Mouse Mast Cell Proteases: Induction, Molecular Cloning, and Characterization Wei Chu East Tennessee State University

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Mast Cell Proteases: Induction, Molecular Cloning, and Characterization Wei Chu East Tennessee State University East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works May 1991 Mouse Mast Cell Proteases: Induction, Molecular Cloning, and Characterization Wei Chu East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biochemistry Commons, Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Chu, Wei, "Mouse Mast Cell Proteases: Induction, Molecular Cloning, and Characterization" (1991). Electronic Theses and Dissertations. Paper 2656. https://dc.etsu.edu/etd/2656 This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, white others may be from any type of computer printer. The quality of this reproduction Is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material bad to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml <18106-1346 USA 313/761-4700 800/521-0600 Order Number 0124275 Mouse mast cell proteases: Induction, molecular cloning, and characterization Chu, Wei, Ph.D. East Tennessee State University, 1091 UMI 300 N. Zccb Rd. Ann Aibor, MI 48106 MOUSE MAST CELL PROTEASES: INDUCTION, MOLECULAR CLONING, AND CHARACTERIZATION A Dissertation Presented to the Faculty of the Department of Biochemistry James H. Quillen College of Medicine East Tennessee State University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Biomedical Sciences by Wei Chu May, 1991 APPROVAL This is to certify that the Graduate Committee of WET CHU met on the thirteenth day of November. 1990 The committee read and examined his dissertation, supervised his defense of it in an oral examination, and decided to recommend that his study be submitted to the Associate Vice-President for Research and Dean of the Graduate School, in partial fulfillment of the requirements for the degree Doctor of Philosophy in Biomedical Science. /S r l c Signed on behalf of the Graduate Council ii ABSTRACT HOUSE MAST CELL PROTEASES: INDUCTION, MOLECULAR CLONING, AND CHARACTERIZATION By Wei Chu Tryptase, a mast cell-specific serine protease with trypsin-like specificity, has been identified in a mouse mast cell line (ABFTL-6) based on it's enzymatic activity, inhibition properties, and cross-reactivity to a human mast cell tryptase antibody. The effects of fibroblast-conditioned medium and sodium butyrate on ABFTL-6 mast cell differentiation and tryptase expression have been examined. ABFTL-6 mouse mast cells undergo phenotypic changes upon culturing in media supplemented with fibroblast-conditioned media at 50% or 1 mM sodium butyrate. The induced cells increased in size, had larger and more metachromatic cytoplasmic granules, and increased their total cellular protein about four-fold. Tryptase activity increased 13- and 6-fold upon fibroblast- conditioned media and butyrate induction, respectively. However, tryptase antigen levels increased dramatically from 2.3 jxg/106 uninduced cells to 125 (54-fold) and 75 (33-fold) /ig/10* cells induced with fibroblast-conditioned media or butyrate, respectively. A cDNA library was constructed in JLgtlO from ABFTL-6 cell poly (A)+ RNA, and screened with dog mast cell tryptase and rat mast cell chymase cDNAs. Clones encoding two distinct tryptases (mouse tryptases I and II), a chymase (mouse chymase I) and a novel carboxyl terminal chymase (mouse chymase II) were isolated and sequenced. Mouse tryptases I and II have 75% and 70% sequence identity at the nucleotide and amino acid levels, respectively. The deduced amino acid sequence for the mature active enzyme for each mouse tryptase contains 245 residues and all the characteristics of a serine protease. Asp is found in the substrate binding pockets, consistent with a trypsin-like specificity for Arg-X and Lys-X bonds. It is predicted that tryptases are synthesized with prepropeptides, requiring signal peptidase processing and removal of a three amino acid propeptide for activation. Mouse chymase I consists of a 226 amino acid catalytic portion and a 21 amino acid preprosequence. An Asn occurs in the substrate binding pocket, a feature that has not been observed in any other serine protease. iii ACKNOWLEDGMENTS First of all, I wish to express my appreciation to the faculty and staff members of the Biochemistry Department for their support, assistance, and friendship. I would like to thank my thesis committee mombors, Drs. David Chi, Margaret Kougland, David Johnson, and Mitaholl Robinson for their time and valuable advice. My most sincere appreciation goes to my major advisor, Dr. Phillip Musich, who provided mo with the ancouragomont and guidance throughout my graduate years. I also would like to thank those graduate atudants who made my graduate years more memorable and those individuals who have cared and contributed to the completion of this study. Special thanks goes to Mrs. Raymondo Cox for hor final touch of this manuscript. iv CONTENTS Page APPROVAL ......................................... ii ABSTRACT ............................ * ........... iii ACKNOWLEDGEMENTS ................................... iv LIST OF TABLES .................................... ix LIST OF FIGURES .................................. X ABBREVIATIONS ..................................... xii CHAPTER 1. INTRODUCTION ................................... 1 Mast Cell Heterogeneity, Differentiation and Origin ................................. 5 Micro-environmental Regulation of Mast Cell Development and Phenotype ................... 10 Mast Cell Granule-Associated Serine Proteases: Tryptase and Chymase ............ 12 2. MATERIALS AND METHODS ........................ 23 Materials ..................................... 23 M e t h o d s .......................................... 25 Growth of ABFTL-6 Mast Cells and 3T3 Cells ..................................... 25 Preparation of f c m . , ..................... 25 Growth of Mast Cells 3T3 FCM Supplemented Media ....................... 26 Sodium Butyrate Treatment of Mast Cells . 26 Histochemical Staining ..................... 26 Preparation of Mast Cell Extracts .......... 27 Determination of Protein Concentration . 27 v Chapter Page Measurement of Enzymatic Activity .......... 28 Inhibition of Tryptic Activity Assay .... 28 SDS-Polyacrylamide Gel Electrophoresis . 29 t3H] DFP Labeling of Serine Froteases and Fluorography ............................. 30 Immuno-dot and Western Blotting ............ 30 Poly (A)+—RNA I s o l a t i o n ....................... 31 cDNA Synthesis and Library Construction . 34 cDNA Library Screening ..................... 36 Alcohol Precipitation of DNA .............. 37 DNA Isolation ............................... 38 Lambda DNA isolation ..................... 38 Plasmid DNA minipred ..................... 39 Agarose Gel Electrophoresis DNA ............ 40 DNA Restriction Enzyme Digestion .......... 41 Electroelution of DNA Fragments ............ 41 Ligations ................................... 42 Bacterial Transformation ................... 42 DNA Sequencing ............................. 43 Denaturation of double-stranded DNA .... 43 DNA dideoxynucleotide sequencing reactions ............................. 44 DNA sequencing gel electrophoresis .... 44 * Hybridization of Filter-Bonded DNA ........ 45 Radioisotopic labeling of DNA probes . 45 Slot-blotting of nucleic acids .......... 4 6 vi Chapter Page Southern and northern blotting ........ 47 Stripping probe from filters .......... 48 Autoradiography ......................... 48 3. RESULTS ..................................... 50 Morphological Changes of Mouse Mast Cells Induced with FCM and Sodium Butyrate ................................. 50 Effects of FCM and Sodium Butyrate Culture on Mast Cell Tryptase Activity and Antigen Levels ....................... 50 Both FCM and Sodium Butyrate Increased Total DFP-Binding Proteins ............... 61 Molecular Cloning of Mouse Mast Cell' Tryptases ................................. 63 Molecular Cloning of Mouse Mast Cell Chymase ..................................
Recommended publications
  • The Secretory Proprotein Convertase Neural Apoptosis-Regulated Convertase 1 (NARC-1): Liver Regeneration and Neuronal Differentiation
    The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation Nabil G. Seidah*†, Suzanne Benjannet*, Louise Wickham*, Jadwiga Marcinkiewicz*, Ste´phanie Be´langer Jasmin‡, Stefano Stifani‡, Ajoy Basak§, Annik Prat*, and Michel Chre´ tien§ *Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, H2W 1R7 Canada; ‡Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4 Canada; and §Regional Protein Chemistry Center and Diseases of Aging Unit, Ottawa Health Research Institute, Ottawa Hospital, Civic Campus, 725 Parkdale Avenue, Ottawa, ON, K1Y 4E9 Canada Edited by Donald F. Steiner, University of Chicago, Chicago, IL, and approved December 5, 2002 (received for review September 10, 2002) Seven secretory mammalian kexin-like subtilases have been iden- LP251 (Eli Lilly, patent no. WO 02͞14358 A2) recently cloned tified that cleave a variety of precursor proteins at monobasic and by two pharmaceutical companies. NARC-1 was identified via dibasic residues. The recently characterized pyrolysin-like subtilase the cloning of cDNAs up-regulated after apoptosis induced by SKI-1 cleaves proproteins at nonbasic residues. In this work we serum deprivation in primary cerebellar neurons, whereas LP251 describe the properties of a proteinase K-like subtilase, neural was discovered via global cloning of secretory proteins. Aside apoptosis-regulated convertase 1 (NARC-1), representing the ninth from the fact that NARC-1 mRNA is expressed in liver ϾϾ member of the secretory subtilase family. Biosynthetic and micro- testis Ͼ kidney and that the gene localizes to human chromo- sequencing analyses of WT and mutant enzyme revealed that some 1p33-p34.3, no information is available on NARC-1 ac- human and mouse pro-NARC-1 are autocatalytically and intramo- tivity, cleavage specificity, cellular and tissue expression, and lecularly processed into NARC-1 at the (Y,I)VV(V,L)(L,M)2 motif, a biological function.
