A New Species of Xanthosoma from Ecuador

Total Page:16

File Type:pdf, Size:1020Kb

A New Species of Xanthosoma from Ecuador A NEW SPECIES OF XANTHOSOMA FROM ECUADOR MICHAEL MADISON The Marie Selby Botanical Gardens, 800 S. Palm Ave., Sarasota, Fla. 33577 The genus Xanthosoma Schott 12 mm longa; pars sterilis candida, 3 mm includes about 45 species of terres­ crassa, 1 cm longa ; pars staminata candida, trial herbs native to the wet tropical 4-6 mm crassa, 3 cm longa. regions of the new world. The huge sagittate leaves of many species TYPE: Ecuador, Provo Pastaza, VICI­ have earned them the common nity of Puyo, collected 1977 by name of 'elephant ears,' which is Ron Weeks, cultivated at his nur­ also applied to the related old-world sery in Miami, Florida, flowered in genera Colocasia and Alocasia. cultivation March 1978, Madison Several species of Xanthosoma 4216 (SEL, isotype to be distribut­ are widely cultivated as food plants ed MO). in tropical regions, either for their ETYMOLOGY: The name honors Ron starchy edible tubers or for the Weeks, aroid grower of Miami, Flor­ young leaves, which are used as ida and founding member of the In­ greens. Several other species, such ternational Aroid Society, who col­ as X. lindenii (Andre) Engler, are lected the species. horticulturally desirable ornamen­ tals but are not widely grown. The selective forces leading to During a recent visit to the evolutionary diversification in Xan­ Miami nursery of aroid grower Ron thosoma are not well understood. Weeks, I was given a plant of Xan­ The species apparently share an un­ thosoma he had collected in Ecua­ specialized pollination syndrome dor, and which proves to be an un­ involving ruteline scarab beetles as described species. pollinators. Fruits, though hardly known, are evidently also similar from one species to the next, con­ Xanthosoma weeksii Madison, sp. sisting of a mass of pulpy orange nov. berries containing minute seeds which are dispersed by a variety of Species foliis glabris ovatis haud cordatis birds, mammals, and insects. One a congeneribus diversa. apparent area of ecological speciali­ Herba terrestris ad 60 cm alta. Caudex zation is in the habitat preferences hypogaeus, carnosus, 3-4 cm crassus, of the species; some are weedy spe­ erectus. Petiolus folii 30-40 cm longus, 6- 20 mm crassus, vagina 15-25 cm longa in­ cies of open pastures or disturbed structus. Lamina ovata, apice acuta, basi areas, others are understory herbs truncata, nec cordata nec sagittata, glabra, of climax forest, and still others supra viridis impolita, subtus pallida, ner­ are riparian or montane species. vis lateralibus primariis utrinque 6, in ner­ vum collectivum a margine 4-8 mm remo­ Obviously an understanding of tum conjunctis. Inflorescentia monocha­ the relationships of the species of sialis spadicibus (2-4) composita. Pedun­ Xanthosoma can only result from a culus viridis, 4-8 mm crassus, 3-6 cm lon­ thorough study of the plants in their gus. Spatha 8-10 cm longa, extus ebernea, tubo intus atropurpureo. Spadix suaveo­ native habitats. Such a study is now lens, pars carpellata eburnea, 8 mm crassa, under way and the results of Sue 24 1978 MADISON: X A NTHOSOMA 25 XANTHOSOMA WEEKSII 2em I .. : , " :::".'::i . : . : ' : I ; lIT}\ : ~ : ',·IJ.1 2mm 5 em Thompson's researches on Xantho­ tures Xanthosoma weeksii is clearly soma are eagerly anticipated. In the a distinct species. The glabrous ovate meantime names are still needed for leaves which are rounded to truncate the species, especially those in culti­ at the base and not at all cordate, vation, even if their relationships and the short peduncles, readily are not well understood. distinguish it from the other species In the past species of Xantho­ of the genus. Xanthosoma weeksii soma have been distinguished on suckers freely from the base, so the basis of leaf shape, pubescence, that an old and well-grown plant and the relative sizes of the parts of makes a full and handsome horti­ the spadix. In terms of these fea- cultural specimen. .
