Unleashing Formins to Remodel the Actin and Microtubule Cytoskeletons

Total Page:16

File Type:pdf, Size:1020Kb

Unleashing Formins to Remodel the Actin and Microtubule Cytoskeletons REVIEWS Unleashing formins to remodel the actin and microtubule cytoskeletons Melissa A. Chesarone, Amy Grace DuPage and Bruce L. Goode Abstract | Formins are highly conserved proteins that have essential roles in remodelling the actin and microtubule cytoskeletons to influence eukaryotic cell shape and behaviour. Recent work has identified numerous cellular factors that locally recruit, activate or inactivate formins to bridle and unleash their potent effects on actin nucleation and elongation. The effects of formins on microtubules have also begun to be described, which places formins in a prime position to coordinate actin and microtubule dynamics. The emerging complexity in the mechanisms governing formins mirrors the wide range of essential functions that they perform in cell motility, cell division and cell and tissue morphogenesis. Virtually all eukaryotic cell types have morphologies that might be unique in their ability to directly regulate both are uniquely tailored to their physiological functions. The actin filaments and microtubules. Furthermore, only immense variation in cell shape depends crucially on an formins show a clearly established and robust ability to underlying network of dynamic, interconnected actin both nucleate actin polymers and dramatically accelerate and microtubule polymers. The dynamic assembly and polymer elongation. turnover of these filamentous networks is used to direct Formins are large (120–220 kDa), multidomain pro- cell polarity and to facilitate membrane and organelle teins that interact with many binding partners to perform traffic, cell adhesion, chromosome segregation, cell their functions (TABLE 1). Fungal species typically have 2 migration and cell division. or 3 formin genes, whereas mammals have 15 and some To construct these intricate fibrous arrays, cells make plant species have more than 20 (REFS 5,6,7). The potent use of a palette of proteins that bind to cyto skeletal activities of formins on actin and micro tubule dynam- polymers and work in concert to organize them into ics have been harnessed to the assembly of the diverse higher-order force-generating structures. The task of cytoskeletal structures that are required in a range of cell- assembling actin and microtubule polymers de novo ular functions, including cell morphogenesis, adhesion, requires active mechanisms, as there are abundant factors division and motility (FIG. 1). Formins are also implicated in cells that inhibit spontaneous polymer formation. in a growing number of diseases (BOX 1). These inhibitory factors include proteins that buffer In this review, we first summarize formin structure and free actin sub units (such as profilin and thymosins) and activities and then we describe regulatory control points tubulin subunits (such as stathmin), and factors that cap and mechanisms used to govern formin activities. polymer ends and sever or depolymerize polymers. To build new actin and microtubule polymers, cells deploy Deconstructing formins specialized proteins that catalyse polymer nucleation and Although no three-dimensional (3D) structure has yet elongation, protect growing polymer ends and attach been reported for any intact formin, a working model to the sides and/or ends of polymers to stabilize them for their general architecture can be assembled from against disassembly. the crystal structures of formin fragments (FIG. 2). In Rosenstiel Basic Medical Science Research Center, Recent work has shown that the formin family of pro- this model, formins are depicted as dimers, as recent Brandeis University, teins (which is conserved in plants, animals and fungi) biophysical data has confirmed that the purified full- Waltham, Massachusetts, has a central role in catalysing actin polymer assembly length formins mouse diaphanous 1 (mDia1; also known 02454, USA. and in stabilizing microtubules1,2. Various other proteins as DIAPH1) and mDia2 (also known as DIAPH3), Correspondence to B.G. that are capable of stimulating actin assembly are found and yeast Bni1 and Bni1-related protein 1 (Bnr1) are e-mail: [email protected] doi:10.1038/nrm2816 in cells, including the Arp2/3 complex, spire, cordon-bleu dimeric (B.G., unpublished observations). Below, we Published online (COBL), leiomodin (LMOD), and junction-mediating describe the general domain layout of animal, fungal 9 December 2009 and -regulatory protein (JMY).3,4. However, formins and plant formins. 