Wisconsinan, Sangamonian, and Illinoian Stratigraphy in Central Illinois

Total Page:16

File Type:pdf, Size:1020Kb

Wisconsinan, Sangamonian, and Illinoian Stratigraphy in Central Illinois MIDWEST FRIENDS OF THE PLEISTOCENE 26th FIELD CONFERENCE May 4-6, 1979 Wisconsinan, Sangamonian, and Illinoian stratigraphy in central Illinois LEADERS: Leon R. Follmer E. Donald McKay Jerry A. Lineback David L. Gross CONTRIBUTIONS BY: Jerry A. Lineback Leon R. Follmer H. B. Willman E. Donald McKay James E. King Frances B. King Norton G. Miller Sponsored by: Illinois State Geological Survey, Urbana, Illinois, and Department of Geology, University of Illinois at Urbana-Champaign ILLINOIS STATE GEOLOGICAL SURVEY GUIDEBOOK 13 LOCATIONS OF GEOLOGIC SECTIONS AND FIELD TRIP ROUTE Wisconsinan, Sangamonian, and Illinoian stratigraphy in central Illinois contents Dedication ;|; Acknowledgments 1 INTRODUCTION 1 REGIONAL STRATIGRAPHY 5 Pre-lllinoian drift 5 Illinoian drift 5 Wisconsinan drift 6 LABORATORY DATA AND TECHNIQUES 7 DESCRIPTIONS OF SECTIONS 7 Farm Creek Section 19 Gardena Section 24 Farmdale Park Section 29 Glendale School Section 31 GraybaR Section 35 Tindall School Section 39 Lewistown Section 43 Arenzville Section 49 Fairground Section 54 Athens South Quarry Section 60 Athens North Quarry Section 65 Jubilee College Section 69 THE STATUS OF THE ILLINOIAN GLACIAL STAGE Jerry A. Lineback 79 A HISTORICAL REVIEW OF THE SANGAMON SOIL Leon R. Follmer 92 COMMENTS ON THE SANGAMON SOIL H. B. Willman 95 WISCONSINAN LOESS STRATIGRAPHY OF ILLINOIS E. Donald McKay 109 POLLEN ANALYSIS OF SOME FARMDALIAN AND WOODFORDIAN DEPOSITS, CENTRAL ILLINOIS James E. King 114 PLANT MACROFOSSILS FROM THE ATHENS NORTH QUARRY Frances B. King 116 PALEOECOLOGICAL COMMENTS ON FOSSIL MOSSES IN A BURIED ORGANIC BED NEAR PEORIA, TAZEWELL COUNTY, ILLINOIS Norton G. Miller 117 APPENDIXES 117 Appendix 1 Grain sizes, carbonate minerals, and clay mineralogy 126 Appendix 2 Pipette analysis data 129 Appendix 3 Explanation of the pedologic features and concepts used in the discussion of soils 135 REFERENCES Midwest Friends of the Pleistocene Field Conference, 26th, 1979. Wisconsinan, Sangamonian, and lllinoian stratigraphy in central Illinois : Midwest Friends of the Pleistocene 26th Field Conference, May 4-6, 1979 / contributions by Jerry A. Lineback . .. et al.; sponsored by Illinois State Geological Survey, Urbana, Illinois, and Department of Geology, Univer- sity of Illinois at Urbana-Champaign. - Urbana : The Survey, 1979. - 140p. : ill. ; 28cm. - (Guidebook Illinois. State Geo- logical Survey ; 1 3) Bibliography: p. 135-139. 1. Geology, Stratigraphic-Quaternary-Guide-books. 2. Geology- Illinois-Guide-books. I. Lineback, Jerry A. II. Illinois. State Geo- logical Survey. III. Illinois. University at Urbana-Champaign. Dept. of Geology. IV. Title. V. Series: Illinois. State Geological Survey. Guidebook ; 13. Dedicated to Harold Bowen Willman in recognition of outstanding contributions to knowledge of Pleistocene geology, and in appreciation for more than a half century of service to the geological profession and for loyalty as a Friend. Midwest Friends of the Pleistocene May 5, 1979 ACKNOWLEDGMENTS A considerable amount of knowledge of the Pleistocene geology of Illinois has been achieved through the work of H. B. Willman, J. C. Frye, H. D. Glass, and many others on the staff of the Illinois State Geological Survey. Although significant milestones of understanding of the Pleistocene have been accomplished in their work, they have encouraged the leaders of this conference to pursue further studies to develop a greater understanding of the glacial history of Illinois. During the preparation for this conference, the tour leaders received cooperation and assistance from many landowners and organizations. We want to extend our appreciation to James Hildebrand, Superintendent