    [Show full text]
  • Chymotrypsin-Like Peptidases in Insects
    Chymotrypsin-like peptidases in insects Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) Fachbereich Biologie/Chemie der Universität Osnabrück vorgelegt von Gunnar Bröhan Osnabrück, Mai 2010 TABLE OF CONTENTS I Table of contents 1. Introduction 1 1.1. Serine endopeptidases 1 1.2. The structure of S1A chymotrypsin-like peptidases 2 1.3. Catalytic mechanism of chymotrypsin-like peptidases 6 1.4. Insect chymotrypsin-like peptidases 9 1.4.1. Chymotrypsin-like peptidases in insect immunity 9 1.4.2. Role of chymotrypsin-like peptidases in digestion 14 1.4.3. Involvement of chymotrypsin-like peptidases in molt 16 1.5. Objective of the work 18 2. Material and Methods 20 2.1. Material 20 2.1.1. Culture Media 20 2.1.2. Insects 20 2.2. Molecular biological methods 20 2.2.1. Tissue preparations for total RNA isolation 20 2.2.2. Total RNA isolation 21 2.2.3. Reverse transcription 21 2.2.4. Quantification of nucleic acids 21 2.2.5. Chemical competent Escherichia coli 21 2.2.6. Ligation and transformation in E. coli 21 2.2.7. Preparation of plasmid DNA 22 2.2.8. Restriction enzyme digestion of DNA 22 2.2.9. DNA gel-electrophoresis and DNA isolation 22 2.2.10. Polymerase-chain-reaction based methods 23 2.2.10.1. RACE-PCR 23 2.2.10.2. Quantitative Realtime PCR 23 2.2.10.3. Megaprimer PCR 24 2.2.11. Cloning of insect CTLPs 25 2.2.12. Syntheses of Digoxigenin-labeled DNA and RNA probes 26 2.2.13.
    [Show full text]
  • Structure of the Human Signal Peptidase Complex Reveals the Determinants for Signal Peptide Cleavage
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.11.378711; this version posted November 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structure of the Human Signal Peptidase Complex Reveals the Determinants for Signal Peptide Cleavage A. Manuel Liaci1, Barbara Steigenberger2,3, Sem Tamara2,3, Paulo Cesar Telles de Souza4, Mariska Gröllers-Mulderij1, Patrick Ogrissek1,5, Siewert J. Marrink4, Richard A. Scheltema2,3, Friedrich Förster1* Abstract The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo- microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. This unique architecture generates specificity for thousands of SPs based on the length of their hydrophobic segments. Keywords Signal Peptidase Complex, Signal Peptide, Protein Maturation, Membrane Thinning, cryo-EM, Crosslinking Mass Spectrometry, Molecular Dynamics Simulations, Protein Secretion, ER Translocon 1Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
    [Show full text]
  • Trypsinogen Isoforms in the Ferret Pancreas Eszter Hegyi & Miklós Sahin-Tóth
    www.nature.com/scientificreports OPEN Trypsinogen isoforms in the ferret pancreas Eszter Hegyi & Miklós Sahin-Tóth The domestic ferret (Mustela putorius furo) recently emerged as a novel model for human pancreatic Received: 29 June 2018 diseases. To investigate whether the ferret would be appropriate to study hereditary pancreatitis Accepted: 25 September 2018 associated with increased trypsinogen autoactivation, we purifed and cloned the trypsinogen isoforms Published: xx xx xxxx from the ferret pancreas and studied their functional properties. We found two highly expressed