Targeting of Heat Shock Protein Hspa6

Total Page:16

File Type:pdf, Size:1020Kb

Targeting of Heat Shock Protein Hspa6 TARGETING OF HEAT SHOCK PROTEIN HSPA6 (HSP70B') TO THE PERIPHERY OF NUCLEAR SPECKLES IS DISRUPTED BY A TRANSCRIPTION INHIBITOR FOLLOWING THERMAL STRESS IN HUMAN NEURONAL CELLS by Larissa Becirovic A thesis submitted in conformity with the requirements for the degree of Master of Science Cell and Systems Biology Department University of Toronto © Copyright by Larissa Becirovic (2016) ABSTRACT Targeting of Heat Shock Protein HSPA6 (HSP70B') to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells Larissa Becirovic Master of Science Cell and Systems Biology Department University of Toronto 2016 Heat shock proteins (Hsps) are a set of conserved proteins involved in cellular repair and protection. Localization of inducible members of the HSPA (HSP70) family can be used as an index to identify stress-sensitive sites in differentiated human neuronal cells. Following thermal stress, the little studied HSPA6 (HSP70B') associated with the periphery of nuclear speckles (perispeckles) that are sites of transcription factories, however the widely studied HSPA1A (HSP70-1) did not. Triptolide, a fast-acting transcription inhibitor, knocked down levels of the large subunit of RNA polymerase II, RPB1, during the time-frame when HSPA6 localized to perispeckles. Administration of triptolide to heat shocked human neuronal SH-SY5Y cells, disrupted HSPA6 localization to perispeckles, suggesting involvement of HSPA6 in transcriptional recovery after stress. The HSPA6 gene is present in the human genome but not in mouse and rat. Hence, current animal models of neurodegenerative diseases lack a potentially protective member of the HSPA family. ii ACKNOWLEDGEMENTS I would like to thank my supervisor, Dr. Ian R. Brown, for providing me the opportunity to study in his laboratory. I will be forever grateful for his guidance and support throughout my MSc. degree. Dr. Brown has taught me how to improve my communication skills, as well as how to think critically. His strong work ethic and thorough pursuit of knowledge are objectives that I will strive to model through the rest of my career. I would also like to thank my supervisory committee members, Dr. Rongmin Zhao and Dr. Maurice Ringuette, for their support throughout the completion of my degree. I would also like to thank the other members of the Brown lab, Catherine Deane and Sadek Shorbagi. Their invaluable encouragement tied together with the scientific discussions and advice we exchanged proved to be indispensible during my time at the University of Toronto. I would also like to thank former members of the Brown lab, Dr. Sam Khalouei, Dr. Ari Chow, and Hashwin Ganesh, for teaching me the scientific techniques that I needed to know. I would also like to thank my fellow graduate students at the University of Toronto for their moral support. A special thanks to my parents, Ennis and Kyana Becirovic, and my brother, Allan Becirovic, for their love and ongoing support. Finally, thanks to all of my close friends for their encouragement. iii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................ iii LIST OF FIGURES ...................................................................................................................... v LIST OF ABBREVIATIONS ..................................................................................................... vi 1 INTRODUCTION .................................................................................................................. 1 1.1 Heat shock response (HSR) ............................................................................................. 1 1.2 Heat shock proteins (Hsps) ............................................................................................. 2 1.3 Hsps and neurodegenerative diseases ............................................................................ 4 1.4 HSPA (HSP70) Family .................................................................................................... 5 1.4.1 HSPA6 (HSP70B') ...................................................................................................... 6 1.5 Selection of triptolide as a fast-acting transcription inhibitor ..................................... 8 2 OBJECTIVES ......................................................................................................................... 9 3 MATERIALS AND METHODS ......................................................................................... 