The Dynamic Nexus: Gap Junctions Control Protein Localization and Mobility in Distinct and Surprising Ways Sean Mccutcheon1,3*, Randy F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Western Blotting Guidebook
Western Blotting Guidebook Substrate Substrate Secondary Secondary Antibody Antibody Primary Primary Antibody Antibody Protein A Protein B 1 About Azure Biosystems At Azure Biosystems, we develop easy-to-use, high-performance imaging systems and high-quality reagents for life science research. By bringing a fresh approach to instrument design, technology, and user interface, we move past incremental improvements and go straight to innovations that substantially advance what a scientist can do. And in focusing on getting the highest quality data from these instruments—low backgrounds, sensitive detection, robust quantitation—we’ve created a line of reagents that consistently delivers reproducible results and streamlines workflows. Providing scientists around the globe with high-caliber products for life science research, Azure Biosystems’ innovations open the door to boundless scientific insights. Learn more at azurebiosystems.com. cSeries Imagers Sapphire Ao Absorbance Reagents & Biomolecular Imager Microplate Reader Blotting Accessories Corporate Headquarters 6747 Sierra Court Phone: (925) 307-7127 Please send purchase orders to: Suite A-B (9am–4pm Pacific time) [email protected] Dublin, CA 94568 To dial from outside of the US: For product inquiries, please email USA +1 925 307 7127 [email protected] FAX: (925) 905-1816 www.azurebiosystems.com • [email protected] Copyright © 2018 Azure Biosystems. All rights reserved. The Azure Biosystems logo, Azure Biosystems™, cSeries™, Sapphire™ and Radiance™ are trademarks of Azure Biosystems, Inc. More information about Azure Biosystems intellectual property assets, including patents, trademarks and copyrights, is available at www.azurebiosystems.com or by contacting us by phone or email. All other trademarks are property of their respective owners. -
Fluorescent Proteins Filters, Mirrors and Wavelengths
White Paper Fluorescent Proteins Filters, Mirrors and Wavelengths By Bridget Bishop, Keri Raymond, Simone Rieger, and Paul Held, Applications Dept., BioTek Instruments, Inc. Fluorescent proteins have become a mainstay of today’s biomolecular research. Their small size, ease of use, wavelength variability and no substrate requirement make these genetic elements useful tools to answer countless numbers of experimental questions. Here we describe several of the commonly used technologies associated with fluorescent proteins. In addition an extensive list of fluorescent proteins, associated excitation and emission wavelengths and suggested filters and mirror combinations is provided. Introduction In the past 15 years, green fluorescent protein (GFP) has changed from a virtually unknown protein to a common molecular detection and imaging tool used in multiple scientific fields such as biology, chemistry, genetics, and medicine (Figure 1). The ability to auto-catalyze along with the relatively easy genetic encodability of GFP makes it ideal for minimizing the invasiveness of many procedures used to study biological processes. GFPs and GFP-like proteins (i.e., chromoproteins and other fluorescent proteins) are extremely useful due to their stability and also because their chromophore, (i.e. the protein region responsible for the color of GFP) is formed in an autocatalytic cycling of the 65SYG67 sequence (Figure 2). Because GFP doesn’t require a cofactor it can fluoresce under multiple conditions [1]. Figure 1. Green fluorescence in NIH3T3 cells expressing GFP. Originally discovered in the jellyfishAequorea victoria, GFP is a naturally fluorescent monomeric protein that is composed of 238 amino acids [2]. It is activated in A. Victoria by the naturally occurring bioluminescent protein aequorin, which releases blue light after binding with calcium. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease
Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease Aaron Buckley and Jerrold R. Turner Departments of Pathology and Medicine (Gastroenterology), Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 Correspondence: [email protected] Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions. Tight junction dysfunction has been linked to a variety of local and systemic diseases. Two molecularly and biophysically distinct pathways across the intestinal tight junc- tion are selectively and differentially regulated by inflammatory stimuli. This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions. ucosal surfaces and the epithelial cells that adherens). The tight junction is a selectively Mline them are present at sites where tissues permeable barrier that generally represents the interface directly with the external environment rate-limiting step of paracellular transport. The or internal compartments that are contiguous adherens junction and desmosome provide es- with the external environment. Examples in- sential adhesive and mechanical properties that clude the gastrointestinal tract, the pulmonary contribute to barrier function but do not seal tree, and the genitourinary tract. -
Quinone Oxidoreductase-1 in the Tight Junctions of Colonic Epithelial Cells
BMB Rep. 2014; 47(9): 494-499 BMB www.bmbreports.org Reports Role of NADH: quinone oxidoreductase-1 in the tight junctions of colonic epithelial cells Seung Taek Nam1,#, Jung Hwan Hwang2,#, Dae Hong Kim1, Mi Jung Park1, Ik Hwan Lee1, Hyo Jung Nam1, Jin Ku Kang1, Sung Kuk Kim1, Jae Sam Hwang3, Hyo Kyun Chung4, Minho Shong4, Chul-Ho Lee2,* & Ho Kim1,* 1Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, 2Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, 3Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707, 4Department of Internal Medicine, Chungnam National University, Daejon 301-721, Korea NADH:quinone oxidoreductase 1 (NQO1) is known to be lating the intracellular ratio of NAD and NADH (two funda- involved in the regulation of energy synthesis and metabolism, mental mediators of energy metabolism) in various cell and the functional studies of NQO1 have largely focused on systems. NQO1 is also known as an antioxidant flavoprotein metabolic disorders. Here, we show for the first time that that scavenges reactive oxygen species (ROS) (3). Having pre- compared to NQO1-WT mice, NQO1-KO mice exhibited a viously shown that NQO1 activity is associated with cancer (4) marked increase of permeability and spontaneous inflammation and metabolic disorders, including diabetes and obesity (5), in the gut. In the DSS-induced colitis model, NQO1-KO mice we herein focused on the possible role of NQO1 in the gastro- showed more severe inflammatory responses than NQO1-WT intestinal tract. We report for the first time that the expression mice. -
Defenders and Challengers of Endothelial Barrier Function
REVIEW published: 18 December 2017 doi: 10.3389/fimmu.2017.01847 Defenders and Challengers of Endothelial Barrier Function Nader Rahimi* Department of Pathology, Boston University School of Medicine, Boston, MA, United States Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflam- mation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein inter- Edited by: acting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function Thomas Luft, is moderated by the function of transmembrane receptors and signaling events that act University Hospital Heidelberg, Germany to defend or destabilize it. Here, I highlight recent advances that have provided new Reviewed by: insights into endothelial barrier function and mechanisms involved. Further investigation Luiza Guilherme, of these mechanisms could lead to the discovery of novel therapeutic targets for human University of São Paulo, Brazil diseases associated with endothelial dysfunction. -
Ultrasensitive Detection and Identification of Fluorescent Molecules by FCS: Impact for Immunobiology
Ultrasensitive detection and identification of fluorescent molecules by FCS: Impact for immunobiology Zeno Fo¨ ldes-Papp, Ulrike Demel, and Gernot P. Tilz† Clinical Immunology and Jean Dausset Laboratory, Graz University Medical School and Hospital, Auenbruggerplatz 8, A-8036 Graz, LKH, Austria Communicated by Jean Dausset, Fondation Jean Dausset–Centre d’E´ tude du Polymorphisme Humain, Paris, France, July 3, 2001 (received for review April 9, 2001) An experimental application of fluorescence correlation spec- 503 nm and the fluorescence emission maximum is at 528 nm. troscopy is presented for the detection and identification of The fluorescence emission was measured between 505 and 550 fluorophores and auto-Abs in solution. The recording time is nm. The fluorescent dye Cy5 (monofunctional) was purchased between 2 and 60 sec. Because the actual number of molecules from Amersham Pharmacia Biotech (PA25001). The absorption in the unit volume (confocal detection volume of about 1 fl) is maximum is at 650 nm and the fluorescence emission maximum integer or zero, the fluorescence generated by the molecules is is at 670 nm. The fluorescence emission was measured above 650 discontinuous when single-molecule sensitivity is achieved. We nm. The samples were diluted in bidistilled water (Fresenius, first show that the observable probability, N, to find a single Vienna). fluorescent molecule in the very tiny space element of the unit All FCS measurements were carried out in chambered cover volume is Poisson-distributed below a critical bulk concentration glass (Nalge-Nunc, IL). The measurement volume was 20 l. c*. The measured probability means we have traced, for exam- ple, 5 ؋ 1010 fluorophore molecules per ml of bulk solution. -
