin domain-like accelerates WH2 barbed filament a and FMNL3 monomers both ends. contains binds formin that sequence and N. H. of Higgs, polymerization and Jr terminus G., E. Heimsath, Higgs, and (FMNL3). G. E. Heimsath, N. J., H. T. filaments. Gauvin, S., E. severs Harris, end and Chem. accelerates barbed Biol. monomers, J. protein, filament from capping actin polymerization with competes slows elongation, N. H. FRLalpha, Higgs, and formin, F. Li, S., E. Harris, dynamics. N. actin on H. Enzymol. effects Methods Higgs, formin mammalian and of analysis S. blebbing. and E. membrane Harris, ROCK1 Chem. with plasma Biol. J. associates Src-dependent FHOD1 al. promotes et Formin R. related T., Grosse, Kitzing, M., J., Geyer, Scho Stastna, J., R., Gasteier, Madrid, S., Daam1. Hannemann, protein homology Formin 107 novel a requires 6 843-854. , 6 20) h iso es yoiei omnCdc12p formin cytokinesis yeast fission The (2003). .Bo.Chem. Biol. J. 21) sebyo iooi ytefri FRL2 formin the by filopodia of Assembly (2010). 29-37. , .Cl Biol. Cell J. 16 yokltn(Hoboken) Cytoskeleton MOJ. EMBO 2745-2755. , ora fCl cec 2 (1) 126 Science Cell of Journal 279 283 .Cl Biol. Cell J. 16 nce,A,Buht . iee,A., Jimenez, J., Bouchet, A., ¨nichen, 2313-2324. , 20076-20087. , 27891-27903. , 406 elMl ieSci Life Mol. Cell 287 20) oto fteasml of assembly the of Control (2006). 15 161 190-214. , .Cl Sci. Cell J. 6060-6068. , .Cl Biol. Cell J. a.Cl Biol. Cell Nat. 3087-3098. , 875-887. , a.Cl Biol. Cell Nat. 173 Oncogene 20) h Diaphanous- The (2008). 383-394. , 20) oaiaino a of Localization (2001). 21) omnfollows Formin (2010). 114 20) ln formin Plant (2005). 67 rn . oet H., Robert, C., ´rin, 20) Biochemical (2006). 191 20) tesfibers Stress (2006). 755-772. , 775-784. , 20) h mouse The (2004). Eu ha of ahead [Epub . 7 1159-1172. , 18 374-380. , 19) Bni1p (1996). 21) h C The (2012). 7046-7054. , 3 8-14. , 19) A (1992). Cell (2005). (2012). (2001). (1999). Genes 124 Cell , ag . hn . aeie .S,Ca,R J., R. Chan, S., al. Y., L. et Liu, Haneline, J. M., H., Rubart, R. W., Chen, Schwartz, Zhu, Z., A., M. Yang, Hallett, D., Li, regulate division. to cell M. Yuan, and microtubules L., with Zhu, interacts C., H. Zhong, Ren, C., Cai, and Y., Shen, Y., Li, 1308. nmmainmitcoocytes. breaking meiotic symmetry mammalian to in R. leads Li, motility and chromosomal B. driven Rubinstein, F., Guo, H., Li, saptn ci ulainfco euae by regulated factor nucleation actin potent autoinhibition. a N. is H. CR3-mediated Higgs, and coordinates F. F. during Li, reorganization Niedergang, CLIP-170 actin phagocytosis. and and protein mDia1 F. microtubule-binding Bourdoncle, Perez, C., Clainche, Le P., F., Herit, E., Lewkowicz, and C. Bni1p. 144 formin Boone, cerevisiae M., Saccharomyces Evangelista, the K., D. S. Pellman, Klee, L., Lee, oocytes. 