62 | JANUARY 2010 | VOLUME 11 www.nature.com/reviews/molcellbio REVIEWS Table 1 | Binding proteins regulating formin localization and activity Protein* Formin target* Organism and/or cell type Function Refs Profilin All tested All cell types Recruits actin monomers to the FH1 domain to accelerate elongation 53 Bud6 Bni1 Saccharomyces cerevisiae Nucleation cofactor for Bni1, binds to the DAD and promotes the 41,149 assembly of actin cables Fus3 Bni1 S. cerevisiae Phosphorylates and localizes Bni1 to the tips of mating cells 95 Rho1 Bni1 S. cerevisiae Required for Bni1 localization to the bud neck and bud cortex 97,150 Spa2 Bni1 S. cerevisiae Helps localize Bni1 to the bud cortex 103,151 Bud14 Bnr1 S. cerevisiae Displaces the Bnr1 FH2 domain from growing barbed ends of 89 filaments and regulates actin cable architecture Spire CAPU Drosophila melanogaster Synergizes with CAPU to assemble actin meshworks in vivo and is 44,45 oocytes thought to inhibit CAPU in vitro Cdc15 Cdc12 Schizosaccharomyces pombe Binds directly to the amino terminus of Cdc12 and is required for the 152 assembly of the cytokinetic actin ring and for cell division Bud6 For3 S. pombe Binds to the DAD and helps localize For3 to cell tips and is required 42,153 for actin cable assembly Cdc42 For3 S. pombe Helps localize For3 to cell tips, is required for actin cable assembly 42 and interacts genetically with Bud6 Tea4 For3 S. pombe Helps localize For3 to cell tips, is required for actin cable assembly 104 and is the closest homologue of S. cerevisiae Bud14 by sequence ABI1 mDia1 Epithelial, melanoma and Helps localize mDia1 to lamellipodia, filopodia and cell adhesions 105,147 HeLa cells CLIP170 mDia1 (DIAPH1) Macrophages Binds the FH2 domain and helps localize mDia1 to sites of 17 (CLIP1) phagocytosis Gα12/13 mDia1 Fibroblasts Helps localize mDia1 to the leading edge of migrating cells 154 IQGAP1 mDia1 Fibroblasts and macrophages Binds to the DID and is required for mDia1 localization to the leading 93 edge and to phagocytic cups RHOA mDia1 Epithelial cells Required for mDia1 localization to adherens junctions and partially 26,100 activates mDia1 from autoinhibition RHOB mDia1 Melanoma cells Helps localize mDia1 to endosomes 155 RHOB mDia2 (DIAPH3) Fibroblasts Required for mDia2 localization to endosomes 25 RIF (RHOF) mDia2 Fibroblasts Helps localize mDia2 to filopodial tips 156 DIP (WISH, mDia2 HEK and HeLa cells Inhibits mDia2 FH2, suppresses filopodial protrusion and induces 88 NCKIPSD) membrane blebbing ROCK1 FHOD1 HeLa cells Binds the FH2 domain and phosphorylates and activates FHOD1 to 39,40 promote membrane remodelling α-catenin FMN1 Epithelial cells Helps localize FMN1 to adherens junctions and is required for 106 FMN1-dependent actin assembly at cell adhesion sites Cdc42 FMNL1 (FRL1) Macrophages Helps localize FMNL1 to the cell cortex 84 ABI1, Abelson interactor 1; Bnr1, Bni1-related protein 1; Bud, bud site selection protein; CAPU, Cappuccino; CLIP170, cytoplasmic linker protein 170; DAD, Dia autoregulatory domain; DID, Dia inhibitory domain; DIP, Dia-interacting protein; FH, formin homology; FHOD1, FH1/FH2 domain-containing protein 1; FMN1, formin 1; FMNL1, FMN-like protein 1; For3, formin 3; IQGAP1, IQ motif-containing GTPase activating protein 1; mDia, mouse diaphanous; RIF, Rho in filopodia; ROCK, Rho-activated kinase; Tea4, tip elongation aberrant protein 4. *Alternative protein names are provided in brackets. Formin polypeptides can be divided into two major structure, and it contains binding sites for profilin–actin Polyproline tract (FIG. 2a) A short protein motif, found in functional regions : the amino-terminal ‘regu- complexes. Profilin is a ubiquitous actin monomer- many actin regulatory scaffold latory’ region, which typically governs in vivo local- binding protein with separate binding sites for mono- proteins, that typically contains ization and can influence the activities of the carboxy meric actin (also called globular actin or G-actin) and five or more tandem proline terminus, and the ‘active’ region, which stimulates actin polyproline tracts8–10. Profilin is associated with most actin residues and binds profilin or 11 SH3 domains. assembly and, in some formins, interacts with micro- monomers in cells and, therefore, profilin–actin com- tubules. The C terminus of many formins includes a plexes are the predominant