The Rise of Predators

Total Page:16

File Type:pdf, Size:1020Kb

The Rise of Predators The rise of predators Susannah Porter Department of Earth Science, University of California−Santa Barbara, Santa Barbara, California 93106, USA Despite their abundance, diversity, and importance today, organisms Cryogenian Ediacaran C Mineralogy with mineralized skeletons are a relatively recent introduction. For the fi rst 800 Ma 700 600 phosphatic three billion years of its history, life was soft-bodied, inducing mineral- K? SMG siliceous scale microfossils ized structures passively, if at all. Beginning ca. 550 Ma, however, more calcareous ? Melicerion poikilon than two dozen clades—primarily animal, but also protistan—indepen- ? Tenuocharta cloudii agglutinated dently evolved mineralized skeletons within a geologically short interval ? sponge-like fossils Namacalathus of time (Fig. 1; Bengtson, 1992). Now a new report by Cohen et al. (2011; Cloudina p. 539 in this issue of Geology) describing beautifully intricate scale-like A BCNamapoikia microfossils from the Fifteenmile Group, Yukon Territory, provides defi ni- anabaritids hexactinellid sponges tive evidence for mineralized skeletons some 150–250 m.y. earlier. These radiolarians scale-like microfossils were fi rst reported over two decades ago (Allison foraminifera? chaetognaths and Hilgert, 1986), but neither their age nor their mineralogy were well cap-shaped fossils constrained. Work by Cohen and her colleagues has now shown that these coeloscleritophorans D E hyolithelminths scales (which perhaps enveloped a single-celled green alga) are between hyoliths ca. 717 and ca. 812 Ma in age and composed of primary phosphate (Mac- tommotiids/brachiopods donald et al., 2010; Cohen et al., 2011). This adds to earlier suggestive cambroclaves conulariids evidence for mineralization at this time: the ca. 770–742 Ma vase-shaped molluscs microfossil (VSM) Melicerion poikilon, interpreted on the basis of tapho- paracarinachitids coleolids nomic models to be a euglyphid amoeba whose organic-walled test was archaeocyaths embedded with mineralized scales, possibly siliceous (Figs. 1B and 1C; calcarean sponges F radiocyaths Porter and Knoll, 2000; Porter et al., 2003); the mid-Neoproterozoic Ten- bradoriids uocharta cloudii, a multicellular, sheet-like fossil whose calcareous cell G byroniids cribricyaths walls may refl ect primary (Horodyski and Mankiewicz, 1990) or early hydroconozoans diagenetic (Knoll, 2003) mineralization; and ca. 650 Ma millimeter- to echinoderms centimeter-scale asymmetric bodies permeated with a network of canals lobopods mobergellans and interpreted to be sponge-like organisms perhaps lightly mineralized paiutiids with carbonate (Maloof et al., 2010b). trilobites Numerous hypotheses have been posed to explain the sudden appear- Figure 1. Independent origins of mineralized skeletons during the ance of skeletons in the latest Ediacaran and early Cambrian (e.g., Wood, Cryogenian, Ediacaran, and early Cambrian (through the Atdaba- 2011), but the most widely favored is that they evolved for defense against nian) and images of selected skeletons (A−G). Ediacaran and Cam- macrophagous predators—animals capable of consuming large prey brian occurrences from Bengtson (1992), Maloof et al. (2010a), and Porter (2010). See text for Cryogenian references. K?—possible (e.g., Bengtson, 1994). Animals most likely weren’t around in the mid- Kaigas glaciation; S—Sturtian glaciation; M—Marinoan glaciation; Neoproterozoic, but single-celled predators were (herein the term preda- G—Gaskiers glaciation. Age constraints on glaciations are from tor refers to eukaryotes that eat other living organisms, including algae). Macdonald et al. (2010, and references therein). A: The scale micro- Given the strong selective infl uence protistan predators have on micro- fossil Characodictyon. B: The vase-shaped microfossil Melicerion bial communities today (e.g., Smetacek, 2001; Tillmann, 2004), and that poikilon, interpreted to be a euglyphid amoeba. C: Test of the mod- ern euglyphid amoeba Euglypha tuberculata. D: Silicifi ed tubes of the primary function of many protistan skeletons seems to be for defense Cloudina carinata. E: Chancelloriid sclerite (Coeloscleritophora), (e.g., Hamm et al., 2003; Tillmann, 2004), it is reasonable to think that one of many that covered the animal’s body like the spines