2014 Acid Base Equilibrium

Total Page:16

File Type:pdf, Size:1020Kb

2014 Acid Base Equilibrium Chemistry Acid Base Equilibrium Advanced Placement 2014 2 Ar Kr 10 18 36 54 86 Xe He Ne Rn (222) 83.80 4.0026 20.179 39.948 131.29 I 9 F Cl At Br 17 35 53 85 Lr 71 Lu 103 (210) 19.00 79.90 (260) 35.453 126.91 174.97 8 S O Te 16 34 52 84 Se Po 70 Yb No 102 (209) 16.00 32.06 78.96 (259) 127.60 173.04 7 P N Bi 15 33 51 83 As Sb 69 Md Tm 101 74.92 (258) 14.007 30.974 121.75 208.98 168.93 6 C Si 8.71 14 32 50 82 Sn Pb Er Ge 68 Fm 100 28.09 72.59 207.2 (257) 12.011 11 167.26 11 §Not yet named 5 B Tl In Al 4.82 13 31 49 81 67 99 Es Ga Ho (252) 26.98 69.72 10.8 11 204.38 164.93 2 § 30 48 80 Zn Cd Hg Cf 66 98 Dy 11 (277) 65.39 (251) 112.41 200.59 162.50 § 29 47 79 Ag Au Cu 65 97 Tb Bk 111 (272) 63.55 (247) 107.87 196.97 158.93 0 § Ni Pt 28 46 78 Pd 64 96 Gd 11 Cm (269) (247) 58.69 106.42 195.08 157.25 Ir 27 45 77 Mt Co Rh 63 95 Eu 109 Am ble of the Elements (266) 58.93 192.2 (243) 102.91 151.97 Ta 26 44 76 Fe Hs Ru Os 62 94 Pu 108 Sm (265) 55.85 101.1 190.2 (244) 150.4 Tc 25 43 75 61 93 Bh Re Np Mn Pm 107 (98) Periodic (262) (145) 54.938 186.21 237.05 U W Cr 24 42 74 Sg 60 92 Mo Nd 106 (263) 52.00 93.94 183.85 144.24 238.03 V Pr Ta 23 41 73 59 91 Pa Nb Db 105 (262) 50.94 92.91 180.95 140.91 231.04 Ti Zr Hf Rf 22 40 72 58 90 Th Ce 104 (261) 47.90 91.22 178.49 140.12 232.04 Y 21 39 57 89 La Sc Ac * † 44.96 88.91 138.91 227.03 4 Sr 12 20 38 56 88 Be Ba Ca Ra Mg 9.012 24.30 40.08 87.62 137.33 226.02 †Actinide Series: 1 3 K H Li Fr 11 19 37 55 87 *Lanthanide Series: Cs Na Rb (223) 6.941 22.99 39.10 85.47 1.0079 132.91 ADVANCEDADVANCED PLACEMENTPLACEMENT CHEMISTRYCHEMISTRY EQUATIONSEQUATIONS ANDAND CONSTANTSCONSTANTS ThroughoutThroughout thethe testtest thethe followingfollowing symbolssymbols havehave ththee definitionsdefinitions specifiedspecified unlessunless otherwiseotherwise noted.noted. L,L, mLmL == liter(s),liter(s), milliliter(s)milliliter(s) mmmm HgHg == millimetersmillimeters ofof mercurymercury gg == gram(s)gram(s) J,J, kJkJ == joule(s),joule(s), kilojoule(s)kilojoule(s) nmnm == nanometer(s)nanometer(s) VV == volt(s)volt(s) atmatm == atmosphere(s)atmosphere(s) molmol == mole(s)mole(s) ATOMICATOMIC STRUCTURESTRUCTURE EE == energyenergy EE == hhνν νν == frequencyfrequency cc == λνλν λλ == wavelengthwavelength Planck’sPlanck’s constant,constant, hh == 6.6266.626 × × 1010−−3434 JJ s s SpeedSpeed ofof light,light, cc == 2.9982.998 ×× 101088 msms−−11 Avogadro’sAvogadro’s nnumberumber == 6.0226.022 ×× 10102323 molmol−−11 ElectronElectron charge,charge, e e == −−1.1.602602 ××1010−−1919 coulombcoulomb EQUILIBRIUMEQUILIBRIUM [C][C]cdcd [D] [D] KKcc == ,, wherewhere aa AA ++ bb BB RR cc CC ++ dd DD EquilibriumEquilibrium Constants Constants [A][A]abab [B] [B] cdcd KKcc (molar(molar concentrations)concentrations) ((PPPPCC )( )(DD ) ) KKpp == abab KKpp (gas(gas pressures)pressures) ((PPPPABAB )( )( ) ) KKaa (weak(weak acid)acid) [H[H+-+- ][A ][A ] ] KK == K (weak base) aa [HA][HA] Kbb (weak base) KK (water)(water) [OH-+-+ ][HB ] ww KK == [OH ][HB ] bb [B][B] ++ −− −−1414 KKww == [H[H ][OH][OH ]] == 1.01.0 ××1010 atat 2525°°CC == KKaa ×× KKbb pHpH == −−loglog[H[H++]] , , pOHpOH == −−log[OHlog[OH−−]] 1414 == pHpH ++ pOHpOH -- pHpH == ppKK ++ loglog[A[A ] ] aa [HA][HA] ppKKaa == −−loglogKKaa,, ppKKbb == −−loglogKKbb KINETICSKINETICS ln[A]ln[A] −− ln[A]ln[A] == −−ktkt tt 00 kk == raterate constantconstant 1111 tt == timetime -- == ktkt AAAA [][]tt [][]00 tt½½ == half-lifehalf-life tt == 0.6930.693 ½½ kk GASES, LIQUIDS, AND SOLUTIONS P = pressure V = volume PV = nRT T = temperature moles A n = number of moles PA = Ptotal × XA, where XA = total moles m = mass M = molar mass Ptotal = PA + PB + PC + . D = density n = m KE = kinetic energy M Ã = velocity K = °C + 273 A = absorbance a = molarabsorptivity m D = b = path length V c = concentration KE per molecule = 1 mv2 2 Gas constant, R = 8.314 J mol--11 K Molarity, M = moles of solute per liter of solution --11 = 0.08206 L atm mol K --11 A = abc = 62.36 L torr mol K 1atm= 760 mm Hg = 760 torr STP= 0.00D C and 1.000 atm THERMOCHEMISTRY/ ELECTROCHEMISTRY q = heat m = mass q= mcD T c = specific heat capacity T temperature DSSDD= ÂÂ products- S D reactants = SD = standard entropy DD D DDHH= ÂÂproducts- D Hf reactants f HD = standard enthalpy DD D GD standard free energy DDGG= ÂÂf products- D Gf reactants = n = number of moles D DDGD = HDD - TS D E = standard reduction potential I = current (amperes) = -RTln K q = charge (coulombs) t = time (seconds) = -nFED q Faraday’s constant , F = 96,485 coulombs per mole I ϭ t of electrons 1 joule 1volt = 1coulomb ACID – BASE EQUILIBRIUM Ka, Kb, and Salt Hydrolysis What I Absolutely Have to Know to Survive the AP Exam The following might indicate the question deals with acid – base equilibrium: + − pH, pOH, [H3O ], [OH ], strong and weak, salt hydrolysis, solubility product, Ka, Kb, acid or base dissociation constant, percent ionized, Bronsted-Lowry, Arrhenius, hydronium ion, etc… Acids and Bases: By Definition! Arrhenius • Acids: Hydrogen ion, H+, donors • Bases: Hydroxide ion, OH− donors HCl → H+ + Cl− NaOH → Na+ + OH− Bronsted-Lowry • Acids: proton donors (lose H+) Bases: proton acceptors (gain H+) • + − HNO3 + H2O → H3O + NO3 + − NH3 + H2O ⇌ NH4 + OH Hydrogen Ion, Hydronium Ion, Which is it!!!? Hydronium − H+ riding piggy-back on a water molecule; water is polar and the + charge of the naked proton is greatly attracted to “Mickey's chin” (i.e. the oxygen atom) + • H3O “Anthony” • H+ “Tony” + • Often used interchangeably in problems; if H3O is used be sure water is in the equation! Bronsted−Lowry and Conjugate Acids and Bases: What a Pair! Acid and conjugate base pairs differ by the presence of one H+ ion. + − HC2H3O2 + H2O → H3O + C2H3O2 − + • HC2H3O2 is the acid; thus C2H3O2 is its conjugate base (what remains after the H has been donated to the H2O molecule) • H2O behaves as a base in this reaction. The hydronium ion is its conjugate acid (what is formed after the H2O accepts the H+ ion) + − NH3 + H2O → NH4 + OH + + • NH3 is the base; thus NH4 is it’s conjugate acid (what is formed after the NH3 accepts the H ion) + • H2O behaves as an acid in this reaction. The hydroxide ion is its conjugate base (what remains after the H has been donated to NH3) Understanding conjugate acid/base pairs is very important in understanding acid-base chemistry; this concepts allows for the understanding of many complex situations (buffers, titrations, etc…) Important Notes… Amphiprotic/amphoteric--molecules or ions that can behave as EITHER acids or bases; water, some anions of weak acids, etc… fit this bill. Monoprotic − acids donating one H+ Diprotic − acids donating two H+ Polyprotic − acids donating 3+ H+ Regardless, always remember: ACIDS ONLY DONATE ONE PROTON AT A TIME!!! Copyright © 2014 National Math + Science Initiative, Dallas, Texas. All Rights Reserved. Visit us online at www.nms.org Page 1 Acid – Base Equilibrium Ionization: That’s What it’s All About! Relative Strengths A strong acid or base ionizes completely in aqueous solution (100% ionized [or very darn close to it!]) • The equilibrium position lies far, far to the right (favors products)… + − • Since a strong acid/base dissociates into the ions, the concentration of the H3O /OH ion is equal to the original concentration of the acid/base respectively. • They are strong electrolytes. • Do Not confuse concentration (M or mol/L) with strength! • Strong Acids • Hydrohalic acids: HCl, HBr, HI; Nitric: HNO3; Sulfuric: H2SO4; Perchloric: HClO4 • Oxyacids! More oxygen atoms present, the stronger the acid WITHIN that group. The H+ that is “donated” is bonded to an oxygen atom. The oxygen atoms are highly electronegative and are pulling the bonded pair of electrons AWAY from the site where the H+ is bonded, “polarizing it”, which makes it easier [i.e. requires less energy] to remove − thus the stronger the acid! O HO Br < HO Br O < HO Br O • Strong Bases • Group IA and IIA (1 and 2) metal hydroxides; be cautious as the poor solubility of Be(OH)2 and Mg(OH)2 limits the effectiveness of these 2 strong bases. − • IT’S A 2 for 1 SALE with the Group 2 (IIA) ions), i.e. 0.10M Ca(OH)2 is 0.20M OH Where the fun begins… A weak acid or base does not completely ionize (usually < 10%) • They are weak electrolytes. • The equilibrium position lies far to the left (favors reactants)… • [H+] is much less than the acid concentration − thus to calculate this amount and the resulting pH you must return to the world of EQUILIBRIUM Chemistry! • The vast majority of acid/bases are weak. Remember, ionization not concentration!!!! • Acids and Bases ionize one proton (or H+) at a time! + − • For weak acid reactions: HA + H2O → H3O + A [H O+ ][A- ] K = 3 where K is typically much less than 1 a [HA] a + − • For weak base reactions: B + H2O → HB + OH [HB+ ][OH- ] K = where K is typically much less than 1 b [B] b Copyright © 2014 National Math + Science Initiative, Dallas, Texas.