Recommended publications
  • Baggage Inspection Required for Travelers Going from Puerto Rico to the U.S
    Baggage Inspection Required for Travelers Going From Puerto Rico to the U.S. Mainland USDA’s Animal and Plant Health Inspection Service Puerto Rico to the U.S. mainland at the airport prior to (APHIS) prohibits or restricts the movement of many your departure. Please be prepared to open and close agricultural products from Puerto Rico to the U.S. your own bags. If you have any fresh fruits or vegetables, mainland. These products include pork and pork products, plants, flowers, souvenirs made from plants or wood, most fresh fruits and vegetables, and certain types of or other agricultural products with you, please tell the plants and flowers. That’s because these items could inspector. Failure to declare these items can result in harbor a dangerous stowaway—an invasive pest or delays and possible issuance of civil penalties ranging disease. Just one piece of fruit or a single plant that is from $100 to $1,000 per violation. In addition, if you wish carrying an invasive pest or disease could cause millions to ship or mail agricultural items that are allowed into the of dollars in damage, expensive eradication efforts, and U.S. mainland, they must be inspected and/or certified by lost trade revenue. APHIS before you take them to an airline cargo office, the post office, or other courier service. To prevent the spread of invasive pests and diseases, APHIS inspects all passenger bags moving from Agricultural Items From Puerto Rico Allowed into the U.S. Mainland After Inspection n Allium spp. (includes lima, string)—have n Chamomile, Anthemis n Dandelion greens onion, garlic, and geographic restrictions.
    [Show full text]
  • Bruxner Park Flora Reserve Working Plan
    Bruxner Park Flora Reserve Working Plan Working Plan for Bruxner Park Flora Reserve No 3 Upper North East Forest Agreement Region North East Region Contents Page 1. DETAILS OF THE RESERVE 2 1.1 Introduction 2 1.2 Location 2 1.3 Key Attributes of the Reserve 2 1.4 General Description 2 1.5 History 6 1.6 Current Usage 8 2. SYSTEM OF MANAGEMENT 9 2.1 Objectives of Management 9 2.2 Management Strategies 9 2.3 Management Responsibility 11 2.4 Monitoring, Reporting and Review 11 3. LIST OF APPENDICES 11 Appendix 1 Map 1 Locality Appendix 1 Map 2 Cadastral Boundaries, Forest Types and Streams Appendix 1 Map 3 Vegetation Growth Stages Appendix 1 Map 4 Existing Occupation Permits and Recreation Facilities Appendix 2 Flora Species known to occur in the Reserve Appendix 3 Fauna records within the Reserve Y:\Tourism and Partnerships\Recreation Areas\Orara East SF\Bruxner Flora Reserve\FlRWP_Bruxner.docx 1 Bruxner Park Flora Reserve Working Plan 1. Details of the Reserve 1.1 Introduction This plan has been prepared as a supplementary plan under the Nature Conservation Strategy of the Upper North East Ecologically Sustainable Forest Management (ESFM) Plan. It is prepared in accordance with the terms of section 25A (5) of the Forestry Act 1916 with the objective to provide for the future management of that part of Orara East State Forest No 536 set aside as Bruxner Park Flora Reserve No 3. The plan was approved by the Minister for Forests on 16.5.2011 and will be reviewed in 2021.