of a cac- mineralized skeletons may have appeared ca. 750 Ma as a response to tus. F: Sclerite of the cambroclave Cambroclavus fangxianensis, protistan predation. Single-celled predators obtain their food by engulfi ng part of an array of interlocking sclerites. G: Internal mold of the mol- lusc Mellopegma georginense. Image in A is courtesy of P. Cohen; or piercing their prey, and the (modest) diversity of skeletons in mid-Neo- images in B, C, and E are reprinted with permission from the Journal proterozoic rocks might refl ect a comparable diversity of predation styles. of Paleontology; image in D is courtesy of I. Cortijo; image in F is Scale microfossils, in particular Characodictyon, with its central, pronged courtesy of J. Moore. Scale bar equals 5 µm in A, 50 µm in B, 35 µm shaft (Fig. 1A), might have restricted the ability of single-celled predators in C, 10 mm in D, 100 µm in E, 150 µm in F, and 500 µm in G. to engulf the cell by effectively increasing its size, and VSM tests—both those with mineralized scales and those that are entirely organic-walled— might have deterred predators that used pseudopods to pierce their prey algae) involved the host cell engulfi ng another cell. The absence of pro- (e.g., Old, 1978). The earliest direct fossil evidence for protistan predators tistan predators in older rocks probably refl ects (at least in part) the lim- are the VSMs themselves (Porter et al., 2003), as well as biomarkers of ited preservation potential of many protozoan groups. However, it is also the same age thought to be derived from ciliates (Summons et al., 1988). possible that the appearance of protistan skeletons in the mid-Neoprotero- Fossils of eukaryotic algae as old as 1200 Ma (Butterfi eld, 2000) provide zoic refl ects a shift in the taxonomic contributors to primary productivity indirect evidence for the presence of protistan predators much earlier, how- (Knoll, 2007). Both biomarker ratios and body fossils suggest increasing ever, as the origin of plastids (the sites of photosynthesis in eukaryotic dominance of eukaryotic algae from the early Mesoproterozoic to the late © 2011 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. GEOLOGY,Geology, June June 2011; 2011 v. 39; no. 6; p. 607–608; doi: 10.1130/focus062011.1. 607 Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/39/6/607/3541164/607.pdf by guest on 29 September 2021 Neoproterozoic, perhaps caused by a change from euxinic, nitrogen-poor shells provide effective mechanical protection: Nature, v. 421, p. 841–843, oceans to increasingly oxic oceans richer in nitrogen (Knoll, 2007). Pro- doi:10.1038/nature01416. tistan predators thus may have been common in Mesoproterozoic oceans, Horodyski, R.J., and Mankiewicz, C., 1990, Possible Late Proterozoic skeletal algae from the Pahrump Group, Kingston Range, southeastern California: but primarily feeding on bacteria. As eukaryotic algae began to increase American Journal of Science, v. 290-A, p. 149–169. in abundance, however, more protistan predators would have become Javaux, E.J., and Marshal, C.P., 2006, A new approach in deciphering early pro- adapted to eating eukaryotes, and eukaryotic algae would have responded tist paleobiology and evolution: Combined microscopy and microchemistry by evolving a variety of defenses, including skeletons. The ability to engulf of single Proterozoic acritarchs: Review of Palaeobotany and Palynology, v. 139, p. 1–15, doi:10.1016/j.revpalbo.2006.01.005. large prey (eukaryotes tend to be much larger than bacteria) also meant that Knoll, A.H., 2003, Biomineralization and evolutionary history, in Dove, P.M., protistan predators would have had the capacity to consume other protistan et al., eds., Biomineralization: Reviews in Minerology and Geochemistry, predators, which in turn would have evolved defenses of their own (or sto- v. 54, p. 329–356. len them from their prey: some modern testate ameobae incorporate into Knoll, A.H., 2007, The geological succession of primary producers in the oceans, in their own tests mineralized scales they acquired from the tests of their prey Falkowski, P.G., and Knoll, A.H., eds., The Evolution of Primary Pro- ducers in the Sea: Burlington, Massachusetts, Elsevier Academic Press, [e.g., Ogden, 1991]). Some protistan skeletons could also have evolved p. 133–163. to function in predation; some radiolarians, for example, use their