Recommended publications
  • Chemical Equilibrium Chemistry (H) 1St Year SEM-II, Dated: 7Th April 2020
    Remarks of Assignment 2: Chemical Equilibrium Chemistry (H) 1st Year SEM-II, Dated: 7th April 2020 Grades: A (Excellent); B+ (Very good); B (Good) and C (Poor) S. NAME Roll No. Grade Remarks No. 1. Sejal Jain 1931210 Resubmission: Not submitted or misplaced 2. Harshita 1931206 A In Q.6. no need to discuss the situations, according to figure 1 it is NO and Q.8. Try to write concisely 3. Yogesh Kumar 1931152 B+ Q. 6. Not correct 4. Pooja 1931132 B+ Q. 6. Not correct 5. Riddhima 120 A Excellent 6. Jyoti 112 B+ Q. 6. Not correct 7. Vivek 146 B+ Q. 6. Not correct 8. Vikash 154 B+ Q. 6. Not correct 9. Nidhi 150 A Excellent 10. Mehak Vaish 136 B+ Q. 6. Not correct 11. Rinka* 122 B+ Q. 6. Not correct 12. Sheenu 202 A Excellent 13. Bhupendra 104 B+ Q. 6. Not correct Maurya 14. Deepanshu 142 B+ Q. 6. Not correct 15. Diksha Rathi 204 A Excellent 16. Khushboo Mittal 256 A Q. 6. Not correct 17. Amit Patwa 252 B+ Q. 6. Not correct 18. Aman Tomar 246 A Excellent 19. Vinay Sharma 176 B+ Q. 6. Not correct 20. Garima Nveen 128 B+ Q. 6. Not correct and Q. 8. Answer in terms of number of moles, 21. Yatin Kumar 254 B+ Q. 6. Not correct 22. Ajay Kumar 238 B+ Q. 6. Not correct 23. Divya Yadav 214 A Excellent, Kindly check Q.6. not properly scanned but I think you want to say NO 24. Kushagra Malik 174 B+ Q.
    [Show full text]
  • Introduction to Co2 Chemistry in Sea Water
    INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps CO Program Last updated August 2016 2 ? 410 400 390 380 370 2008; ~385 ppm 360 350 Concentration (ppm) 2 340 CO 330 1974; ~330 ppm 320 310 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year EFFECT OF ADDING CO2 TO SEA WATER 2− − CO2 + CO3 +H2O ! 2HCO3 O C O CO2 1. Dissolves in the ocean increase in decreases increases dissolved CO2 carbonate bicarbonate − HCO3 H O O also hydrogen ion concentration increases C H H 2. Reacts with water O O + H2O to form bicarbonate ion i.e., pH = –lg [H ] decreases H+ and hydrogen ion − HCO3 and saturation state of calcium carbonate decreases H+ 2− O O CO + 2− 3 3. Nearly all of that hydrogen [Ca ][CO ] C C H saturation Ω = 3 O O ion reacts with carbonate O O state K ion to form more bicarbonate sp (a measure of how “easy” it is to form a shell) M u l t i p l e o b s e r v e d indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa (19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) and in situ pH (green curves), a measure of the acidity of ocean water.