928. mouse the in of spindle positioning P. meiotic and Leder, hypofertility and polyploidy, R. Maas, Formin-2, A., D., Harrington, Pellman, J., J., M. Ecsedy, Carabatsos, H., Lim, B., Leader, movements. cell ONE gastrulation Lou, for PLoS P., required W. are Huang, I J. profilin J., and S. M. Lee, Lin, and H., W. T. S. Chan, L., S. of Lai, mechanism force-driven polymerization. a actin suggests formin by D. A. capping Bershadsky, and M. M. Kozlov, . tie,C . ate,J .adBacon L. Blanchoin, and L. J. Martiel, J., C. Staiger, Arabidopsis R., Gue J., of Berro, A., activity Michelot, bundling and FORMIN1. Blanchoin, nucleation and actin J. C. Staiger, L. N., Rodiuc, S., Gue Richard, A., A., axon during Gedai, Michelot, role a C., play subfamily growth. DAAM Pataki, the of A., proteins Rasko A., Czibula, Prokop, N., Soriano, ciiyo ullnt omnmDia1. formin L., full-length Blanchoin, L. C., of B. Gould, Goode, activity and A., O. Michelot, Sokolova, association S., in Maiti, formation MAL2. and lumen Cdc42 with and transcytosis apical al. Go et H., Shahheydari, S., Andre Fanayan, L., Rodrı F., Ventimiglia, J. Aranda, R., Madrid, complexes. actin/cofilin Biol. and formin Mol. actin/ADF J. Diaphanous-related on mouse domains FH2 of effects A., Mannherz, nucleating and Lustig, U. G. A., Aebi, A., H. Shimada, Wittinghofer, A., A., Mazur, Sokoll, G., alleles. Machaidze, deformity limb mutant 346 two and in F. T. transcripts P. Vogt, P., R. Woychik, Leder, R., Zeller, L., R. Maas, aue,T,Gmo,R,Sze R., and Gombos, N. actin T., H. Higgs, Matusek, the G., srGAP2. and E. by H. Heimsath, wall S. M., Soderling, F. cell Mason, the cytoskeleton. a between forms Arabidopsis of connection formin1 bridges: Building (2011). Martinie Rinco G., S. Martin, (Hoboken) d4padbud6p. and cdc42p F. Chang, actin of regulation formin for and L. assembly. B. implications Goode, S., J. Daam1: Maiti, M. F., Poy, Eck, W., Meng, J., Lu, heart for required is morphogenesis. (Daam1) 1 morphogenesis of activator 20) h omnhmlg oanmdltsthe modulates domain 1 homology formin The (2005). 947-961. , 853-855. , 21) h omnIF euae basolateral-to- regulates INF2 formin The (2010). 21) ci iaetbnln n different and bundling filament Actin (2010). r,A,Gya,P,Hws .adRnos J. Runions, and C. Hawes, P., Gayral, A., `re, .Neurosci. J. .Ml Biol. Mol. J. 69 3 ln Cell Plant 20) euaino h omnfrpby for3p formin the of Regulation (2007). .Bo.Chem. Biol. J. 19) oto fmttcsidepsto by position spindle mitotic of Control (1999). e3439. , 403 ln Cell Plant 393-405. , ln J. Plant 20) tutr fteF2dmi of domain FH2 the of Structure (2007). 19) irpino formin-encoding of Disruption (1990). .Cl Biol. Cell J. 21) h yeI rbdpi formin14 Arabidopsis II type The (2010). ur Biol. Curr. Development 529-545. , 21) imdlrglto faformin a of regulation Bi-modal (2011). ,I n Miha and I. ´, rn . un,S,Iguf M., Ingouff, S., Huang, C., ´rin, o.Bo.Cell Biol. Mol. 28 20) ipaosrltdfri 2 formin Diaphanous-related (2008). n .A,Bs,R,Pe R., Basu, A., S. ´n, .Cl Biol. Cell J. 66 17 13310-13319. , 369 20) h os omnmDia1 Formin mouse The (2003). 22 e.Cell Dev. 354-365. , M., Shehata, L., ´s-Delgado, 2296-2313. , 21) Dishevelled-associated (2011). 13 183 2710-2726. , 1258-1269. , 286 rn . Boujemaa-Paterski, C., ´rin, 1335-1340. , 138 1287-1298. , 6577-6586. , a.Cl Biol. Cell Nat. 303-315. , ´cse ge-rtcli .E., A. ´guez-Fraticelli, l,J. ´ly, 167 mz . Jime S., ´mez, a.Cl Biol. Cell Nat. 18 21) tutr and Structure (2012). 18 ni . Sa A., ´nyi, 814-827. , 4155-4167. , 1011-1017. , 20) Processive (2004). 