11 3.1 Growth of human neuronal SH-SY5Y cells ................................................................ 11 3.2 Western blotting ............................................................................................................. 11 3.3 Heat shock treatment ..................................................................................................... 12 3.4 Immunocytochemistry ................................................................................................... 12 4 RESULTS .............................................................................................................................. 14 4.1 The transcriptional inhibitor triptolide is effective at nanomolar concentrations .. 15 4.2 Targeting of YFP-HSPA6 to nuclear structures following thermal stress in differentiated human neuronal cells ...................................................................................... 18 4.3 Localization of YFP-HSPA6 is disrupted following triptolide administration in human neuronal cells .............................................................................................................. 18 5 DISCUSSION ........................................................................................................................ 25 6 REFERENCES ..................................................................................................................... 29 iv LIST OF FIGURES Figure 1. Nanomolar concentrations of triptolide knocked down levels of RPB1, the large subunit of RNA polymerase II, in differentiated human neuronal cells………...………...….… 16 Figure 2. Association of YFP-tagged HSPA6 protein with nuclear structures in differentiated human neuronal cells following thermal stress…………………………………………………. 19 Figure 3. Triptolide disrupted localization of YFP-tagged HSPA6 to perispeckles………….... 22 v LIST OF ABBREVIATIONS °C Degree Celsius ALS Amyotrophic lateral sclerosis APP Amyloid precursor protein ATP Adenosine triphosphate CDK7 Cyclin dependent kinase-7 FBS Fetal bovine serum hr Hour HOP HSP70/HSP90 organizing protein Hsp Heat shock protein HSPA HSP70 family HSPA1A HSP70-1 protein HSPA6 HSP70B' protein HSE Heat shock element HSF Heat shock transcription factor HSR Heat shock response kDa kilodalton mRNA Messenger ribonucleic acid nM Nanomolar concentration vi PBS Phosphate buffered saline RPB1 Large subunit of RNA polymerase II SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis SOD-1 Superoxide dismutase-1 YFP Yellow fluorescent protein vii 1 1 INTRODUCTION 1.1 Heat shock response (HSR) After exposure to a range of stressful stimuli, cells exhibit a highly conserved heat shock response during which protein production is inhibited and a set of heat shock proteins (Hsps) is induced (Lindquist and Craig, 1988; Pardue et al., 1992; Welch, 1992; Feder and Hofmann, 1999; Powers and Workman, 2007; Richter et al., 2010; Velichko et al., 2013). Hsp induction is regulated at the level of transcription by heat shock transcription factor-1 (HSF-1) in mammalian cells (Wu, 1995; Morimoto, 1998; Morano and Thiele, 1999). Present as a monomer under normal conditions, HSF-1 becomes trimerized, phosphorylated, and bound to heat shock elements (HSEs) in the promoter region of stress-inducible heat shock genes following exposure to stress, which induces their transcription (Fernandes et al., 1994; Holmberg et al., 2002; Soncin et al., 2003; Guettouche et al., 2005; Kim et al., 2005). The heat shock response has been investigated in relation to human aging and neurodegenerative diseases (Anckar and Sistonen, 2011; Neef et al., 2011; Heimberger et al., 2013). Up-regulation of Hsps has been suggested as a potential therapeutic approach to counter protein misfolding and aggregation that are characteristic of neurodegenerative disorders (Selkoe, 2004b; Brown, 2007b; Haass and Selkoe, 2007; Asea and Brown, 2008; Brown, 2008). 2 1.2 Heat shock proteins (Hsps) Heat shock proteins (Hsps) bind to misfolded proteins, and thus have been associated with protein quality control mechanisms that minimize the cytotoxic effects triggered by the accumulation of misfolded proteins (Zhang and Qian, 2011; Dreiseidler et al., 2012; Kim et al., 2013). Hsps were discovered following the observed change in chromosome puffing patterns in the chromosomes of Drosophila salivary gland cells following an increase in temperature (Ritossa, 1962). Subsequently, studies on the transcription and expression of Hsps emerged (Tissieres et al., 1974; Moran et al., 1978). Despite a variety of stressors having the ability to induce Hsp expression, they historically have been referred to as heat shock proteins (Lindquist, 1986; Morimoto, 1993; Velichko et al., 2013). Hsps are composed of both constitutively expressed and stress-inducible members. Constitutively