    [Show full text]
  • 3-D Surface Visualization of Ph Titration “Topos”: Equivalence Point Cliffs, Dilution Ramps and Buffer Plateaus
    University of Montana ScholarWorks at University of Montana Water Topos: A 3-D Trend Surface Approach to Viewing and Teaching Aqueous Equilibrium Open Educational Resources (OER) Chemistry 11-2020 Chapter 1.1: 3-D Surface Visualization of pH Titration “Topos”: Equivalence Point Cliffs, Dilution Ramps and Buffer Plateaus Garon C. Smith University of Montana, Missoula Md Mainul Hossain North South University, Bangladesh Patrick MacCarthy Colorado School of Mines Follow this and additional works at: https://scholarworks.umt.edu/topos Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Smith, Garon C.; Hossain, Md Mainul; and MacCarthy, Patrick, "Chapter 1.1: 3-D Surface Visualization of pH Titration “Topos”: Equivalence Point Cliffs, Dilution Ramps and Buffer Plateaus" (2020). Water Topos: A 3-D Trend Surface Approach to Viewing and Teaching Aqueous Equilibrium Chemistry. 2. https://scholarworks.umt.edu/topos/2 This Book is brought to you for free and open access by the Open Educational Resources (OER) at ScholarWorks at University of Montana. It has been accepted for inclusion in Water Topos: A 3-D Trend Surface Approach to Viewing and Teaching Aqueous Equilibrium Chemistry by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Part 1: Acid-Base Equilibrium Chapter 1.1 3-D Surface Visualization of pH Titration “Topos”: Equivalence Point Cliffs, Dilution Ramps and Buffer Plateaus Garon C. Smith1, Md Mainul Hossain2 and Patrick MacCarthy3 1Department of Chemistry and Biochemistry, The University of Montana, Missoula, MT 59812, Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh, and 2Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401 Abstract 3-D topographic surfaces (“topos”) can be generated to visualize how pH behaves during titration and dilution procedures.
    [Show full text]
  • Atmospheric Chemistry
    Atmospheric Chemistry John Lee Grenfell Technische Universität Berlin Atmospheres and Habitability (Earthlike) Atmospheres: -support complex life (respiration) -stabilise temperature -maintain liquid water -we can measure their spectra hence life-signs Modern Atmospheric Composition CO2 Modern Atmospheric Composition O2 CO2 N2 CO2 N2 CO2 Modern Atmospheric Composition O2 CO2 N2 CO2 N2 P 93bar 1bar 6mb 1.5bar surface CO2 Tsurface 735K 288K 220K 94K Early Earth Atmospheric Compositions Magma Hadean Archaean Proterozoic Snowball CO2 Early Earth Atmospheric Compositions Magma Hadean Archaean Proterozoic Snowball Silicate CO2 CO2 N2 N2 Steam H2ON2 O2 O2 CO2 Additional terrestrial-type atmospheres Jurassic Earth Early Mars Early Venus Jungleworld Desertworld Waterworld Superearth Modern Atmospheric Composition Today we will talk about these CO2 Reading List Yuk Yung (Caltech) and William DeMore “Photochemistry of Planetary Atmospheres” Richard P. Wayne (Oxford) “Chemistry of Atmospheres” T. Gredel and Paul Crutzen (Mainz) “Chemie der Atmosphäre” Processes influencing Photochemistry Photons Protection Delivery Escape Clouds Photochemistry Surface OCEAN Biology Volcanism Some fundamentals… ALKALI METALS The Periodic Table NOBLE GASES One outer electron Increasing atomic number 8 outer electrons: reactive Rows called PERIODS unreactive GROUPS: similar Halogens chemical C, Si etc. have 4 outer electrons properties SO CAN FORM STABLE CHAINS Chemical Structure and Reactivity s and p orbitals d orbitals The Aufbau Method works OK for the first 18 elements
    [Show full text]
  • Analytical I