20) Formin (2008). 20) Actin- (2008). 20) The (2008). rz .and P. ´rez, Cytoskeleton .Cl Biol. Cell J. 10 nz A. ´nez, ´nchez- 1301- , 4 (2002). Nature 921- , H oanadpoii nfri-eitdactin- formin-mediated in profilin nucleation. and and elongation D. filament T. domain and Pollard, and FH1 S. S. A. A. Paul, Alberts, A., microtubules. Biol. stable of T. orientation and formation Cook, G. G. F., Gundersen, A. Palazzo, conformation. autoinhibited e12896. in M. Machius, mDia1 C., K. Otomo, M. R., Rosen, and D. Tomchick, a T., by Otomo, capping domain. processive 2 homology and formin nucleation filament actin K. M. C., of S. Rosen, Panchal, and C., M. Otomo, Machius, R., D. Tomchick, T., Otomo, mDia1. formin the Cell of K. M. activation Machius, M. GTPase-mediated R., D. Rosen, Tomchick, and C., Otomo, T., Otomo, ulae ci sebyadsnrie ihteformin the with synergizes and mDia1. and assembly G. actin G. nucleates Gundersen, N., L. Grigorieff, B. Moseley, Goode, Z., M., Dogic, A. B., Deaconescu, J. F., Bartolini, K., Okada, 20) ci-iaetsohsi yaismdae by mediated dynamics ADF/cofilin. stochastic Actin-filament (2007). natnasml:nceto n abdedassociation. barbed-end and Science nucleation assembly: C. actin Boone, in and Zigmond, E., A. Bi, Bretscher, C., S., Yang, M., Evangelista, D., and Pruyne, filaments. C. actin Yang, of nucleation C., H. Boone, S. M., Zigmond, Evangelista, filaments. M., actin Pring, of disassembly and Cell assembly by G. G. driven Borisy, and D. T. Pollard, division. oocyte asymmetric Biol. drive to Formin-2 with and E. M. Kerkhoff, S., Schuh, Pleiser, V., Kuznetsov, S., Pfender, noatihbto fdahnu-eae formins. diaphanous-related ONE of insights Eck, mDia1: autoinhibition and of fragments into W. terminal carboxy Zheng, and A., amino Toms, J. F., M. R. Poy, D. A., Kovar, Nezami, rapidly to and filaments. isoforms actin J. profilin assemble B. utilizes differentially Scott, assembly. Formin M., filament E. Neidt, actin Chem. mediate Biol. fission J. and differentially worm R. nematode D. yeast the Kovar, from and T. formins C. cytokinesis Skau, M., E. Neidt, growth yeast. cell fission Y. polarized in in Matsui, function A., For3 Toh-E, diaphanous/formin R., I. Arai, Mabuchi, J., and profilin. Imai, and K., Bud6 Nakano, by Bni1 Cell of Biol. assembly regulation actin dual mDia1-induced and Eck, and Y., Bni1- L. Xu, for B. L., Goode, mechanism and A. D. Manning, Pellman, J., I., M. Sagot, B., J. Bud6. Moseley, cerevisiae by Bnr1 Saccharomyces and 280 of Bni1 L. proteins B. regulation formin Goode, and and activities B. helical J. double filament. Moseley, the actin T., along an of mDia1 Ishizaki, N. strand formin Y., Watanabe, the of Yuan, and movement C., S. Higashida, Narumiya, H., Mizuno, eae omnDf eeecdn Da eel role Cdc42. a for reveals effector an mDia1 as encoding Drf3 for gene Drf1 and formin J. P. related S. Swiatek, A., A. Flanders, J., Alberts, B. Wallar, J., Peng, mDia2. through 15 filopodia H. induces Mellor, Rif GTPase and D. S. Pellegrin, T. filaments actin Pollard, FH1FH2-formins. of by elongation and processive for S. requirements by A. elongation Paul, filament actin D. formins. processive T. of Pollard, and mechanism S. A. Paul, 129-133. , 28023-28033. , 18 112 3 21 5 723-729. , e12992. , 21) rsa tutr facmlxbetween complex a of structure Crystal (2010). 