substrate for actin assem- Barbed end Dia autoregulatory domain (DAD), which can, in some bly in vivo. Interactions between profilin and the FH1 The rapidly growing end of cases, mediate auto inhibition through interactions with domain are crucial for the recruitment of actin mono- an actin filament, so-called the N terminus. mers to the active region12–15. The adjacent FH2 domain because of the arrowhead pattern created when myosin The C-terminal active region consists of the formin forms a head-to-tail doughnut-shaped dimer that binds. The slowly growing end homology 1 (FH1) and FH2 domains. The FH1 domain en circles the barbed end of the actin filament. In mDia1 is called the pointed end. is predicted to be rope-like, based on a lack of secondary or
Recommended publications
  • Snapshot: Formins Christian Baarlink, Dominique Brandt, and Robert Grosse University of Marburg, Marburg 35032, Germany
    SnapShot: Formins Christian Baarlink, Dominique Brandt, and Robert Grosse University of Marburg, Marburg 35032, Germany Formin Regulators Localization Cellular Function Disease Association DIAPH1/DIA1 RhoA, RhoC Cell cortex, Polarized cell migration, microtubule stabilization, Autosomal-dominant nonsyndromic deafness (DFNA1), myeloproliferative (mDia1) phagocytic cup, phagocytosis, axon elongation defects, defects in T lymphocyte traffi cking and proliferation, tumor cell mitotic spindle invasion, defects in natural killer lymphocyte function DIAPH2 Cdc42 Kinetochore Stable microtubule attachment to kinetochore for Premature ovarian failure (mDia3) chromosome alignment DIAPH3 Rif, Cdc42, Filopodia, Filopodia formation, removing the nucleus from Increased chromosomal deletion of gene locus in metastatic tumors (mDia2) Rac, RhoB, endosomes erythroblast, endosome motility, microtubule DIP* stabilization FMNL1 (FRLα) Cdc42 Cell cortex, Phagocytosis, T cell polarity Overexpression is linked to leukemia and non-Hodgkin lymphoma microtubule- organizing center FMNL2/FRL3/ RhoC ND Cell motility Upregulated in metastatic colorectal cancer, chromosomal deletion is FHOD2 associated with mental retardation FMNL3/FRL2 Constituently Stress fi bers ND ND active DAAM1 Dishevelled Cell cortex Planar cell polarity ND DAAM2 ND ND ND Overexpressed in schizophrenia patients Human (Mouse) FHOD1 ROCK Stress fi bers Cell motility FHOD3 ND Nestin, sarcomere Organizing sarcomeres in striated muscle cells Single-nucleotide polymorphisms associated with type 1 diabetes
    [Show full text]
  • How Models and Biological Experimentation Have Come Together to Reveal Mechanisms of Cytokinesis Daniel B
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs203570. doi:10.1242/jcs.203570 REVIEW Unite to divide – how models and biological experimentation have come together to reveal mechanisms of cytokinesis Daniel B. Cortes1, Adriana Dawes2, Jian Liu3, Masoud Nickaeen4, Wanda Strychalski5 and Amy Shaub Maddox1,* ABSTRACT these systems. Thus, cytokinesis can serve as a paradigm to Cytokinesis is the fundamental and ancient cellular process by which understand diverse behaviors of cellular motility. one cell physically divides into two. Cytokinesis in animal and fungal Mathematical modeling (see Glossary), combined with biological ‘ ’ cells is achieved by contraction of an actomyosin cytoskeletal ring experimentation (i.e. wet lab approaches including microscopy, assembled in the cell cortex, typically at the cell equator. Cytokinesis genetics, biochemistry and biophysics), has significantly advanced ‘ ’ is essential for the development of fertilized eggs into multicellular our understanding of cytokinesis. Herein, we use the word modeling organisms and for homeostatic replenishment of cells. Correct to collectively refer to diverse theoretical approaches, in which execution of cytokinesis is also necessary for genome stability and biological, biochemical and biophysical processes are described with the evasion of diseases including cancer. Cytokinesis has fascinated mathematical equations. These approaches, often historically rooted scientists for well over a century, but its speed and dynamics make in, and motivated by, problems in physics and chemistry, include experiments challenging to perform and interpret. The presence continuum mechanics modeling and agent-based modeling (see of redundant mechanisms is also a challenge to understand Glossary). The following references can serve as a starting point for cytokinesis, leaving many fundamental questions unresolved.