    ANALYTICAL I Analytical I (unable to fetch text document from uri [status: 0 (UnableToConnect), message: "Error: TrustFailure (Ssl error:1000007d:SSL routines:OPENSSL_internal:CERTIFICATE_VERIFY_FAILED)"]) TABLE OF CONTENTS 1: INTRODUCTION TO ANALYTICAL CHEMISTRY 1.1: WHAT IS ANALYTICAL CHEMISTRY? 1.2: THE ANALYTICAL PERSPECTIVE 1.3: COMMON ANALYTICAL PROBLEMS 1.4: INTRODUCTION TO ANALYTICAL CHEMISTRY (EXERCISES) 1.5: INTRODUCTION TO ANALYTICAL CHEMISTRY (SUMMARY) 2: BASIC TOOLS OF ANALYTICAL CHEMISTRY In the chapters that follow we will explore many aspects of analytical chemistry. In the process we will consider important questions such as “How do we treat experimental data?”, “How do we ensure that our results are accurate?”, “How do we obtain a representative sample?”, and “How do we select an appropriate analytical technique?” Before we look more closely at these and other questions, we will first review some basic tools of importance to analytical chemists. 2.1: MEASUREMENTS IN ANALYTICAL CHEMISTRY 2.2: CONCENTRATION 2.3: STOICHIOMETRIC CALCULATIONS 2.4: BASIC EQUIPMENT 2.5: PREPARING SOLUTIONS 2.6: SPREADSHEETS AND COMPUTATIONAL SOFTWARE 2.7: THE LABORATORY NOTEBOOK 2.8: BASIC TOOLS OF ANALYTICAL CHEMISTRY (EXERCISES) 2.9: BASIC TOOLS OF ANALYTICAL CHEMISTRY (SUMMARY) 3: THE VOCABULARY OF ANALYTICAL CHEMISTRY If you leaf through an issue of the journal Analytical Chemistry, you will soon discover that the authors and readers share a common vocabulary of analytical terms. You are probably familiar with some of these terms, such as accuracy and precision, but other terms, such as analyte and matrix may be less familiar to you. In order to participate in the community of analytical chemists, you must first understand its vocabulary.
    [Show full text]
  • Seepage Chemistry Manual
    RECLAMManagAingTWateIr iOn theNWest Report DSO-05-03 Seepage Chemistry Manual Dam Safety Technology Development Program U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado December 2005 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 12-2005 Technical 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Seepage Chemistry Manual 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Craft, Doug 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Bureau of Reclamation, Technical Service Center, D-8290, PO Box 25007, NUMBER Denver CO 80225 DSO-05-03 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.
    [Show full text]
  • Modeling of Aqueous Equilibrium: Three-Dimensional Trend Surfaces (Topos)
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2014 MODELING OF AQUEOUS EQUILIBRIUM: THREE-DIMENSIONAL TREND SURFACES (TOPOS) Mohammad Mainul Hossain The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Hossain, Mohammad Mainul, "MODELING OF AQUEOUS EQUILIBRIUM: THREE-DIMENSIONAL TREND SURFACES (TOPOS)" (2014). Graduate Student Theses, Dissertations, & Professional Papers. 4413. https://scholarworks.umt.edu/etd/4413 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. MODELING OF AQUEOUS EQUILIBRIUM: THREE-DIMENSIONAL TREND SURFACES (TOPOS) By MOHAMMAD MAINUL HOSSAIN MSc, Chemistry, Jahangirnagar University, Dhaka, Bangladesh, 2000 Dissertation Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry The University of Montana Missoula, MT July 2014 Approved by: J. B. Alexander (Sandy) Ross, Dean of the Graduate School Graduate School and Committee Member Garon C. Smith, Chair Department of Chemistry and Biochemistry Edward Rosenberg Department of Chemistry and Biochemistry Richard
    [Show full text]
  • Chemistry (CHEM) 1