spiny Leander, B.S., 2008, A hierarchical view of convergent evolution in microbial skeletons both for protection and for mechanical support as they extend eukaryotes: The Journal of Eukaryotic Microbiology, v. 55, p. 59–68, pseudopods to ensnare prey (Anderson, 1983). The convergent evolution doi:10.1111/j.1550-7408.2008.00308.x. Macdonald, F.A., Schmitz, M.D., Crowley, J.L., Roots, C.F., Jones, D.S., Maloof, of macroscopic size and multicellularity in numerous clades in the early A.C., Strauss, J.V., Cohen, P.A., Johnston, D.T., and Schrag, D.P., 2010, Ediacaran (e.g., Yuan et al., 2011; Xiao and Lafl amme, 2009) could also Calibrating the Cryogenian: Science, v. 327, p. 1241–1243, doi:10.1126/ refl ect increasing predation pressure by protists, as large size is one form science.1183325. of defense against
Recommended publications
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Neoproterozoic to Cambrian Palaeoclimatic Events in Southwestern Gondwana$
    CHAPTER 11.1 Neoproterozoic to Cambrian Palaeoclimatic Events in Southwestern Gondwana$ A.J. Kaufman1, A.N. Sial2, H.E. Frimmel3 and A. Misi4 Contents 11.1.1. Constructing a Global Record of Neoproterozoic Palaeoclimatic Variations 369 11.1.2. Age Constraints for Cryogenian Glacial Deposits in Southwestern Gondwana 371 11.1.2.1. Sturtian 371 11.1.2.2. Marinoan 372 11.1.2.3. Gaskiers 372 11.1.3. Chemostratigraphic Records of Palaeoclimatic Events in Southwestern Gondwana 373 11.1.3.1. Carbon isotopes 373 11.1.3.2. Strontium isotopes 373 11.1.3.3. Isotopic observations of pre-Sturtian (?) ice ages in southwestern Gondwana 374 11.1.3.4. Lithologic and isotopic observations of Sturtian ice ages in southwestern Gondwana 376 11.1.3.5. Lithologic and isotopic observations of Marinoan ice ages in southwestern Gondwana 377 11.1.3.6. Lithologic and isotopic observations of Gaskiers ice ages in southwestern Gondwana 381 11.1.3.7. Palaeoclimatic change at the Ediacaran-Cambrian boundary and beyond 382 11.1.4. A Synthesis of the Palaeoclimatic Puzzle from Southwestern Gondwana 383 11.1.4.1. The Hu¨ttenberg positive carbon isotope anomaly 383 11.1.4.2. Strontium isotope correlations of cap carbonates in southwestern Gondwana 386 11.1.5. Conclusions 388 Acknowledgements 388 11.1.1. Constructing a Global Record of Neoproterozoic Palaeoclimatic Variations Since publication of the ‘Snowball Earth’ hypothesis 2 initially by Kirschvink (1992a) based on an apparently robust equatorial palaeolatitude for glacial strata in the Neoproterozoic Elatina Formation of Australia, and later by Hoffman et al.
    [Show full text]
  • 765–740 Ma Kansuki-Mwashya Platform Succession in the Tenke-Fungurume Mining District, Democratic Republic of the Congo
    GEOLOGICA BELGICA (2020) 23/1-2: 69-85 Sedimentary evolution and stratigraphy of the ~765–740 Ma Kansuki-Mwashya platform succession in the Tenke-Fungurume Mining District, Democratic Republic of the Congo PASCAL MAMBWE1,2, FRANCK DELPOMDOR3*, SÉBASTIEN LAVOIE2, PHILIPPE MUKONKI4, JACQUES BATUMIKE4,5 & PHILIPPE MUCHEZ1 1 KU Leuven, Department of Earth & Environmental Sciences, Celestijnenlaan 200E, B-3001 Leuven, Belgium; mambwegeo@ gmail.com, [email protected]. 2 Tenke Fungurume Mining S.A., Department of Exploration Geology, Route de l’Aéroport, Bâtiment TFM, Commune Annexe, Lubumbashi, Democratic Republic of the Congo; [email protected]. 3 Illinois State Geological Survey, University of Illinois at Urbana-Champaign, 615 E. Peabody Dr, Champaign, IL 61820, United States of America; [email protected]. 4 University of Lubumbashi, Department of Geology, 14 Kassapa Road, Lubumbashi, Democratic Republic of the Congo; [email protected], [email protected]. 5 ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia. * corresponding author. ABSTRACT. The origin of the Mwashya Conglomerate at the base of the Mwashya Subgroup in the Lufilian Belt is uncertain since it is considered as either a tectonic or as a sedimentary breccia. At Tenke Fungurume Mining District (TFMD) in the Democratic Republic of the Congo, the Mwashya Conglomerate is marked by an iron-bearing polymictic conglomerate embedded between the Kansuki and Kamoya formations. In this paper, the Kansuki-Mwashya platform succession at TFMD was investigated to shed light on the origin of this conglomerate, the depositional evolution and the tectonostratigraphic framework of the platform.