isoforms, anionic and cationic trypsinogen. When compared to human cationic trypsinogen (PRSS1), ferret anionic trypsinogen autoactivated only in the presence of high calcium concentrations but not in millimolar calcium, which prevails in the secretory pathway. Ferret cationic trypsinogen was completely defective in autoactivation under all conditions tested. However, both isoforms were readily activated by enteropeptidase and cathepsin B. We conclude that ferret trypsinogens do not autoactivate as their human paralogs and cannot be used to model the efects of trypsinogen mutations associated with human hereditary pancreatitis. Intra-pancreatic trypsinogen activation by cathepsin B can occur in ferrets, which might trigger pancreatitis even in the absence of trypsinogen autoactivation. Te digestive protease precursor trypsinogen is synthesized and secreted by the pancreas to the duodenum where it becomes activated to trypsin1. Te activation process involves limited proteolysis of the trypsinogen activation peptide by enteropeptidase, a brush-border serine protease specialized for this sole purpose. Te activation peptide is typically an eight amino-acid long N-terminal sequence, which contains a characteristic tetra-aspartate motif preceding the activation site peptide bond, which corresponds to Lys23-Ile24 in human trypsinogens.
    [Show full text]
  • Role of the Amino Terminus in Intracellular Protein Targeting to Secretory Granules Teresa L
    In Vitro Mutagenesis of Trypsinogen: Role of the Amino Terminus in Intracellular Protein Targeting to Secretory Granules Teresa L. Burgess,* Charles S. Craik,** Linda Matsuuchi,* and Regis B. Kelly* * Department of Biochemistry and Biophysics, and *Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 Abstract. The mouse anterior pituitary tumor cell expressed in AtT-20 cells to determine whether intra- line, AtT-20, targets secretory proteins into two distinct cellular targeting could be altered. Replacing the tryp- intracellular pathways. When the DNA that encodes sinogen signal peptide with that of the kappa-immu- trypsinogen is introduced into AtT-20 cells, the protein noglobulin light chain, a constitutively secreted is sorted into the regulated secretory pathway as protein, does not alter targeting to the regulated secre- efficiently as the endogenous peptide hormone ACq'H. tory pathway. In addition, deletion of the NH2-terminal In this study we have used double-label immunoelec- "pro" sequence of trypsinogen has virtually no effect tron microscopy to demonstrate that trypsinogen on protein targeting. However, this deletion does affect colocalizes in the same secretory granules as ACTH. the signal peptidase cleavage site, and as a result the In vitro mutagenesis was used to test whether the in- enzymatic activity of the truncated trypsin protein is formation for targeting trypsinogen m the secretory abolished. We conclude that neither the signal peptide granules resides at the amino (NH2) terminus of the nor the 12 NH2-terminal amino acids of trypsinogen protein. Mutations were made in the DNA that en- are essential for sorting to the regulated secretory codes trypsinogen, and the mutant proteins were pathway of AtT-20 cells.