    Chemistry (CHEM) 1 Chemistry (CHEM) CHEM 117. Chemical Concepts and Applications. 3 Credits. Introduction to general and organic chemistry, with applications drawn from the health, environmental, and materials sciences. Prereq or Coreq: MATH 103, MATH 104 or MATH 107 or Math placement. CHEM 117L. Chem Concepts and Applications Lab. 1 Credit. Introduction to general and organic chemistry, with applications drawn from the health, environmental, and materials sciences. Prereq or Coreq: MATH 103, MATH 104, MATH 107 or Math placement. CHEM 121L. General Chemistry I Laboratory. 1 Credit. Matter, measurement, atoms, ions, molecules, reactions, chemical calculations, thermochemistry, bonding, molecular geometry, periodicity, and gases. Prereq or Coreq: MATH 103 or MATH 107 or Math placement. CHEM 121. General Chemistry I. 3 Credits. Matter, measurement, atoms, ions, molecules, reactions, chemical calculations, thermochemistry, bonding, molecular geometry, periodicity, and gases. Prereq or Coreq: MATH 103 or MATH 107 or Math placement. CHEM 122L. General Chemistry II Laboratory. 1 Credit. Intermolecular forces, liquids, solids, kinetics, equilibria, acids and bases, solution chemistry, precipitation, thermodynamics, and electrochemistry. Prereq: CHEM 121L. CHEM 122. General Chemistry II. 3 Credits. Intermolecular forces, liquids, solids, kinetics, equilibria, acids and bases, solution chemistry, precipitation, thermodynamics, and electrochemistry. Prereq: CHEM 121. CHEM 140. Organic Chemical Concepts and Applications. 1 Credit. Introduction to organic chemistry for pre-nursing and other students who need to meet the prerequisite for CHEM 260. CHEM 150. Principles of Chemistry I. 3 Credits. Chemistry for students with good high school preparation in mathematics and science. Electronic structure, stoichiometry, molecular geometry, ionic and covalent bonding, energetics of chemical reactions, gases, transition metal chemistry.
    [Show full text]
  • The Physics and Chemistry of Nebular Evolution 209
    Ciesla and Charnley: The Physics and Chemistry of Nebular Evolution 209 The Physics and Chemistry of Nebular Evolution F. J. Ciesla and S. B. Charnley NASA Ames Research Center Primitive materials in the solar system, found in both chondritic meteorites and comets, record distinct chemical environments that existed within the solar nebula. These environments would have been shaped by the dynamic evolution of the solar nebula, which would have affected the local pressure, temperature, radiation flux, and available abundances of chemical reactants. In this chapter we summarize the major physical processes that would have affected the chemis- try of the solar nebula and how the effects of these processes are observed in the meteoritic record. We also discuss nebular chemistry in the broader context of recent observations and chemical models of astronomical disks. We review recent disk chemistry models and discuss their applicability to the solar nebula, as well as their direct and potential relevance to meteor- itical studies. 1. INTRODUCTION ent facets of disk evolution may have been and discuss what effects this evolution may have had on nebular chemistry. Condensation calculations have been used as the basic (For example, we will discuss the effect of mass transport guides for understanding solar nebula chemistry over the through the solar nebula even though the driving mecha- last few decades. As reviewed by Ebel (2006), condensa- nism for this transport remains an area of ongoing research.) tion calculations provide information about the direction of It should be the goal of future studies and future generations chemical evolution, telling us what the end products would of meteoriticists, astronomers, and astrophysicists to im- be in a system given a constant chemical inventory, infinite prove upon the overviews provided here and make greater time, and ready access of all chemical species to one an- strides toward developing a coherent, unified model for the other.