    [Show full text]
  • GRAND CANYON GUIDE No. 6
    GRAND CANYON GUIDE no. 6 ... excerpted from Grand Canyon Explorer … Bob Ribokas AN AMATEUR'S REVIEW OF BACKPACKING TOPICS FOR THE T254 - EXPEDITION TO THE GRAND CANYON - MARCH 2007 Descriptions of Grand Canyon Layers Grand Canyon attracts the attention of the world for many reasons, but perhaps its greatest significance lies in the geologic record that is so beautifully preserved and exposed here. The rocks at Grand Canyon are not inherently unique; similar rocks are found throughout the world. What is unique about the geologic record at Grand Canyon is the great variety of rocks present, the clarity with which they're exposed, and the complex geologic story they tell. Paleozoic Strata: Kaibab depositional environment: Kaibab Limestone - This layer forms the surface of the Kaibab and Coconino Plateaus. It is composed primarily of a sandy limestone with a layer of sandstone below it. In some places sandstone and shale also exists as its upper layer. The color ranges from cream to a greyish-white. When viewed from the rim this layer resembles a bathtub ring and is commonly referred to as the Canyon's bathtub ring. Fossils that can be found in this layer are brachiopods, coral, mollusks, sea lilies, worms and fish teeth. Toroweap depositional environment Toroweap Formation - This layer is composed of pretty much the same material as the Kaibab Limestone above. It is darker in color, ranging from yellow to grey, and contains a similar fossil history. Coconino depositional environment: Coconino Sandstone - This layer is composed of pure quartz sand, which are basically petrified sand dunes. Wedge-shaped cross bedding can be seen where traverse-type dunes have been petrified.
    [Show full text]
  • NORTHERN ARIZONA PROVINCE (024) by W.C
    NORTHERN ARIZONA PROVINCE (024) By W.C. Butler INTRODUCTION This province covers about 59,000 sq mi, mostly in the southwestern part of the Colorado Plateau. Significant geologic features include the Grand Canyon, Kaibab Arch, Mogollon Highlands transition zone, Monument Uplift, Defiance Uplift, Black Mesa Basin, Holbrook Basin, and southern edges of the Kaiparowits and Blanding Basins. The stratigraphic section shown for northeastern Arizona has demonstrated the highest petroleum potential in Arizona. See Wilson (1962), Butler (1988a), and Dickinson (1989) for synopses of the province's geology and evolution. The lithologically and structurally complex basement of the Colorado Plateau area evolved from northwest-younging Proterozoic terranes sequentially accreted onto the Archean craton. As much as 12,000 ft of Middle and Late Proterozoic strata is preserved in possible rift-aulacogen depositional settings in central Arizona. Thick, unmetamorphosed, organic-rich Late Proterozoic strata deposited in backarc basins or continental lakes of north-central Arizona and south-central Utah have good petroleum potential. The plateau area, as a passive Paleozoic plate margin and buffered Mesozoic retro-arc platform, has been remarkably tectonically stable during Phanerozoic time. The area is characterized by blanket Paleozoic strata, as much as 6,000 ft thick, consisting of mostly shallow marine clastics and carbonates showing numerous disconformities. These strata accumulated during transgressions and regressions from both the northwest and southeast, onlapping and thinning toward the trans-continental arch – a northeast-trending positive area extending from the northeast into central Arizona. Convergence between North and South American tectonic plates, with reactivation of basement blocks, during the late Paleozoic created the plateau's fault-bounded basins and uplifts.