273-281. , 955-960. , .Cl Biol. Cell J. 297 453-465. , elMtl Cytoskeleton Motil. Cell 15 21) pr-yeatnncetr cooperate nucleators actin Spire-type (2011). 612-615. , 896-907. , ur Biol. Curr. 21) dnmtu oyoi oiprotein coli polyposis Adenomatous (2010). 283 .Cl Sci. Cell J. 20) irpino h Diaphanous- the of Disruption (2003). 20) h ml TaeRo n the and Rho3 GTPase small The (2002). 20) ehns fformin-induced of Mechanism (2003). 23872-23883. , 21) rsa tutr fteFormin the of structure Crystal (2010). 20) Damdae Rho-regulated mediates mDia (2001). 189 .Bo.Chem. Biol. J. 20a.Srcua ai fRho of basis Structural (2005a). 1087-1096. , 17 .Bo.Chem. Biol. J. 825-833. , Science 115 Nature Biochemistry 4629-4639. , 20) h h family Rho The (2005). 20b.Srcua basis Structural (2005b). 20) ellrmotility Cellular (2003). 20) h oeo the of role The (2008). 20a.Rve fthe of Review (2009a). ur Biol. Curr. 20) oeo formins of Role (2002). 66 ur Biol. Curr. 331 606-617. , 433 284 20) conserved A (2004). 20) Differential (2005). 20b.Energetic (2009b). 21) Rotational (2011). 80-83. , 488-494. , 12533-12540. , 284 LSONE PLoS .Bo.Chem. Biol. J. 42 673-684. , 13 20) The (2008). 486-496. , ur Biol. Curr. 534-545. , 18 a.Cell Nat. 9-19. , (2009). Curr. PLoS Mol. Mol. 5 , Journal of Cell Science ese,M n ekof E. Kerkhoff, B., and C. Leberfinger, M. M., J. Gessler, Borawski, N., Schumacher, 1436. transport. vesicle long-range M. Schuh, o natnflmn:amlclrve nteregulation the on view molecular formins. human a of filament: actin an for Scho eae omndi2i eurdfrtefrainand formation the for R., required filopodia. of is Arasada, maintenance dDia2 J. formin Faix, T., related and Bretschneider, M. Schleicher, A., Schirenbeck, 39290-39294. rti csdwsra fRomi n oiisSrc formation. modifies fiber and stress Rho-mDia and of activation T. downstream Tominaga, acts protein and S. Satoh, 4219-4231. eurdfrvrert gastrulation. is vertebrate and signaling for Wnt non-canonical required R. in Runnels, Habas, Daam1 and R., for B. Bharti, effector I. W., Dawid, Liu, W., K., L. D. Khadka, A., Sato, cells. 1260. carcinoma cell of in regulation al. protrusions coordinate proteins et formin M. and J. members A., Backer, H. H., Holman, S., V., Yamaguchi, Kitchen, Desmarais, A., M., El-Sibai, Dovas, M., W., Sidani, Wang, C., and Sarmiento, L. profilin. and B. Bni1 Goode, by J., mediated Moseley, D. A., A. Pellman, Rodal, I., Sagot, assembly D. the cables. controlling Pellman, actin by of and polarity cell K. regulate S. formins A. Klee, interaction I., the Dia. Wittinghofer, Sagot, mammalian into T., and insights and Rho Ishizaki, between mechanistic M., R. and Lammers, Structural M. M., Weyand, Ahmadian, R., Rose, 429. sebyadascae T hydrolysis. C., actin ATP accelerate Egile, associated to and profilin D., F. assembly requires Didry, M. that motor Carlier, C., processive from and Clainche, D. Le Pantaloni, formins S., C. Romero, in metazoa. Kitayama, and fungi GBD/ Dictyostelium, architecture and common a Q. reveals FH3-FH1-FH2-DAD analysis T. Urushihara, sequence