    [Show full text]
  • Chem331 Tansey Chpt4
    3/10/20 Adhesion Covalent Cats - Proteases Roles Secretion P. gingivalis protease signal peptidases Immune Development Response T-cell protease matriptase 4 classes of proteases: Serine, Thiol (Cys), Acid Blood pressure Digestion regulation (Aspartyl), & Metal (Zn) trypsin renin Function Protease ex. Serine Cysteine trypsin, subtilisin, a-lytic Complement protease protease Nutrition Cell fusion protease Fixation hemaglutinase Invasion matrixmetalloproteases CI protease Evasion IgA protease Reproduction Tumor ADAM (a disintegrain and Invasion Adhesion collagenase and metalloproteinase) Fertilization signal peptidase, viral Processing acronase proteases, proteasome Signaling caspases, granzymes Fibrinolysis Pain Sensing tissue plasminogen kallikrein Acid Metallo- actvator protease protease Animal Virus Hormone Replication Processing HIV protease Kex 2 Substrate Specificity Serine Proteases Binding pocket is responsible for affinity Ser, His and Asp in active site Ser Proteases Multiple Mechanism Chymotrypsin Mechanism •Serine not generally an active amino acid for acid/base catalysis Nucleophilic attack •Catalytic triad of serine, histadine and aspartate responsible for the reactivity of serine in this active site •Covalent catalysis, Acid/base Catalysis, transition state bindingand Proximity mechanisms are used •Two phase reaction when an ester is used – burst phase - E +S initial reactions – steady state phase - EP -> E + P (deacylation) – The first step is the covalent catalysis - where the substrate actually is bound to the enzyme itself
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]
  • Intrinsic Evolutionary Constraints on Protease Structure, Enzyme
    Intrinsic evolutionary constraints on protease PNAS PLUS structure, enzyme acylation, and the identity of the catalytic triad Andrew R. Buller and Craig A. Townsend1 Departments of Biophysics and Chemistry, The Johns Hopkins University, Baltimore MD 21218 Edited by David Baker, University of Washington, Seattle, WA, and approved January 11, 2013 (received for review December 6, 2012) The study of proteolysis lies at the heart of our understanding of enzyme evolution remain unanswered. Because evolution oper- biocatalysis, enzyme evolution, and drug development. To un- ates through random forces, rationalizing why a particular out- derstand the degree of natural variation in protease active sites, come occurs is a difficult challenge. For example, the hydroxyl we systematically evaluated simple active site features from all nucleophile of a Ser protease was swapped for the thiol of Cys at serine, cysteine and threonine proteases of independent lineage. least twice in evolutionary history (9). However, there is not This convergent evolutionary analysis revealed several interre- a single example of Thr naturally substituting for Ser in the lated and previously unrecognized relationships. The reactive protease catalytic triad, despite its greater chemical similarity rotamer of the nucleophile determines which neighboring amide (9). Instead, the Thr proteases generate their N-terminal nu- can be used in the local oxyanion hole. Each rotamer–oxyanion cleophile through a posttranslational modification: cis-autopro- hole combination limits the location of the moiety facilitating pro- teolysis (10, 11). These facts constitute clear evidence that there ton transfer and, combined together, fixes the stereochemistry of is a strong selective pressure against Thr in the catalytic triad that catalysis.
    [Show full text]
  • Specific, Gene Expression Signatures in HIV-1 Infection1
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Qingsheng Li Publications Papers in the Biological Sciences 2009 Microarray Analysis of Lymphatic Tissue Reveals Stage- Specific, Gene Expression Signatures in HIV-1 Infection1 Qingsheng Li University of Minnesota, [email protected] Anthony J. Smith University of Minnesota Timothy W. Schacker University of Minnesota John V. Carlis University of Minnesota Lijie Duan University of Minnesota See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/biosciqingshengli Li, Qingsheng; Smith, Anthony J.; Schacker, Timothy W.; Carlis, John V.; Duan, Lijie; Reilly, Cavan S.; and Haase, Ashley T., "Microarray Analysis of Lymphatic Tissue Reveals Stage- Specific, Gene Expression Signatures in HIV-1 Infection1" (2009). Qingsheng Li Publications. 8. https://digitalcommons.unl.edu/biosciqingshengli/8 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Qingsheng Li Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Qingsheng Li, Anthony J. Smith, Timothy W. Schacker, John V. Carlis, Lijie Duan, Cavan S. Reilly, and Ashley T. Haase This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ biosciqingshengli/8 NIH Public Access Author Manuscript J Immunol. Author manuscript; available in PMC 2013 January 23. Published in final edited form as: J Immunol. 2009 August 1; 183(3): 1975–1982. doi:10.4049/jimmunol.0803222. Microarray Analysis of Lymphatic Tissue Reveals Stage- Specific, Gene Expression Signatures in HIV-1 Infection1 $watermark-text $watermark-text $watermark-text Qingsheng Li2,*, Anthony J.