    [Show full text]
  • A Review of Alocasia (Araceae: Colocasieae) for Thailand Including a Novel Species and New Species Records from South-West Thailand
    THAI FOR. BULL. (BOT.) 36: 1–17. 2008. A review of Alocasia (Araceae: Colocasieae) for Thailand including a novel species and new species records from South-West Thailand PETER C. BOYCE* ABSTRACT. A review of Alocasia in Thailand is presented. One new species (A. hypoleuca) and three new records (A. acuminata, A. hypnosa & A. perakensis) are reported. A key to Alocasia in Thailand is presented and the new species is illustrated. INTRODUCTION Alocasia is a genus of in excess of 100 species of herbaceous, laticiferous, diminutive to gigantic, usually robust herbs. The genus has recently been revised for New Guinea (Hay, 1990), Australasia (Hay & Wise, 1991), West Malesia and Sulawesi (Hay, 1998), the Philippines (Hay, 1999) while post main-treatment novelties have been described for New Guinea (Hay, 1994) Borneo (Hay, Boyce & Wong, 1997; Hay, 2000; Boyce, 2007) & Sulawesi (Yuzammi & Hay, 1998). Currently the genus is least well understood in the trans-Himalaya (NE India to SW China) including the northern parts of Burma, Thailand, Lao PDR and Vietnam with only the flora of Bhutan (Noltie, 1994) partly covering this range. In the absence of extensive fieldwork the account presented here for Thailand can at best be regarded as provisional. STRUCTURE & TERMINOLOGY Alocasia plants are often complex in vegetative and floral structure and some notes on their morphology (based here substantially on Hay, 1998) are useful to aid identification. The stem of Alocasia, typically of most Araceae, is a physiognomically unbranched sympodium. The number of foliage leaves per module is variable between and within species and individuals, but during flowering episodes in some species it may be reduced to one.
    [Show full text]
  • WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
    WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall .........................................................................................................
    [Show full text]
  • Eating Puerto Rico: a History of Food, Culture, and Identity
    Diálogo Volume 18 Number 1 Article 23 2015 Eating Puerto Rico: A History of Food, Culture, and Identity Rafael Chabrán Whittier College Follow this and additional works at: https://via.library.depaul.edu/dialogo Part of the Latin American Languages and Societies Commons Recommended Citation Chabrán, Rafael (2015) "Eating Puerto Rico: A History of Food, Culture, and Identity," Diálogo: Vol. 18 : No. 1 , Article 23. Available at: https://via.library.depaul.edu/dialogo/vol18/iss1/23 This Book Review is brought to you for free and open access by the Center for Latino Research at Via Sapientiae. It has been accepted for inclusion in Diálogo by an authorized editor of Via Sapientiae. For more information, please contact [email protected]. Eating Puerto Rico: A History of Food, Culture, and Identity By Cruz Miguel Ortíz Cuadra. Tr. Russ Davidson. Chapel Hill: University of North Carolina Press, 2013. 408 pp. isbn 978-1469608822 he original edition, Puerto Rico en su olla, ¿somos on the Caribbean, especially in terms of the definition of Taún lo que comimos?, published by Cruz Miguel “cuisine.” From Montanari (2003), he takes the notion that Ortíz Cuadra in 2006, publisher Doce Calles, in Aranjuez, food (and cuisine) is an extraordinary vehicle for self-rep- Madrid, was a rich tour de force by a food historian and resentation, community, and identity.5 To this recipe, he Professor of Humanities in the Department of Human- adds Fischler (1995) and Mintz’s definitions of cuisine ities at the University of Puerto Rico, Humacao. He is as: the familiarity with specific foodstuffs, techniques for an authority on the history of food, food habits and diet cooking as the culinary rules of a given community, and of Puerto Rico.1 Now an excellent English translation is the application of those rules in cooking.6 available, from the UNC series “Latin America in Transla- Ortíz Cuadra also concentrates on other central tion.” The book includes a Foreword by Ángel G.