Recommended publications
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • At Elevated Temperatures, Heat Shock Protein Genes Show Altered Ratios Of
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 900, 2021 At elevated temperatures, heat shock protein genes show altered ratios of different RNAs and expression of new RNAs, including several novel HSPB1 mRNAs encoding HSP27 protein isoforms XIA GAO1,2, KEYIN ZHANG1,2, HAIYAN ZHOU3, LUCAS ZELLMER4, CHENGFU YUAN5, HAI HUANG6 and DEZHONG JOSHUA LIAO2,6 1Department of Pathology, Guizhou Medical University Hospital; 2Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University; 3Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China; 4Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; 5Department of Biochemistry, China Three Gorges University, Yichang, Hubei 443002; 6Center for Clinical Laboratories, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China Received December 16, 2020; Accepted May 10, 2021 DOI: 10.3892/etm.2021.10332 Abstract. Heat shock proteins (HSP) serve as chaperones genes may engender multiple protein isoforms. These results to maintain the physiological conformation and function of collectively suggested that, besides increasing their expres‑ numerous cellular proteins when the ambient temperature is sion, certain HSP and associated genes also use alternative increased. To determine how accurate the general assumption transcription start sites to produce multiple RNA transcripts that HSP gene expression is increased in febrile situations is, and use alternative splicing of a transcript to produce multiple the RNA levels of the HSF1 (heat shock transcription factor 1) mature RNAs, as important mechanisms for responding to an gene and certain HSP genes were determined in three cell increased ambient temperature in vitro. lines cultured at 37˚C or 39˚C for three days.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,609,416 B2 Barnett (45) Date of Patent: Dec
    USOO8609416B2 (12) United States Patent (10) Patent No.: US 8,609,416 B2 Barnett (45) Date of Patent: Dec. 17, 2013 (54) METHODS AND COMPOSITIONS OTHER PUBLICATIONS COMPRISING HEAT SHOCKPROTEINS Novoselova et al., “Treatment with extracellular HSP70/HSC70 pro (75) Inventor: Michael E. Barnett, Manhattan, KS tein can reduce polyglutamine toxicity and aggregation.” J (US) Neurochem 94:597-606, 2005.* Johnson et al., (1993) Exogenous HSP70 becomes cell associated but (73) Assignee: Ventria Bioscience, Fort Collins, CO not internalized, by stressed arterial Smooth muscle cell. In vitro (US) Cellular and Developmental Biology—Animal, vol. 29A. No. 10, pp. 807-821. (*) Notice: Subject to any disclaimer, the term of this Bethke et al., (2002) Different efficiency of heat shock proteins patent is extended or adjusted under 35 (HSP) to activate human monocytes and dendritic cells; Superiority of U.S.C. 154(b) by 244 days. HSP60, The Journal of Immunology, vol. 169, pp. 6141-6148. Khan et al., (2008) Toll-like receptor 4-mediated growth of (21) Appl. No.: 12/972,112 endometriosis by human heat-shock protein 70, Human Reproduc tion, vol. 23, No. 10, pp. 2210-2219. (22) Filed: Dec. 17, 2010 Lasunskaia E.B., et al., (2003) Transfection of NSO myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by (65) Prior Publication Data improving cellular resistance to apoptosis, Biotechnology and Bioengineering 81 (4):496-504. US 2011 FO189751A1 Aug. 4, 2011 * cited by examiner Related U.S. Application Data (60) Provisional application No. 61/288,234, filed on Dec. Primary Examiner — Rosanne Kosson 18, 2009.
    [Show full text]
  • Molecular Cloning and Characterization of Cdna Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus Dromedarius
    Int. J. Mol. Sci. 2011, 12, 4214-4236; doi:10.3390/ijms12074214 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius Mohamed S. Elrobh *, Mohammad S. Alanazi, Wajahatullah Khan, Zainularifeen Abduljaleel, Abdullah Al-Amri and Mohammad D. Bazzi Genomic Research Chair Unit, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; E-Mails: [email protected] (M.S.A.); [email protected] (W.K.); [email protected] (Z.A.); [email protected] (A.A.-A.) [email protected] (M.D.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +966-146-759-44; Fax: +966-146-757-91. Received: 5 May 2011; in revised form: 9 June 2011; / Accepted: 15 June 2011 / Published: 27 June 2011 Abstract: Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids.