    [Show full text]
  • 28Th Debeers Alex. Du Toit Memorial Lecture, 2004. on Cryogenian (Neoproterozoic) Ice-Sheet Dynamics and the Limitations of the Glacial Sedimentary Record Paul F
    PAUL F. HOFFMAN 557 28th DeBeers Alex. Du Toit Memorial Lecture, 2004. On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record Paul F. Hoffman Department of Earth and Planetary Sciences Harvard University, 20 Oxford Street, Cambridge, MA 02138, U.S.A. e-mail: [email protected] © 2005 December Geological Society of South Africa ABSTRACT The snowball earth hypothesis is a unified theory accounting for the global distribution of Cryogenian (roughly 720 to 635 Ma) glacial and glacial marine deposits, their global synchroneity demonstrated by chemostratigraphy, and their close association with thick carbonate strata and sedimentary iron deposits (banded iron formation) in certain areas. It postulates that on two separate occasions, around 710 and 640 Ma, the ocean froze over from pole to pole for long periods (i.e., millions of years). The postulate has been widely criticized as being incompatible with the glacial sedimentary record indicating the former existence of fast-moving wet-base ice and open proglacial waters. The younger Cryogenian glaciation in northern Namibia presents an excellent opportunity to investigate the sedimentary record. The area was then a vast shallow-water carbonate platform situated in the tropics or subtropics. The platform had a sharply- defined southern edge, beyond which a stratigraphically tapered foreslope wedge was descending into deep waters of the northern Damara extended terrain. The platform and foreslope were undergoing broad regional subsidence with no local structural deformation at the time of the younger glaciation. The Fransfontein Ridge (a present physiographic feature) is a simple homocline exposing a continuous 60-km-long section of the foreslope wedge.
    [Show full text]
  • Insights Into Chemical Weathering of the Upper Continental Crust from the Geochemistry of Ancient Glacial Diamictites
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 176 (2016) 96–117 www.elsevier.com/locate/gca Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites Su Li a,b,⇑, Richard M. Gaschnig b,2, Roberta L. Rudnick b,1 a School of Geosciences, China University of Petroleum (East China), Qingdao 266555, China b Geology Department, University of Maryland, College Park, MD 20742-421, USA Received 12 June 2015; accepted in revised form 12 December 2015; Available online 21 December 2015 Abstract Glacial diamictites, with ages ranging from 2900 to 0.01 Ma, record the changing composition of the upper continental crust through time (Gaschnig et al., 2014). Li concentrations and isotopic compositions, combined with Pb isotopic compo- sitions, chemical index of alteration (CIA) values and relative Sr concentrations are used here to assess the degree of chemical weathering recorded in these deposits and the origin of this signature. The d7Li values of most of the diamictites (ranging from À3.9 to +3.5) are lower than those of mantle-derived basalts (+3.7 ± 2, 2r), and the low d7Li values are generally accompa- nied by high CIA and low Sr/Sr* values (or Sr depletion factor, Sr/Sr* = Sr/(Ce*Nd)0.5), reflecting a weathering signature that may have derived from pre-depositional, syn-depositional, and/or post-depositional weathering processes. Profiles through three glacial diamictites with relatively high CIA (a fresh road cut of the Neoproterozoic Nantuo Formation (CIA = 62– 69), and drill cores through the Paleoproterozoic Timeball Hill (CIA = 66–75) and Duitschland Formations (CIA = 84– 91)) do not show evidence of significant post-depositional weathering.
    [Show full text]
  • Toward a Neoproterozoic Composite Carbon-Isotope Record
    Toward a Neoproterozoic composite carbon-isotope record Galen P. Halverson† Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138-2902, USA, and Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Building 54-1126, Cam- bridge, Massachusetts 02139, USA Paul F. Hoffman Daniel P. Schrag Adam C. Maloof‡ Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138-2902, USA A. Hugh N. Rice Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria ABSTRACT framework for a new, high-resolution model Various workers have compiled composite carbon-isotope record for the Neoproterozoic !13C records for the Neoproterozoic (e.g., Hayes Glacial deposits of Sturtian and Marinoan comprising new !13C (carbonate) data from et al., 1999; Jacobsen and Kaufman, 1999; Wal- age occur in the well-studied Neoproterozoic Svalbard (Akademikerbreen Group) and ter et al., 2000), but like attempts to construct successions of northern Namibia, South Aus- Namibia (Otavi Group) and data in the lit- 87Sr/86Sr records for this time period (Melezhik tralia, and northwestern Canada. In all three erature from Svalbard, Namibia, and Oman. et al., 2001), these compilations have suffered regions, the Marinoan glaciation is presaged A new U-Pb zircon age of 760 ± 1 Ma from from low sample density, limited availability by a large negative !13C anomaly, and the cap an ash bed in the Ombombo Subgroup in of chronostratigraphically well-constrained carbonates to both glacial units share a suite Namibia provides the oldest direct time-cali- data, and the consequent dependence on many of unique sedimentological, stratigraphic, bration point in the compilation, but the time tenuous correlations.