K., comparative A. Uyeda, Meyer, T., H., D., Muramoto, F., Rivero, Breitsprecher, mDia1 M. of Schleicher, activity formin. H., and and localization J. regulate Phospholipids Zhao, Faix, P., Lappalainen, N., INF2 of polymerization Ramalingam, actin domain on 2 severing. effects and homology unexpected formin have protein the N. H. to Higgs, and Mutations S. P. Gurel, V., Ramabhadran, ewe w ci ulaos pr n Cappuccino. and Spire nucleators, Biol. Cell actin J. Mullins, two A., E. Bedrossian, Kerkhoff, between and S., D. Hilgert, R. E., M. Quinlan, sebyatvt ftedahnu-eae formins K. diaphanous-related M. the mDia1. actin Rosen, of and and FRLalpha and activity localization C. cellular assembly regulates Otomo, Autoinhibition A., specific have Seth, formins R. properties. yeast D. actin-assembly Kovar, fission and distinct M. E. functionally Neidt, and J., B. Spir-1 Scott, the and organizers system brain. nervous actin mouse adult developing the the in of formin-2 pattern expression nce,A n ee,M. Geyer, and A. ¨nichen, u.J elBiol. Cell J. Eur. eeEp.Patterns Expr. Gene 21) natndpnetmcaimfor mechanism actin-dependent An (2011). 179 .Bo.Chem. Biol. J. 20b.A ci ulainmechanism nucleation actin An (2002b). a.Cl Biol. Cell Nat. 117-128. , ici.Bohs Acta Biophys. Biochim. .Cl Biol. Cell J. 20) euaoyinteractions Regulatory (2007). 89 a.Cl Biol. Cell Nat. o.Bo.Cell Biol. Mol. 723-732. , 287 a.Cl Biol. Cell Nat. a.Cl Biol. Cell Nat. 4 20) h Diaphanous- The (2005). 20) mDia-interacting (2001). 42-50. , .Cl Biol. Cell J. 34234-34245. , 4 21) ite formins Fifteen (2010). 249-255. , M Genomics BMC 20) APfamily WASP (2008). Nature 174 20) Overlapping (2004). 20) rflni an is Profilin (2006). 20) omni a is Formin (2004). .Bo.Chem. Biol. J. Development 701-713. , 7 22 1803 20a.Yeast (2002a). Cell 619-625. , 435 3826-3839. , 21) The (2011). 4 180 20) A (2005). 513-518. , 13 626-631. , 152-163. , 119 1431- , 1245- , (2005). (2006). (2010). (2012). 419- , 6 28. , 276 133 , , omnitrcindmi fteatnnucleation- actin the Bud6. of Y., J. factor Li, M. promoting W., domain Eck, Zheng, and E., formin-interaction L. Park, R., B. B. Goode, Graziano, D., Tu, iet omnmdae ci igasml during assembly ring R. cytokinesis. actin Li, yeast budding and formin-mediated L. formin directs VerPlank, of N., feature Tolliday, general a M. proteins. is J. W. Lee, acetylation S., J. microtubule Shaikh, A., Copeland, in W. and Kulacz, and formation F., and S. ROCK fibre Thurston, by S. stress cells. endothelial phosphorylation thrombin-induced Narumiya, through mediates K., activated is Taniguchi, H. Sumimoto, R., Takeya, P. C. J. domain. Biochem. autoregulatory Mack, diaphanous and the Rho-kinase-dependent of M. by phosphorylation activity J. mDia2 of Taylor, Enhancement P., D. Staus, u . hn,W,Qiln .E n c,M J. M. Eck, and domains interacting E. the M. of function Quinlan, V., and A. W., Structure Toms, (2011). A., Zheng, A. J., Rodal, B., cell Lu, Kreutz, plant L., C. polarized Vizcarra, for essential growth. is elongation L. filament Blanchoin, C., M. R. Bezanilla, Augustine, and M., G. Burkart, Gue M., A., Li, P. Gisbergen, van L., Vidali, omnDAH npam ebaebebn and blebbing membrane