    [Show full text]
  • Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response
    Supplementary Online Content Beltran H, Eng K, Mosquera JM, et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. Published online May 28, 2015. doi:10.1001/jamaoncol.2015.1313 eMethods eFigure 1. A schematic of the IPM Computational Pipeline eFigure 2. Tumor purity analysis eFigure 3. Tumor purity estimates from Pathology team versus computationally (CLONET) estimated tumor purities values for frozen tumor specimens (Spearman correlation 0.2765327, p- value = 0.03561) eFigure 4. Sequencing metrics Fresh/frozen vs. FFPE tissue eFigure 5. Somatic copy number alteration profiles by tumor type at cytogenetic map location resolution; for each cytogenetic map location the mean genes aberration frequency is reported eFigure 6. The 20 most frequently aberrant genes with respect to copy number gains/losses detected per tumor type eFigure 7. Top 50 genes with focal and large scale copy number gains (A) and losses (B) across the cohort eFigure 8. Summary of total number of copy number alterations across PM tumors eFigure 9. An example of tumor evolution looking at serial biopsies from PM222, a patient with metastatic bladder carcinoma eFigure 10. PM12 somatic mutations by coverage and allele frequency (A) and (B) mutation correlation between primary (y- axis) and brain metastasis (x-axis) eFigure 11. Point mutations across 5 metastatic sites of a 55 year old patient with metastatic prostate cancer at time of rapid autopsy eFigure 12. CT scans from patient PM137, a patient with recurrent platinum refractory metastatic urothelial carcinoma eFigure 13. Tracking tumor genomics between primary and metastatic samples from patient PM12 eFigure 14.
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • Senescence Inhibits the Chaperone Response to Thermal Stress
    SUPPLEMENTAL INFORMATION Senescence inhibits the chaperone response to thermal stress Jack Llewellyn1, 2, Venkatesh Mallikarjun1, 2, 3, Ellen Appleton1, 2, Maria Osipova1, 2, Hamish TJ Gilbert1, 2, Stephen M Richardson2, Simon J Hubbard4, 5 and Joe Swift1, 2, 5 (1) Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK. (2) Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (3) Current address: Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22903, USA. (4) Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (5) Correspondence to SJH ([email protected]) or JS ([email protected]). Page 1 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence CONTENTS Supplemental figures S1 – S5 … … … … … … … … 3 Supplemental table S6 … … … … … … … … 10 Supplemental references … … … … … … … … 11 Page 2 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence SUPPLEMENTAL FIGURES Figure S1. A EP (passage 3) LP (passage 16) 200 µm 200 µm 1.5 3 B Mass spectrometry proteomics (n = 4) C mRNA (n = 4) D 100k EP 1.0 2 p < 0.0001 p < 0.0001 LP p < 0.0001 p < 0.0001 ) 0.5 1 2 p < 0.0001 p < 0.0001 10k 0.0 0 -0.5 -1 Cell area (µm Cell area fold change vs. EP fold change vs.
    [Show full text]
  • Genomics of Inherited Bone Marrow Failure and Myelodysplasia Michael
    Genomics of inherited bone marrow failure and myelodysplasia Michael Yu Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Mary-Claire King, Chair Akiko Shimamura Marshall Horwitz Program Authorized to Offer Degree: Molecular and Cellular Biology 1 ©Copyright 2015 Michael Yu Zhang 2 University of Washington ABSTRACT Genomics of inherited bone marrow failure and myelodysplasia Michael Yu Zhang Chair of the Supervisory Committee: Professor Mary-Claire King Department of Medicine (Medical Genetics) and Genome Sciences Bone marrow failure and myelodysplastic syndromes (BMF/MDS) are disorders of impaired blood cell production with increased leukemia risk. BMF/MDS may be acquired or inherited, a distinction critical for treatment selection. Currently, diagnosis of these inherited syndromes is based on clinical history, family history, and laboratory studies, which directs the ordering of genetic tests on a gene-by-gene basis. However, despite extensive clinical workup and serial genetic testing, many cases remain unexplained. We sought to define the genetic etiology and pathophysiology of unclassified bone marrow failure and myelodysplastic syndromes. First, to determine the extent to which patients remained undiagnosed due to atypical or cryptic presentations of known inherited BMF/MDS, we developed a massively-parallel, next- generation DNA sequencing assay to simultaneously screen for mutations in 85 BMF/MDS genes. Querying 71 pediatric and adult patients with unclassified BMF/MDS using this assay revealed 8 (11%) patients with constitutional, pathogenic mutations in GATA2 , RUNX1 , DKC1 , or LIG4 . All eight patients lacked classic features or laboratory findings for their syndromes.