    [Show full text]
  • PJS Special Issue Cuevas and Briones.Indd
    Philippine Journal of Science 142: 69-82, Special Issue ISSN 0031 - 7683 Date Received: ?? ???????? 2013 Role of Light in the Life Stages of Mt. Makiling Populations of Alocasia zebrina, An Endangered Philippine Plant Species1 Niko Niño G. Briones and Virginia C. Cuevas Institute of Biological Sciences (IBS), College of Arts and Sciences, University of the Philippines Los Baños (UPLB), College, Laguna, the Philippines Populations of Alocasia zebrina growing in a secondary forest on Mt. Makiling were studied to determine the influences of sunlight on its life stage development. The study site was dominated by Swietenia macrophylla in association with some members of Palm family. Large canopy gaps were present that allowed ground penetration of high light intensity. The life stages of Alocasia zebrina were identified to be, namely seed, juvenile, adult vegetative and adult sexually mature, based mainly on the number of mature leaves and reproductive capability. Statistical analyses showed a positive correlation between the number of mature leaves and the increase of total monthly minutes of sunshine. Furthermore, the field data analysis suggested that light plays a major role in determining not only where A. zebrina population will be established, but also the rate at which an individual can complete an entire life cycle. Key Words: Alocasia zebrina, life stages, light intensity, Araceae, vegetation, endangered Philippine plant species INTRODUCTION petiole attached to the end of the midrib and extends up to 1.1 m has varying shades of distinct green and brown Except for A. macrorrhizos (L.) G. Don, all indigenous oblique streaks. The colours and design of the petiole with species in the genus Alocasia are endemic in the stripe has earned its local name as ‘gabing tigre’.
    [Show full text]
  • Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades.
    [Show full text]
  • Araceae) from South America and Notes on the Tribe Caladieae
    Willdenowia 35 – 2005 333 JOSEF BOGNER & EDUARDO G. GONÇALVES Two new species of Xanthosoma (Araceae) from South America and notes on the tribe Caladieae Abstract Bogner, J. & Gonçalves, E. G.: Two new species of Xanthosoma (Araceae) from South America and notes on the tribe Caladieae. – Willdenowia 35: 333-344. – ISSN 0511-9618; © 2005 BGBM Berlin- Dahlem. doi:10.3372/wi.35.35216 (available via http://dx.doi.org/) Two new species of Xanthosoma sect. Acontias, X. mariae and X. latestigmatum, are described and il- lustrated. They have pilose, pedate leaf blades as have in Xanthosoma only X. plowmanii and X. pottii, and their pollen grains are released as monads, unlike in all other Xanthosoma species, which, as far as studied, release the pollen in tetrads. X. mariae is an evergreen plant mainly distinguished by its dark green velvety lustrous leaf blades with numerous leaflets and tuber-like swellings at the junction of petiole and blade; the gynoecium is of the Acontias type and the ovary is pilose in the lower part. X. latestigmatum is seasonally dormant and has medium green leaf blades with numerous leaflets and no tuber-like swellings; the gynoecium is of the Caladium type (with a very broad stigma) and completely glabrous. The relationship of the genera Caladium and Xanthosoma is discussed, C. paradoxum is transferred to Xanthosoma and the new combination X. paradoxum validated, and a key to the genera of the tribe Caladieae given. Introduction Two new species of Xanthosoma Schott cultivated in recent years in the Botanischer Garten München are described here. X. mariae has been collected only once in Peru by Mary Sizemore.
    [Show full text]
  • Studies on the Flowers and Stems of Two Cocoyam Varieties
    s Chemis ct try u d & o r R P e s Ogukwe et al., Nat Prod Chem Res 2017, 5:3 l e a r a r u t c h a DOI: 10.4172/2329-6836.1000263 N Natural Products Chemistry & Research ISSN: 2329-6836 Research Article Open Access Studies on the Flowers and Stems of Two Cocoyam Varieties: Xanthosoma sagittifolium and Colocasia esculenta Ogukwe CE*, Amaechi PC and Enenebeaku CK Department of Chemistry, Federal University of Technology, PMB 1526, Owerri, Imo State, Nigeria Abstract Qualitative and quantitative phytochemical composition of the flowers and stem sap ofXanthosoma sagittifolium and Colocasia esculenta were evaluated using standard methods. The result showed that the flowers contain saponins (6.61% and 5.50% respectively for the two species). Alkaloids of 6.22 and 9.80% respectively were also obtained from the result. Other Phytoconstituents like flavonoids, glycosides, phenols, steroids, and tannins were also evaluated. The proximate analysis revealed that the flowers contain high protein content (37.87% and 22.56% respectively), high moisture content and crude fat. Colocasia esculenta showed high percentage of total carbohydrate. The flowers of the two species of Cocoyam can therefore serve as spices and source of protein in local meals. Keywords: Flowers; Xanthosoma esculenta; Colocasia esculenta; used in preparing local soups and dishes. This was used to improve Nutrients; Spices the quality and the nutritional value of the meal thereby making it palatable. Thus, this dried flower of cocoyam was used in place of Introduction modern day synthetic spices or seasoning. This research work has Cocoyam is a common name for more than one tropical root and therefore been designed to evaluate the probable nutrients of the vegetable crop belonging to the Arum family (Aroids).