    [Show full text]
  • Profilin and Formin Constitute a Pacemaker System for Robust Actin
    RESEARCH ARTICLE Profilin and formin constitute a pacemaker system for robust actin filament growth Johanna Funk1, Felipe Merino2, Larisa Venkova3, Lina Heydenreich4, Jan Kierfeld4, Pablo Vargas3, Stefan Raunser2, Matthieu Piel3, Peter Bieling1* 1Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 2Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 3Institut Curie UMR144 CNRS, Paris, France; 4Physics Department, TU Dortmund University, Dortmund, Germany Abstract The actin cytoskeleton drives many essential biological processes, from cell morphogenesis to motility. Assembly of functional actin networks requires control over the speed at which actin filaments grow. How this can be achieved at the high and variable levels of soluble actin subunits found in cells is unclear. Here we reconstitute assembly of mammalian, non-muscle actin filaments from physiological concentrations of profilin-actin. We discover that under these conditions, filament growth is limited by profilin dissociating from the filament end and the speed of elongation becomes insensitive to the concentration of soluble subunits. Profilin release can be directly promoted by formin actin polymerases even at saturating profilin-actin concentrations. We demonstrate that mammalian cells indeed operate at the limit to actin filament growth imposed by profilin and formins. Our results reveal how synergy between profilin and formins generates robust filament growth rates that are resilient to changes in the soluble subunit concentration. DOI: https://doi.org/10.7554/eLife.50963.001 *For correspondence: peter.bieling@mpi-dortmund. mpg.de Introduction Competing interests: The Eukaryotic cells move, change their shape and organize their interior through dynamic actin net- authors declare that no works.
    [Show full text]
  • Role of G-Protein Regulation of Formins During Gradient Tracking in Saccharomyces Cerevisiae
    The University of Maine DigitalCommons@UMaine Honors College Spring 5-2017 Role of G-protein Regulation of Formins during Gradient Tracking in Saccharomyces cerevisiae Stephen Soohey University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Recommended Citation Soohey, Stephen, "Role of G-protein Regulation of Formins during Gradient Tracking in Saccharomyces cerevisiae" (2017). Honors College. 261. https://digitalcommons.library.umaine.edu/honors/261 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ROLE OF G-PROTEIN REGULATION OF FORMINS DURING GRADIENT TRACKING IN SACCHAROMYCES CEREVISIAE by Stephen C. Soohey A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Molecular and Cellular Biology) The Honors College University of Maine May 2017 Advisory Committee: Joshua Kelley, Assistant Professor of Biochemistry, Advisor Sally Molloy, Assistant Professor of Genomics Robert Gundersen, Chair of Molecular & Biomedical Sciences Edward Bernard, Laboratory Coordinator and Lecturer Sarah Harlan-Haughey, Assistant Professor of English and Honors ABSTRACT The yeast Saccharomyces cerevisiae uses a GPCR to direct the pheromone response pathway. Haploid yeast detect and respond to pheromone gradients produced by the opposite mating type to find a mating partner. At a high dose of pheromone, yeast will form a short, focused mating projection in order to mate with yeast that are close by. At lower doses of pheromone, the yeast form a broader projection which grows towards the source of pheromone.
    [Show full text]
  • The Hippo Pathway Target, YAP, Promotes Metastasis Through Its TEAD-Interaction Domain
    The Hippo pathway target, YAP, promotes metastasis PNAS PLUS through its TEAD-interaction domain John M. Lamara, Patrick Sterna,1, Hui Liua,b,2, Jeffrey W. Schindlera,b, Zhi-Gang Jianga,c, and Richard O. Hynesa,b,c,3 cHoward Hughes Medical Institute, aKoch Institute for Integrative Cancer Research, and bDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by Richard O. Hynes, July 23, 2012 (sent for review February 28, 2012) The transcriptional coactivator Yes-associated protein (YAP) is 14-3-3 proteins (1, 9) and α-catenin (10, 11). LATS-mediated a major regulator of organ size and proliferation in vertebrates. phosphorylation of YAP also can promote YAP ubiquitination As such, YAP can act as an oncogene in several tissue types if its and subsequent proteasomal degradation (12). Several addi- activity is increased aberrantly. Although no activating mutations tional proteins are involved in Hippo pathway-dependent and in the yap1 gene have been identified in human cancer, yap1 is -independent regulation of YAP and TAZ, including the FERM located on the 11q22 amplicon, which is amplified in several hu- domain proteins Merlin/NF2 and FRMD6, the junctional pro- man tumors. In addition, mutations or epigenetic silencing of teins ZO-2 and AJUB, the polarity complex proteins Crumbs, members of the Hippo pathway, which represses YAP function, Angiomotin, Scribble, and KIBRA, and the protein phosphatases have been identified in human cancers. Here we demonstrate that, PP2A and ASPP1 (6–8). Thus, YAP protein levels and activity are in addition to increasing tumor growth, increased YAP activity is regulated tightly at multiple levels.