    [Show full text]
  • Bibliography of Precambrian Glaciation (1871 to Present) (Total; Pprot-Archean; Ediacaran; Cryogenian; Geophys.; Geochem.; Geobiol.; Geol.)
    Bibliography of Precambrian Glaciation (1871 to present) (Total; PProt-Archean; Ediacaran; Cryogenian; Geophys.; Geochem.; Geobiol.; Geol.) 2020: 16 3 1 12 1 4 6 Burzinski, G., Dececchi, T.A., Narbonne, G.M., Dalrymple, R.W. 2020. Cryogenian Aspidella from northwestern Canada. Precambrian Research 000, 000-000. Del Cortona, A., Jackson, C.J., Bucchini, F., Van Bel, M., D’hondt, S., Škaloud, P., Delwiche, C.F., Knoll, A.H., Raven, J.A., Verbruggen, H., Vandepoele, K., De Clerck, O., Leliaert, F. 2020. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences 117, 2551-2559. Erickson, T.M., Kirkland, C.L., Timms, N.E., Cavosie, A.J., Davison, T.M. 2020. Precise radiometric age establishes Yarrabubba, Western Australia, as Earth’s oldest recognized meteorite impact structure. Nature Communications 00, 000-000. Hallmann, C., Nettersheim, B.J., Brocks, J.J., Schwelm, A., Hope, J.M., Not, F., Lomas, M., Schmidt, C., Schiebel, R., Nowack, E.C.M., De Decker, P., Pawlowski, J., Bowser, S.S., Bobrowskiy, I., Zonneveld, K., Stuhr, M. 2020. Reply to: Sources of C30 steroid biomarkers in Neoproterozoic-Cambrian rocks and oils. Nature Ecology & Evolution 4, 37-39. Hiatt, E.E., Pufahl, P.K., Guimarães da Silva, L. 2020. Iron and phosphorus biochamical systems and the Cryogenian−Ediacaran transition, Jacadigo basin, Brazil: Implications for the Neoproterozoic Oxygenation Event. Precambrian Research 337, 105533. Lan, Z.W., Huyskens, M.H., Lu, K., Li, X.H., Zhang, G.Y., Lu, D.B., Yin, Q.Z. 2020. Toward refining the onset age of Sturtian glaciation in South China.
    [Show full text]
  • Snowball Earth
    Snowball Earth The Snowball Earth hypothesis proposes that during one or more of Earth's icehouse climates, Proterozoic snowball periods (millions of years) Earth's surface became entirely or nearly entirely Baykonurian frozen, sometime earlier than 650 Mya (million -550 — years ago) during the Cryogenian period. – ← Gaskiers Proponents of the hypothesis argue that it best -600 — explains sedimentary deposits generally regarded Ediacaran as of glacial origin at tropical palaeolatitudes and – other enigmatic features in the geological record. Marinoan[1] -650 — Opponents of the hypothesis contest the implications of the geological evidence for global – Cryogenian Sturtian[1] glaciation and the geophysical feasibility of an -700 — ice- or slush-covered ocean[3][4] and emphasize the difficulty of escaping an all-frozen condition. – A number of unanswered questions remain, -750 — Kaigas? including whether the Earth was a full snowball, – or a "slushball" with a thin equatorial band of open (or seasonally open) water. -800 — The snowball-Earth episodes are proposed to have – occurred before the sudden radiation of -850 — multicellular bioforms, known as the Cambrian Tonian – explosion. The most recent snowball episode may have triggered the evolution of multicellularity. -900 — Another, much earlier and longer snowball – episode, the Huronian glaciation, which would have occurred 2400 to 2100 Mya, may have been -950 — triggered by the first appearance of oxygen in the – atmosphere, the "Great Oxygenation Event". -1000 — Neoproterozoic era Snowball Earth Estimate of Proterozoic glacial periods.[2][1] Contents Dating of pre-Gaskiers glaciations is History uncertain. As for the Kaigas, its very existence is doubted by some. An earlier and Evidence for ancient glaciation mounts longer possible snowball phase, the Huronian Global glaciation proposed glaciation, is not shown.