    [Show full text]
  • Alocasia Macrorrhiza / Similar Spp
    Alocasia macrorrhiza / Similar spp . Usually prostrate or semi-prostrate at ground level; can grow to a metre high, without support. Common name: . Native to Malaysia, SE Asia and N. Australia. Alocasia, Cunjevoi, Elephant ears, . The flower heads are a spike of pale yellow- Giant taro, green flowers along the upper part of a stout stalk - spadex - and surrounded by a cream- Palatability to Livestock: coloured, hood-shaped spathe, in summer. Not known to be eaten. Berries are red, yellow or orange when ripe. Found growing wild in Queensland and Toxicity to Other Species: northern NSW, in moist gullies. Toxic to all animals, stock, humans and pets. Stock are not attracted to this plant in the fresh state; it may have a sweet smell. Poisonous Principle: . Sap is very corrosive to mucous membranes. Cyanogenetic glucocides, . Sharp needles of oxalate are found in the plant. Oxalate crystals, . A cuprea, Giant caladium. Unknown toxins. Effects: Signs and symptoms; . Intense irritation to, and swelling of, the lips, tongue, mouth, and throat. Health and Production Problems; . Recovery in most cases. Can be stinging or corrosive to humans when handled. Juice from leaf or rhizome can cause intense conjunctivitis or temporary blindness. Alocasia. Treatment; Picture: Helen Simmonds, Calga, NSW. Unknown, rinse with water. See Doctor or Vet. Integrated Control Strategy: . Garden plant escapee, . All parts are potentially irritant. Use herbicides, or weed out into disposable bags. Do not feed this plant to any livestock. Comments: Cunjevoi. A large perennial garden plant, with a thick Picture: Helen Simmonds. Calga, NSW. rootstock and thick stems, with a height and spread of about 2.5 metres.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Diseases of Edible Aroids in India and Their Management
    Diseases of Edible Aroids in India and Aroids: Plants belonging to the family Araceae their Management Among cultivable tropical tuber crops, the following are commercially cultivated edible aroids in India: 1. Amorphophalus paeoniifolius 2. Colocasia (C.esculenta var.esculenta and C.esculenta R.S.Misra var.antiquorum): Dasheen and Eddoe types Central Tuber Crops Research Institute Trivandrum (India) 3. Xanthosoma (Tannia) 4. Alocasia Amorphophallus tubers Amorphophallus mosaic disease and crop 1 Amorphophallus Mosaic Disease Collar rot of Amorphophallus Primary spread is through planting material. Secondary spread of the disease is through insect vectors, Myzus persicae Sulz., Aphis gossypii Glover, A. craccivora Koch. and Pentalonia nigronervosa coq. Disease symptoms include mosaic mottling of leaves and distortion of leaf lamina. Corms produced by the mottled plants are much smaller than those without mottled leaves. Management: Use of virus free planting material, spraying of systemic insecticides to prevent secondary spread Leaf blight caused by Phytophthora colocasiae Storage diseases in Amorphophallus 2 Management of Amorphophallus Diseases Major taro types in India •Use of healthy planting material without any apparent rotting symptoms •Treatment of the whole/cut tubers with cow-dung slurry mixed with Trichoderma before planting •Application of Trichoderma enriched compost in pits/field •Application of neem-cake @ 250g/pit •One foliar spray with Mancozeb (0.2%) and fenithrion (0.05%) at 60 and 90 DAP Taro Cultivation Field view
    [Show full text]