    [Show full text]
  • WW Domains Provide a Platform for the Assembly of Multiprotein Networks† Robert J
    MOLECULAR AND CELLULAR BIOLOGY, Aug. 2005, p. 7092–7106 Vol. 25, No. 16 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.16.7092–7106.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. WW Domains Provide a Platform for the Assembly of Multiprotein Networks† Robert J. Ingham,1 Karen Colwill,1 Caley Howard,1 Sabine Dettwiler,2 Caesar S. H. Lim,1,3 Joanna Yu,1,3 Kadija Hersi,1 Judith Raaijmakers,1 Gerald Gish,1 Geraldine Mbamalu,1 Lorne Taylor,1 Benny Yeung,1 Galina Vassilovski,1 Manish Amin,1 Fu Chen,4 Liudmila Matskova,4 Go¨sta Winberg,4 Ingemar Ernberg,4 Rune Linding,1 Paul O’Donnell,1 Andrei Starostine,1 Walter Keller,2 Pavel Metalnikov,1Chris Stark,1 and Tony Pawson1,3* Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada1; Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada3; Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland2; and Karolinska Institutet, Microbiology and Tumor Biology Center (MTC), SE-171 Stockholm, Sweden4 Received 8 April 2005/Returned for modification 5 May 2005/Accepted 22 May 2005 WW domains are protein modules that mediate protein-protein interactions through recognition of proline- rich peptide motifs and phosphorylated serine/threonine-proline sites. To pursue the functional properties of WW domains, we employed mass spectrometry to identify 148 proteins that associate with 10 human WW domains. Many of these proteins represent novel WW domain-binding partners and are components of multiprotein complexes involved in molecular processes, such as transcription, RNA processing, and cytoskel- etal regulation.
    [Show full text]
  • Rho Activation of Mdia Formins Is Modulated by an Interaction with Inverted Formin 2 (INF2)
    Rho activation of mDia formins is modulated by an interaction with inverted formin 2 (INF2) Hua Suna,b,c, Johannes S. Schlondorffb,c, Elizabeth J. Brownc,d, Henry N. Higgse, and Martin R. Pollakb,c,1 aNephrology Division, Department of Medicine, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China; bNephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; cDepartment of Medicine, Harvard Medical School, Boston, MA 02115; dDivision of Nephrology, Department of Medicine, Children’s Hospital, Boston, MA 02115; and eDepartment of Biochemistry, Dartmouth Medical School, Hanover, NH 03755 Edited by Christine E. Seidman, Harvard Medical School, Boston, MA, and approved December 30, 2010 (received for review November 12, 2010) Inverted formin 2 (INF2) encodes a member of the diaphanous glomerular slit diaphragm (11–13). The importance of the actin subfamily of formin proteins. Mutations in INF2 cause human cytoskeleton in maintaining the glomerular filtration barrier is kidney disease characterized by focal and segmental glomerulo- supported by the fact that mutations in α-actinin-4, an actin cross- sclerosis. Disease-causing mutations occur only in the diaphanous linking protein, cause a similar form of autosomal-dominant FSGS inhibitory domain (DID), suggesting specific roles for this domain in (14). Numerous lines of evidence support the notion that podo- the pathogenesis of disease. In a yeast two-hybrid screen, we cytes are highly sensitive to perturbations in their actin cytoskel- identified the diaphanous autoregulatory domains (DADs) of the eton (15). Consistent with this, FSGS-associated mutant forms of mammalian diaphanous-related formins (mDias) mDia1, mDia2, INF2 induce distinct patterns of actin polymerization in cultured and mDia 3 as INF2_DID-interacting partners.