    [Show full text]
  • Chapter 5 Chemical Sediments Associated with Neoproterozoic Glaciation: Iron Formation, Cap Carbonate, Barite and Phosphorite
    Chapter 5 Chemical sediments associated with Neoproterozoic glaciation: iron formation, cap carbonate, barite and phosphorite PAUL F. HOFFMAN1,2 *, FRANCIS A. MACDONALD1 & GALEN P. HALVERSON3,4 1Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA, 02138, USA 2School of Earth and Ocean Sciences, University of Victoria, Box 1700, Victoria, BC V6W 2Y2, Canada 3School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia 4Present address: Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montre´al, PQ H3A 2K6, Canada *Corresponding author (e-mail: [email protected]) Abstract: Orthochemical sediments associated with Neoproterozoic glaciation have prominence beyond their volumetric proportions because of the insights they provide on the nature of glaciation and the records they hold of the environment in which they were preci- pitated. Synglacial Fe formations are mineralogically simple (haematite jaspilite), and their trace element spectra resemble modern sea- water, with a weaker hydrothermal signature than Archaean–Palaeoproterozoic Fe formations. Lithofacies associations implicate subglacial meltwater plumes as the agents of Fe(II) oxidation, and temporal oscillations in the plume flux as the cause of alternating Fe- and Mn-oxide deposits. Most if not all Neoproterozoic examples belong to the older Cryogenian (Sturtian) glaciation. Older and younger Cryogenian (Marinoan) cap carbonates are distinct. Only the younger have well-developed transgressive cap dolostones, which were laid down during the rise in global mean sea level resulting from ice-sheet meltdown. Marinoan cap dolostones have a suite of unusual sedimentary structures, indicating abnormal palaeoenvironmental conditions during their deposition. Assuming the melt- down of ice-sheets was rapid, cap dolostones were deposited from surface waters dominated by buoyant glacial meltwater, within and beneath which microbial activity probably catalysed dolomite nucleation.
    [Show full text]
  • Hartwig Egbert Erwin Frimmel
    Hartwig E. Frimmel: PUBLICATIONS 1. Research articles in international peer-reviewed journals 2015 [103] Frimmel, H.E., Hennigh, Q., 2015, First whiffs of atmospheric oxygen triggered onset of crustal gold cycle. Mineral. Deposita, 50, 5-23. [102] Grosch, E.G., Frimmel, H.E., Abu-Alam, T., Košler, J., Major crustal reworking of the Kaapvaal- Grunehogna craton margin during Gondwana assembly and the evolution of Western Dronning Maud Land, Antarctica. J. Geol. Soc. London, in press. [101] Prakash, D., Deepak, Chandra Singh, P., Singh, C.K., Arima, M., Frimmel, H.E., 2015, High – pressure and ultrahigh-temperature metamorphism at Diguva Sonaba, Eastern Ghats Mobile Belt (India): new constraints from phase equilibria modelling. Geol. Mag., 152, 316-340. [100] Spiegl, T., Paeth, H., Frimmel, H.E., 2015, Evaluating key parameters for the initiation of a Neoproterozoic Snowball Earth with a single Earth System Model of intermediate complexity. Earth Planet. Sci. Lett., 415, 100-110. [99] Will, T.M., Lee, S.-H., Schmädicke, E., Frimmel, H.E., Okrusch, M., 2015, The location of the Rheic Suture in Central Europe: New evidence from ocean ridge, intraplate and arc-derived metabasaltic rocks. Lithos, 220-223, 23-42. 2013 -2014 [98] Donadel, A.K., Hoefer-Oellinger, G., Frimmel, H.E., Schrott, L., 2014, Geological evolution of post- glacial river mouths – Saalach and Königsseeache (Austria). Austrian J. Earth Sci., 107, 60-73. [97] Frimmel, H. E., 2014, A giant Mesoarchean crustal gold-enrichment episode: Possible causes and consequences for exploration: Society of Economic Geologists, Special Publication, 18, 209-234. [96] Frimmel, H.E., Schedel, S., Brätz, H., 2014, Uraninite chemistry as forensic tool for provenance analysis.
    [Show full text]