Estudio Del Receptor 2 De La Dopamina En Ovario Humano Y Efecto De Su Modulación Sobre El Síndrome De Hiperestimulación Ovárica”
Facultad de Medicina y Odontología Departamento de Pediatría, Obstetricia y Ginecología. “Estudio del receptor 2 de la dopamina en ovario humano y efecto de su modulación sobre el Síndrome de Hiperestimulación Ovárica” Tesis doctoral presentada por: Francisco Manuel Delgado Rosas Dirigida por: Prof. Antonio Pellicer Martínez Dr. Raúl Gómez Gallego Prof. Francisco Gaytán Luna Tutor: Prof. Carlos Simón Vallés 290 F OBSTETRICIA I GINECOLOGIA II Valencia 2012 D. Antonio Pellicer Martínez, Catedrático del Departamento de Pediatría, Obstetricia y Ginecología de la Facultad de Medicina de la Universidad de Valencia. D. Raúl Gómez Gallego, Doctor en Ciencias Biológicas e Investigador contratado por la Fundación IVI. Valencia D. Francisco Gaytán Luna, Catedrático del Departamento de Biología Celular, Fisiología e Inmunología de la Facultad de Medicina de la Universidad de Córdoba. CERTIFICAN: Que el trabajo titulado: “Estudio del receptor 2 de la dopamina en ovario humano y efecto de su modulación sobre el Síndrome de Hiperestimulación Ovárica” ha sido realizado íntegramente por D. Francisco Manuel Delgado Rosas bajo nuestra supervisión. Dicho trabajo está concluido y reúne todos los requisitos para su presentación y defensa como TESIS DOCTORAL ante un tribunal. Y para que conste así a los efectos oportunos, firmamos la presente certificación en Valencia a 22 de Febrero de 2012. Fdo. Prof. Antonio Pellicer Martínez Fdo. Dr. Raúl Gómez Gallego Fdo. Prof. Francisco Gaytán Luna LISTA DE ABREVIATURAS AII: Angiotensina II ACE: Enzima convertidora de -
Cell Imaging Protocols and Applications Guide
|||||||||| 10Cell Imaging PR CONTENTS I. Introduction 1 O II. HaloTag® Technology 1 A. Overview 1 T OCOLS B. Live-Cell Imaging Using the HaloTag® Technology 3 C. Live-Cell Labeling (Rapid Protocol) 3 D. Live-Cell Labeling (No-Wash Protocol) 4 E. Fluorescence Activated Cell Sorting (FACS®) 5 F. Fixed-Cell Labeling Protocol 5 ® G. Immunocytochemistry Using the Anti-HaloTag & Polyclonal Antibody 6 H. Multiplexing HaloTag® protein, other reporters and/or APPLIC Antibodies in Imaging Experiments 7 III. Monster Green® Fluorescent Protein phMGFP Vector 9 IV. Antibodies and Other Cellular Markers 10 A. Antibodies and Markers of Apoptosis 10 B. Antibodies and Cellular Markers for Studying Cell A Signaling Pathways 13 TIONS C. Marker Antibodies 14 D. Other Antibodies 16 V. References 16 GUIDE Protocols & Applications Guide www.promega.com rev. 3/11 |||||||||| 10Cell Imaging PR I. Introduction HaloTag® requires only a single fusion construct that can Researchers are increasingly adding imaging analyses to be expressed, labeled with any of a variety of fluorescent their repertoire of experimental methods for understanding moeties, and imaged in live or fixed cells. O the structure and function of biological systems. New Components of the HaloTag® Technology T methods and instrumentation for imaging have improved The HaloTag® protein is a genetically engineered derivative OCOLS resolution, signal detection, data collection and of a hydrolase that efficiently forms a covalent bond with manipulation for virtually every sample type. Live-cell and the HaloTag® Ligands (Figure 10.1). This 34kDa monomeric in vivo imaging have benefited from the availability of protein can be used to generate N- or C-terminal fusions reagents such as vital dyes that have minimal toxicity, the that can be expressed in a variety of cell types. -
Fluorescent Probes for Nucleic Acid Visualization in Fixed and Live Cells