plasma in formation. filopodia DIAPH3 Fackler, and formin R. A., Grosse, T. Kollmannsperger, V., O. H., formins Lohmann, Wang, vitro. S., X., Kutscheidt, while in Pan, J., formation G-actin Stastna, filament sequester actin Biochemistry to nucleate efficiently primarily Soldati-Favre, I., D. acts C. L. Ma, Sibley, and W., and D. Daher, M., K. A. Skillman, M. polymerization. binding 522. inhibits actin Geeves, that elongated protein an is S., formins diaphanous-related Narumiya, A. Ku Wittinghofer, B., R., I. axis Vetter, Bugyi, M., and signaling Nyitrai, A., migration, Shimada, LARG/RhoA/ROCK the chemotaxis. polarization, during of neutrophil activation S. for A. A. Alberts, required B., K. Dong, Siminovitch, M., Mullin, and J., Zhang, of Y., solution Shi, formin: paradox. by rotation capping Bershadsky, the processive K., M. filament M. M. actin Kozlov, Rosen, and T., D. A. Otomo, T., Shemesh, ayoi,D,Kvr .R,OSagnsy .and B. O’Shaughnessy, D. R., growth. T. D. Pollard, Kovar, polarized D., for Vavylonis, essential Biol. Cell is J. Bezanilla, and PI(3,5)P(2) Z. S. binding Wu, M., Li, M. autoregulatory A., P. Gisbergen, C-terminal activity. van W. FRL2 and inhibit J. not Chem. N- does Copeland, FRL2 of the and Thurston, domains N. of C., Davis, Abdennur, Interaction J., F., S. Copeland, S. C., D. Vaillant, E3424-E3433 iaetelongation. filament irflmnsi .elegans. cortical C. of in assembly microfilaments for Arp2/3-independent required are and profilin a cytokinesis and B. protein Bowerman, Homology and Formin L. A D. Baillie, F., A. Severson, 21) ls Ifri agtn otecl otxby cortex cell the to targeting formin II Class (2012). 21) ifrn n sfr-pcfcrlsfrthe for roles isoform-specific and Differing (2012). 283 rc al cd c.USA Sci. Acad. Natl. Proc. LSONE PLoS 33750-33762. , 439 198 51 20) oe ffri-soitdactin formin-associated of Model (2006). 20) h amla omnFHOD1 formin mammalian The (2008). 57-65. , 2486-2495. , 235-250. , MOJ. EMBO 20) ai omnmdae actin- formin-mediated Rapid (2009). .Immunol. J. 20) h oeF2dmi of domain FH2 core The (2004). elRes. Cell o.Cell Mol. 7 .Cl Biol. Cell J. 21) oolsagni profilin gondii Toxoplasma (2012). e48041. , rc al cd c.USA Sci. Acad. Natl. Proc. 21) h blt oinduce to ability The (2012). 20) oe ehns of mechanism novel A (2005). 20) h Da omnis formin mDial The (2009). ur Biol. Curr. 27 618-628. , ur Biol. Curr. 22 21 182 21) tutr fthe of Structure (2012). 728-745. , 455-466. , 170 3837-3845. , 106 rn . rno P., Franco, C., ´rin, o.Cell Mol. 889-893. , 12 13341-13346. , 1864-1870. , 12 20) Rho1 (2002). hmn,D., ¨hlmann, 2066-2075. , 13 .Biol. J. (2011). (2008). (2002). 511- , ora fCl cec 2 1 7 (1) 126 Science Cell of Journal 109 , Dat tblz irtblsdwsra fRoand Rho of migration. downstream cell microtubules promote stabilize S. to A. G. Alberts, mDia G. J., B. Gundersen, Wallar, Cabrera-Poch, M., and J., Chen, J., Schmoranzer, E. H., Morris, N., C. Eng, M. Y., Wen, B. McCartney, Drosophila. 