    [Show full text]
  • RSC Macrocyclic and Supramolecular Chemistry Meeting Th Th 16 - 17 December 2019
    RSC Macrocyclic and Supramolecular Chemistry Meeting th th 16 - 17 December 2019 The organisers than the generous support of the following sponsors: Practical Information Venue The lecture and poster programme will take place in the Sibson building (Lecture Theatre 3). Tea, Coffee and Lunch will be served in the Sibson Foyer on both days. The meeting dinner will be held in the Darwin Conference Suite. Poster sessions will be also be held in the seminar rooms on the group floor of the Sibson Building. Buses The Unibus service (Uni 1 and Uni 2) runs every 8-15 minutes and bus service 4 runs every 30 minutes, all from Canterbury Bus Station (Bay B1). All services stop at the University campus and both railway stations. Alight at the bus turning circle on University Road. Parking Please park cars in the designated Visitor Car Parks – P (see campus map on the next page) to avoid being fined. Taxis The main taxi rank on campus is situated on University Road outside the Venue/ Student Media Centre. Local taxi services provide accessible vehicles and offer both male and female drivers. Local Taxi operators: Canterbury Taxis: 01227 444 444 Longleys Cab Company: 01227 710 777 Cab Line 6: 01227 666 666 Cabco Taxis: 01227 455 455 Programme: RSC Macrocyclic and Supramolecular Chemistry Meeting University of Kent: 16th - 17th December 2019 Event harassment officers: Cally Haynes, Anna McConnell and Claudia Caltagirone Monday 16th December 2019 09.30-10.20 Arrival, registration, poster setup, coffee 10.20-10.30 Welcome and opening remarks Session
    [Show full text]
  • One-Dimensional Transport with Equilibrium Chemistry (OTEQ) — a Reactive Transport Model for Streams and Rivers
    One-Dimensional Transport with Equilibrium Chemistry (OTEQ) — A Reactive Transport Model for Streams and Rivers Techniques and Methods Book 6, Chapter B6 U.S. Department of the Interior U.S. Geological Survey Cover. Upper workings of the Pennsylvania Mine in the headwaters of Peru Creek, Colorado. Photograph by Robert L. Runkel, U.S. Geological Survey, September 2009. One-Dimensional Transport with Equilibrium Chemistry (OTEQ): A Reactive Transport Model for Streams and Rivers By Robert L. Runkel Toxic Substances Hydrology Program Techniques and Methods Book 6, Chapter B6 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1–888–ASK–USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1–888–ASK–USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Runkel, R.L., 2010, One-dimensional transport with equilibrium chemistry (OTEQ) — A reactive transport model for streams and rivers: U.S. Geological Survey Techniques and Methods Book 6, Chapter B6, 101 p. iii Contents Abstract .
    [Show full text]
  • The Effect of Cooperative Learning Methods and Individual
    Educational Policy Analysis and Strategic Research, V 15, N 3, 2020 © 2020 INASED The Effect of Cooperative Learning Methods and Individual Learning Method on Pre- Service Science Teachers’ Sub-Micro Level Conceptual Understanding at Equilibrium Chemistry Seda OKUMUŞ1 Atatürk University Zehra ÖZDİLEK2 Bursa Uludağ University Aysel ARSLAN3 Atatürk University Abstract The purpose of the study is to investigate the effect of cooperative and individual learning methods on the conceptual understanding at sub-micro level of pre-service science teachers (PST) in equilibrium chemistry. The study was conducted on 52 PSTs. A pre-test/posttest non-equivalent quasi- experimental design was used in this study. Data collection instruments used as pre- and posttest as a Module Test (MT) consisted of seven open-ended questions developed by the researchers. Although, participants were identified with a convenience sampling method, each group were randomly assigned. For this reason, three study groups were selected, and each implementation was randomly assigned. Groups was determined as Cooperative Student Teams-Achievement Divisions (STAD, E1) and Reading-Writing-Application (RWA, E2) methods, and Individual Learning (IL, E3) method. The data gathered with the MT were evaluated using content analysis. According to findings, there was not a significance difference among groups related to conceptual understandings at equilibrium chemistry. However, some misconceptions related to topic were decreased. Consequently, when three learning methods are used that it is more likely to misconceptions of the PSTs will be treated, while at the same time micro level understanding will improve. Keywords: Cooperative learning, STAD, RWA, individual learning, equilibrium chemistry, conceptual understanding DOI: 10.29329/epasr.2020.270.19 1Seda Okumuş, Assis.
    [Show full text]