Molecules 2013, 18, 15357-15397; doi:10.3390/molecules181215357 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Fluorescent Probes for Nucleic Acid Visualization in Fixed and Live Cells Alexandre S. Boutorine 1,*, Darya S. Novopashina 2, Olga A. Krasheninina 2,3, Karine Nozeret 1 and Alya G. Venyaminova 2 1 Muséum National d’Histoire Naturelle, CNRS, UMR 7196, INSERM, U565, 57 rue Cuvier, B.P. 26, Paris Cedex 05, F-75231, France; E-Mail: [email protected] 2 Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentyev Ave., 8, Novosibirsk 630090, Russia; E-Mails: [email protected] (D.S.N.); [email protected] (O.A.K.); [email protected] (A.G.V.) 3 Department of Natural Sciences, Novosibirsk State University, Pirogova Str., 2, Novosibirsk 630090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-1-40-79-36-96; Fax: +33-1-40-79-37-05. Received: 23 September 2013; in revised form: 20 November 2013 / Accepted: 5 December 2013 / Published: 11 December 2013 Abstract: This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. -
Novel Light Microscopy Imaging Techniques in Nephrology Robert L
Novel light microscopy imaging techniques in nephrology Robert L. Bacallaoa,b, Weiming Yua, Kenneth W. Dunna and Carrie L. Phillipsa,b Purpose of review Introduction As more genomes are sequenced, the difficult task of Recent technical advances have revolutionized light characterizing the gene products of these genomes becomes microscopic imaging. The advances have made possible the compelling mission of biological sciences. The melding of observation of cellular processes that normally are whole organ physiology with transgenic animal models, gene beyond the resolution limit of traditional light micro- transfer methods and RNA silencing promises to form the next scopes. New optical arrangements allow investigators to wave of scientific inquiry. A host of new microscopy imaging acquire biophysical data, explore complex tissue organi- technologies enables researchers to directly visualize gene zation and create three-dimensional reconstructions. products, probe alterations in cell function in transgenic animals These achievements are feasible due to improvements and map tissue organization. This review will describe these in computer speed, detector sensitivity, fluorescent microscopy imaging techniques, their advantages, imaging probes and optical engineering. Application of these properties and limitations. new technologies to problems specific to areas of interest Recent findings to the nephrology community presents both opportu- New optical methods such as two-photon confocal microscopy, nities and challenges. The challenges arise from the fluorescence resonance energy transfer, and total internal unique anisotropy of the kidney for light in the visible fluorescence reflectance microscopy are increasingly being spectrum. Although many tissues have a homogeneous applied to extend our understanding of whole organ and renal refractive index that simplifies image acquisition, fluor- epithelial function. -
Tight Junction-Based Epithelial Microenvironment and Cell Proliferation
Oncogene (2008) 27, 6930–6938 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc REVIEW Tight junction-based epithelial microenvironment and cell proliferation S Tsukita1, Y Yamazaki, T Katsuno, A Tamura and S Tsukita2 Laboratory of Biological Science, Graduate School of Frontier Biosciences/Graduate School of Medicine, Osaka University, Suita, Osaka, Japan Belt-like tight junctions (TJs), referred to as zonula bodies of multicellular organisms. The sheet-like divi- occludens, have long been regarded as a specialized sions allow diffusion barrier formation and selective differentiation of epithelial cell membranes. They are permeation of substances and ions (permselectivity), required for cell adhesion and paracellular barrier func- both excluding unnecessary or toxic molecules and tions, and are now thought to be partly involved in fence including necessary components to maintain home- functions and in cell polarization. Recently, the molecular ostasis. The combination of the belt-like adherens bases of TJs have gradually been unveiled. TJs are junctions (AJs) and tight junctions (TJs) have important constructed by TJ strands, whose basic frameworks are functions in the formation of epithelial cell sheets and composed of integral membrane proteins with four also in the formation of paracellular permselective transmembrane domains, designated claudins. The claudin barriers through their functions as septa (Mitic and family is supposedly composed of at least 24 members in Anderson, 1998; Tsukita and Furuse, 1999; Hartsock mice and humans. Other types of integral membrane and Nelson, 2008). Paracellular barrier functions with proteins with four transmembrane domains, namely occlu- permselectivity are unique to the epithelial cell system din and tricellulin, as well as the single transmembrane and regulate the internal homeostasis of ions and solutes proteins, JAMs (junctional adhesion molecules)and CAR in the body.