136 in and in complex organization N. APC2-Diaphanous actin an regulating M. for role novel Zhou, A (2009). L., 3T3 R. NIH Webb, in ring cytokinesis contractile during H., the cells. position for Hosoya, its S. scaffold stabilizes S., Narumiya, actin and the and Yasuda, induces T. mDia2 Y., Ishizaki, N., Ando, Watanabe, S., Watanabe, aj,M,Io,R . oyen,J,Ihzk,T,Bito, T., Ishizaki, J., Monypenny, K., E., Kurokawa, R. T., Itoh, M., Nishino, dimer Tanji, Y., tethered Arakawa, N., a Yamana, reveal domain D., architecture. Homology-2 Pellman, F., Formin J. Poy, M. a Eck, I., and Sagot, L. B., B. Goode, J. Moseley, Y., Xu, profilin. for ligand a is and J. GTPase EMBO small K., target Rho a for is Nakao, protein diaphanous, T., Drosophila Y., of S. Ishizaki, homolog Narumiya, Saito, mammalian and T., M. A., B. Reid, Kakizuka, Jockusch, P., G., Madaule, Watanabe, N., Watanabe, . oeua . eaa . siai .and T. Ishizaki, Y., Terada, Okamoto, S., T., Yonemura, Kato, F., M., Oceguera-Yanez, S., Yasuda, cells. motile Biol. in formation G. filopodia Scita, and S., lamellipodia Kojima, T. S., Svitkina, Gerboth, and L., in Czech, C., c-Src. turnover Yang, and adhesion Apc Biol. mobilizing focal Cell. through and cells polarity migrating al. cell et regulates K. Nozaki, H., h es omnBipb h ci-euaigkinase actin-regulating the by Bni1p M. Prk1p. formin Cai, and yeast P. the S. Neo, J., Wang, formins. USA Fmn-family and Spire of fteSi- iaennctltcClb domain C-lobe non-catalytic kinase complex. Spir-1 S., structure (KIND) Pleiser, crystal the cooperativity: A., factor of nucleation Samol, actin E. of Kerkhoff, M., and C. Pechlivanis, Vonrhein, K., Zeth, of membrane plasma 18522. the to cells. ACF7 migrating Salau recruiting by P., capture Daou, S., K., A. Badache, Benseddik, Copeland, K., F., Zaoui, S. 5168-5180. W. formin. Thurston, J. microtubule-associated Copeland, novel and G., C. Smallwood, K. Young, ci filaments. actin H. S. Zigmond, macrophages. of survival Biol. and Cell. Rac motility Mol. to cell binds protein, regulates formin-related and novel T. a Watanabe, FRL, and (2000). I. Taniuchi, S., Yayoshi-Yamamoto, kinetochores. to 767-771. attachment microtubule S. Narumiya, omnlaycpalw lnaini h rsneof presence the in elongation proteins. capping allows M. tight Pring, cap and C., leaky J. Forkey, Yang, Formin F., C., Sicheri, Boone, C., M., A. Dar, Evangelista, H., S. Zigmond, 1283-1293. , 108 5 o.Bo.Cell Biol. Mol. e317. , Traffic N omn2fri PRitrcinmtf(FSI) motif interaction SPIR formin formin-2 11884-11889. , .Bo.Chem. Biol. J. 16 26 3044-3056. , Cell 21) rB eetrcnrl microtubule controls receptor ErbB2 (2010). 6844-6858. , 10 ur pn elBiol. Cell Opin. Curr. 20 rc al cd c.USA Sci. Acad. Natl. Proc. 528-535. , 20) d4 n Da regulate mDia3 and Cdc42 (2004). 20) oe oe ffri Da in mDia2 formin of roles Novel (2007). 116 20) omnidcdnceto of nucleation Formin-induced (2004). 6872-6881. , 711-723. , 19 ur Biol. Curr. 20) h h-Da pathway Rho-mDia1 The (2006). 2328-2338. , a.Cl Biol. Cell Nat. 286 20) B n P idto bind APC and EB1 (2004). 30732-30739. , 20) rsa tutrsof structures Crystal (2004). 21) oeua basis Molecular (2011). 13 rc al cd Sci. Acad. Natl. Proc. 20) euainof Regulation (2009). 19) 10Da a p140mDia, (1997). 1820-1823. , o.Bo.Cell Biol. Mol. 16 20) N1i a is INF1 (2008). 6 820-830. , 99-105. , Development Nature 107 n .and D. ¨n, 18517- , (2008). (2003). PLoS Mol. 428 19 , ,