    [Show full text]
  • Cytoskeleton: Formins Induce Nuclear Actin Assembly
    RESEARCH HIGHLIGHTS Nature Reviews Molecular Cell Biology | AOP, published online 24 April 2013; doi:10.1038/nrm3580 CYTOSKELETON nuclear export signal (NES-Dia1ct)) that formins drive actin assembly in the or constitutively active MAL. nucleus in response to serum. Moreover, they found that nuclear So, can MAL–SRF activity be induced Formins induce nuclear actin polymerization was required for upon nuclear mDia activation? Dia1ct-driven SRF activity, as Dia1ct To activate endogenous formins in actin assembly did not induce SRF activity when an the nucleus, the authors used an actin mutant that cannot polymerize optogenetic tool, whereby mDia Formins promote the assembly of actin was overexpressed in the nucleus. autoinhibition is released by the filaments in the cytoplasm. This leads Interestingly, only nuclear Dia1ct but not photoactivation of a diaphanous formins drive to the release of MAL (megakaryocytic cytoplasmic NES-Dia1ct could prevent autoregulatory domain. Indeed, acute leukaemia; also known as MRTF) the sequestration of MAL by nuclear repeated illumination of cells, and actin assembly from monomeric G-actin and the G-actin, which suggests that nuclear thus mDia activation, resulted in the in the nucleus accumulation of this cofactor, which actin polymerization releases MAL from reversible assembly of nuclear actin stimulates serum response factor G-actin. Moreover, cells expressing a filaments, MAL nuclear accumulation (SRF)-dependent expression of dominant-negative mDia mutant that and SRF activity. cytoskeletal target genes, in the localizes exclusively to the nucleus Together, these results show that nucleus. Although diaphanous-related exhibited decreased serum-induced the assembly of dynamic nuclear formins (mDia) have been detected in SRF activity compared with control cells, actin networks in response to serum is the nucleus, it was unclear whether they suggesting that nuclear mDia is required dependent on nuclear mDia activation.
    [Show full text]
  • The Formin FMNL3 Is a Cytoskeletal Regulator of Angiogenesis
    Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 2012 The Formin FMNL3 is a Cytoskeletal Regulator of Angiogenesis Clare Hetheridge University of Bristol Alice N. Scott University of Bristol Rajeeb K. Swain Birmingham University John W. Copeland University of Ottawa Henry N. Higgs Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Medical Biochemistry Commons Dartmouth Digital Commons Citation Hetheridge, Clare; Scott, Alice N.; Swain, Rajeeb K.; Copeland, John W.; and Higgs, Henry N., "The Formin FMNL3 is a Cytoskeletal Regulator of Angiogenesis" (2012). Dartmouth Scholarship. 1731. https://digitalcommons.dartmouth.edu/facoa/1731 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. 1420 Research Article The formin FMNL3 is a cytoskeletal regulator of angiogenesis Clare Hetheridge1, Alice N. Scott1, Rajeeb K. Swain2, John W. Copeland3, Henry N. Higgs4, Roy Bicknell2 and Harry Mellor1,* 1School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK 2Institute for Biomedical Research, Birmingham University Medical School, Vincent Drive, Birmingham, B15 2TT, UK 3University of Ottawa, Department of Cellular and Molecular Medicine, Room 3206, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada 4Dartmouth Medical School, Department of Biochemistry, Room 413, 7200 Vail Building, Hanover, NH 03755-3844, USA *Author for correspondence ([email protected]) Accepted 28 September 2011 Journal of Cell Science 125, 1420–1428 ß 2012.