    [Show full text]
  • Tryptic Dissection and Reconstitution of Translocation Activity for Nascent Presecretory Proteins Across Microsomal Membranes
    Proc. Natd. Acad. Sci. USA Vol. 76, No. 4, pp. 1795-1799, April 1979 Cell Biology Tryptic dissection and reconstitution of translocation activity for nascent presecretory proteins across microsomal membranes (prolactin mRNA/translation in reticulocyte lysate/signal and ribosome receptor domain/transport domain/signal peptidase) PETER WALTER, ROBERT C. JACKSON*, MADELEINE M. MARCUS, VISHWANATH R. LINGAPPA, AND GUNTER BLOBEL Laboratory of Cell Biology, The Rockefeller University, New York, New York 10021 Communicated by Fritz Lipmann, December 26,1978 ABSTRACT The ability of microsomal membranes to tionally competent components which were separated by translocate nascent presecretory proteins across their lipid bi- centrifugation. Translocation activity of the membrane can be layer into the intravesicular space was investigated by using regenerated by recombination of the fractions. trypsin as a proteolytic probe. We found that under defined conditions trypsin is able to dissect the translocation activity METHODS of microsomal membranes into components that can be sepa- rated into two fractions, one soluble and the other membrane Preparation of Stripped Microsomal Membranes. Rough bound. The trypsinized membrane fraction has lost its translo- microsomal membranes were prepared from freshly excised cation activity. Addition of the trypsin-generated soluble frac- dog pancreas (11) as described (12), with the following excep- tion, however, results in reconstitution of translocation activity. tions: all buffers contained 1 mM dithiothreitol and the rough These results are compatible with the notion proposed in the microsomes were collected by centrifugation for 2.5 hr at signal hypothesis that the translocation activity of the micro- somal membrane resides in transmembrane protein(s). We 140,000 X gay.
    [Show full text]
  • The Role of Elastases in Pancreatic Diseases
    The role of elastases in pancreatic diseases Ph.D. Thesis Anna Zsófia Tóth M.D. Supervisors: Prof. Péter Hegyi, M.D., Ph D., D.Sc. Prof. Miklós Sahin-Tóth, M.D., Ph.D., D.Sc Doctoral School of Theoretical Medicine Szeged 2018. Content Content ....................................................................................................................................... 1 1. List of abbreviations ........................................................................................................... 3 2. Introduction ......................................................................................................................... 5 2.1. Exocrin pancreatic insufficiency ................................................................................. 5 2.2. Pancreatic elastases ...................................................................................................... 5 2.3. Pancreatic function tests based on detection of elastases ............................................ 7 2.4. Possible role of elastases in chronic pancreatitis ......................................................... 8 3. Aims .................................................................................................................................. 10 3.1. ScheBo Pancreatic Elastase 1 Test Study .................................................................. 10 3.2. Genetic analysis study ............................................................................................... 10 4. Materials and methods .....................................................................................................
    [Show full text]
  • Proline Residues in the Maturation and Degradation of Peptide Hormones and Neuropeptides
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 234, number 2, 251-256 FEB 06071 July 1988 Review Letter Proline residues in the maturation and degradation of peptide hormones and neuropeptides Rolf Mentlein Anatomisches Institut der Christian-Albrechts Universitiit zu Kiel, OlshausenstraJe 40.2300 Kiel I, FRG Received 4 May 1988; revised version received 23 May 1988 The proteases involved in the maturation of regulatory peptides like those of broader specificity normally fail to cleave peptide bonds linked to the cyclic amino acid proline. This generates several mature peptides with N-terminal X-Pro- sequences. However, in certain non-mammalian tissues repetitive pre-sequences of this type are removed by specialized dipeptidyl (amino)peptidases during maturation. In mammals, proline-specific proteases are not involved in the biosyn- thesis of regulatory peptides, but due to their unique specificity they could play an important role in the degradation of them. Evidence exists that dipeptidyl (amino)peptidase IV at the cell surface of endothelial cells sequesters circulating peptide hormones which arc then susceptible to broader aminopeptidase attack. The cleavage of several neuropeptides by prolyl endopeptidase has been demonstrated in vitro, but its role in the brain is questionable since the precise localiza- tion of the protease is not clarified. Neuropeptide; Peptide hormone; Proteolytic processing; Degradation; Dipeptidyl (amino)peptidase; Prolyl endopeptidase 1. INTRODUCTION 2. DIRECTION OF THE PROTEOLYTIC MATURATION OF REGULATORY The unique cyclic and imino structure of the PEPTIDES BY PROLINE RESIDUES amino acid proline influences not only the confor- mation of peptide chains, but also restricts the at- Regulatory peptides are synthesized as part of tack of proteases.
    [Show full text]