    [Show full text]
  • Cellular and Molecular Adaptation of Arabian Camel to Heat Stress
    fgene-10-00588 June 18, 2019 Time: 16:2 # 1 REVIEW published: 19 June 2019 doi: 10.3389/fgene.2019.00588 Cellular and Molecular Adaptation of Arabian Camel to Heat Stress Abdullah Hoter1,2, Sandra Rizk3 and Hassan Y. Naim2* 1 Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt, 2 Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany, 3 School of Arts and Sciences, Lebanese American University, Beirut, Lebanon To cope with the extreme heat stress and drought of the desert, the Arabian camel (Camelus dromedarius) has developed exceptional physiological and biochemical particularities. Previous reports focused mainly on the physiological features of Arabian camel and neglected its cellular and molecular characteristics. Heat shock proteins are suggested to play a key role in the protein homeostasis and thermotolerance. Therefore, we aim by this review to elucidate the implication of camel HSPs in its physiological adaptation to heat stress and compare them with HSPs in related mammalian species. Correlation of these molecules to the adaptive mechanisms in Edited by: Pamela Burger, camel is of special importance to expand our understanding of the overall camel University of Veterinary Medicine physiology and homeostasis. Vienna, Austria Keywords: Arabian camel, heat shock proteins, heat stress, chaperones, desert, adaptation Reviewed by: Pablo Orozco-terWengel, Cardiff University, United Kingdom Ajamaluddin Malik, INTRODUCTION King Saud University, Saudi Arabia *Correspondence: Arabian camel (Camelus dromedarius), also known as the one humped camel, is a unique large Hassan Y. Naim animal belonging to the Camelidae family. This creature is well adapted to endure extreme levels [email protected] of heat stress and arid conditions of the desert.
    [Show full text]
  • Prognostic and Functional Significant of Heat Shock Proteins (Hsps)
    biology Article Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches Miriam Buttacavoli 1,†, Gianluca Di Cara 1,†, Cesare D’Amico 1, Fabiana Geraci 1 , Ida Pucci-Minafra 2, Salvatore Feo 1 and Patrizia Cancemi 1,2,* 1 Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; [email protected] (M.B.); [email protected] (G.D.C.); [email protected] (C.D.); [email protected] (F.G.); [email protected] (S.F.) 2 Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-2389-7330 † These authors contributed equally to this work. Simple Summary: In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinfor- matics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important bio- logical pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity Citation: Buttacavoli, M.; Di Cara, of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, G.; D’Amico, C.; Geraci, F.; we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC Pucci-Minafra, I.; Feo, S.; Cancemi, P.
    [Show full text]
  • De Novo and Rare Mutations in the HSPA1L Heat
    Takahashi et al. Genome Medicine (2017) 9:8 DOI 10.1186/s13073-016-0394-9 RESEARCH Open Access De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease Shinichi Takahashi1,2†, Gaia Andreoletti3†, Rui Chen1, Yoichi Munehira4,5, Akshay Batra6, Nadeem A. Afzal6, R. Mark Beattie6, Jonathan A. Bernstein7, Sarah Ennis3* and Michael Snyder1* Abstract Background: Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disease of the gastrointestinal tract which includes ulcerative colitis and Crohn's disease. Genetic risk factors for IBD are not well understood. Methods: We performed a family-based whole exome sequencing (WES) analysis on a core family (Family A) to identify potential causal mutations and then analyzed exome data from a Caucasian pediatric cohort (136 patients and 106 controls) to validate the presence of mutations in the candidate gene, heat shock 70 kDa protein 1-like (HSPA1L). Biochemical assays of the de novo and rare (minor allele frequency, MAF < 0.01) mutation variant proteins further validated the predicted deleterious effects of the identified alleles. Results: In the proband of Family A, we found a heterozygous de novo mutation (c.830C > T; p.Ser277Leu) in HSPA1L. Through analysis of WES data of 136 patients, we identified five additional rare HSPA1L mutations (p.Gly77Ser, p.Leu172del, p.Thr267Ile, p.Ala268Thr, p.Glu558Asp) in six patients. In contrast, rare HSPA1L mutations were not observed in controls, and were significantly enriched in patients (P = 0.02). Interestingly, we did not find non-synonymous rare mutations in the HSP70 isoforms HSPA1A and HSPA1B. Biochemical assays revealed that all six rare HSPA1L variant proteins showed decreased chaperone activity in vitro.
    [Show full text]