    [Show full text]
  • The Formin Homology Protein Mdia1 Regulates Dynamics of Microtubules and Their Effect on Focal Adhesion Growth
    - 1 - The formin homology protein mDia1 regulates dynamics of microtubules and their effect on focal adhesion growth Christoph Ballestrem,* Natalia Schiefermeier,*ƒ Julia Zonis,* Michael Shtutman,* Zvi Kam,* Shuh Narumiya, Arthur S. Alberts, ⁄ and Alexander D. Bershadsky* *Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel; Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan; ⁄Van Andel Research Institute, Grand Rapids, MI, USA. ƒThis author made significant contribution to this paper Address correspondence to: Alexander Bershadsky Department of Molecular Cell Biology The Weizmann Institute of Science P.O. Box 26, Rehovot 76100, Israel Tel.: 972-8-9342884 Fax: 972-8-9344125 E-mail: [email protected] Total characters: 59107 Running Title: mDia1 regulates dynamics of microtubules Keywords: mDia, formin homology protein, microtubule, focal adhesion, actin - 2 - Abstract The formin homology protein, mDia1, is a major effector of Rho controlling, together with the Rho-kinase (ROCK), the formation of focal adhesions and stress fibers. Here we show that a constitutively active form of mDia1 (mDia1∆N3) affects the dynamics of microtubules at three stages of their life. We found that in cells expressing mDia1∆N3, (1) the growth rate at the microtubule plus-end decreased by half, (2) the rates of microtubule plus-end growth and shortening at the cell periphery decreased while the frequency of catastrophes and rescue events remained unchanged, and (3) mDia1∆N3 expression in cytoplasts without centrosome stabilized free microtubule minus-ends. This stabilization required the activity of another Rho target, ROCK. Interestingly, mDia1∆N3 as well as endogenous mDia1, localized at the centrosome.
    [Show full text]
  • High-Throughput Methods for Identification of Protein-Protein Interactions Involving Short Linear Motifs Cecilia Blikstad and Ylva Ivarsson*
    Blikstad and Ivarsson Cell Communication and Signaling (2015) 13:38 DOI 10.1186/s12964-015-0116-8 REVIEW Open Access High-throughput methods for identification of protein-protein interactions involving short linear motifs Cecilia Blikstad and Ylva Ivarsson* Abstract Interactions between modular domains and short linear motifs (3–10 amino acids peptide stretches) are crucial for cell signaling. The motifs typically reside in the disordered regions of the proteome and the interactions are often transient, allowing for rapid changes in response to changing stimuli. The properties that make domain-motif interactions suitable for cell signaling also make them difficult to capture experimentally and they are therefore largely underrepresented in the known protein-protein interaction networks. Most of the knowledge on domain-motif interactions is derived from low-throughput studies, although there exist dedicated high-throughput methods for the identification of domain-motif interactions. The methods include arrays of peptides or proteins, display of peptides on phage or yeast, and yeast-two-hybrid experiments. We here provide a survey of scalable methods for domain-motif interaction profiling. These methods have frequently been applied to a limited number of ubiquitous domain families. It is now time to apply them to a broader set of peptide binding proteins, to provide a comprehensive picture of the linear motifs in the human proteome and to link them to their potential binding partners. Despite the plethora of methods, it is still a challenge for most approaches to identify interactions that rely on post-translational modification or context dependent or conditional interactions, suggesting directions for further method development.
    [Show full text]
  • Phosphoserine/Threonine Binding Minireview Domains: You Can’T Pserious?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Structure, Vol. 9, R33±R38, March, 2001, 2001 Elsevier Science Ltd. All rights reserved. PII S0969-2126(01)00580-9 PhosphoSerine/Threonine Binding Minireview Domains: You Can't pSERious? Michael B. Yaffe,*³ and Stephen J. Smerdon²³ 14-3-3 Proteins *Center for Cancer Research The term ª14-3-3º denotes a family of dimeric ␣-helical Massachusetts Institute of Technology pSer/Thr binding proteins present in high abundance in 77 Massachusetts Avenue, E18-580 all eukaryotic cells [1]. 14-3-3 proteins were the first Cambridge, Massachusetts 02139 molecules to be recognized as distinct pSer/Thr binding ² Division of Protein Structure proteins, forming tight complexes with phosphorylated National Institute for Medical Research ligands containing either of two sequence motifs, R[S/ The Ridgeway Ar]XpSXP and RX[Ar/S]XpSXP, respectively, where pS Mill Hill denotes both phosphoserine and phosphothreonine, London NW7 1AA and Ar denotes aromatic residues [2, 3]. In addition, a United Kingdom few 14-3-3 binding ligands have been identified whose sequences deviate significantly from these motifs or do not require phosphorylation for binding. Summary Over 50 distinct substrates have been identified that bind to 14-3-3, many of which play critical roles in regu- The fundamental biological importance of protein phos- lating progression through the cell cycle, activation of phorylation is underlined by the existence of more than the Erk1/2 subfamily of MAP kinases, initiation of apo- 500 protein kinase genes within the human genome.
    [Show full text]