of Farmdale Park, Tazewell County; Dillard Royer; Lewistown City Council; Warren Stock; Charles Dunseth; Loren Hopwood; Daniel Roadruck and Walter Ginn, Western Materials Company, Medusa Aggregates; Jack Brown, Superintendent of Indian Point Quarry, Material Service Corpo- ration; and the Illinois State Museum. The tour leaders greatly appreciate the support from the Department of Geology, University of Illinois, for cosponsoring the conference and for assistance from the staff and graduate students. Many staff members at the Illinois State Geological Survey assisted in the conference. Clay minerals were analyzed by H. D. Glass. Grain size analyses were made by Rebecca Bianchini and Holly Radis. Radiocarbon age determinations were made by Jack Liu. Inez Kettles assisted in the carbonate mineral analyses. Assisting in conducting the field conference were R. C. Berg, C. S. Hunt, M. M. Killey, J. T. Wickham, S. S. Wickham, P. C. Reed, J. M. Masters, T. M. Johnson, D. E. Lindorff, H. J. H. Harris, P. V. Heinrich, G. M. Fleeger, and W. H. Johnson. Interpretations were discussed with H. B. Willman, H. D. Glass, J. P. Kempton, J. T. Wickham, and W. H. Johnson, who made many valuable comments. Editing, drafting, and design work was done by Joyce Tikalsky and Nancy Stark. Dorothy Huffman prepared the registration materials and Debra Kaufman typed the manuscript. INTRODUCTION The purpose of this field conference is (1) to reexamine the classic Farm Creek Section, which has been studied by geologists for nearly 90 years and has been used by many workers as a type or reference section for several rock-, time-, and soi 1 -stratigraphic classifications of the Quaternary, (2) to ex- amine details of the development of the Sangamon Soil under varying environ- mental conditions in its type region, (3) to consider some details of strati- graphic and compositional variations in the Wisconsinan loesses and their re- lation to Wisconsinan glaciation in Illinois, and (4) to outline some new ideas on the stratigraphy and duration of the Illinoian Stage in Illinois. The papers and interpretations of geologic sections in this guidebook repre- sent a report on the status and development of these continuing investiga- tions. The Peoria-Springfield, Illinois, region has been trodden by many well- known Quaternary geologists during the last century. Worthen, Leverett, Leighton, MacClintock, Horberg, Willman, and Frye, to name but a few, used sections in the region to develop concepts of Quaternary stratigraphy, yet much remains to be done. Recently developed ideas on basic classification of the Quaternary, on correlation of climatic changes with the marine record, on soil development in the geologic past, and on interpretation of proglacial loess deposits are based on studi es in this classical region and will be ex- amined during the field conference. The papers included in the guidebook contribute to an understanding of the geology of the Peoria-Springfield region. Descriptions, discussions, and analytical data from several major geologic sections in the region, some of which will be visited during the field conference, are also presented. The remainder of the guidebook is intended as a reference to guide the reader in visiting sections that are still available. No road log is provided in the guidebook. REGIONAL STRATIGRAPHY Sheets of drift from the Illinoian and Wisconsinan Stages cover the Peoria- Springfield region (fig. 1). Older drift is found in places below the Illi- noian. Statewide distribution of Quaternary deposits in Illinois has been mapped recently (Lineback, in press), and statewide stratigraphic nomenclature of the Quaternary (modified from Willman and Frye, 1970) is summarized on the inside back cover. INTRODUCTION/1 10 0 10 20 30 40 Miles 1 I I I I I I t— I— I— I— I I — I 10 0 10 20 30 40 50 Kilometers l-l l-l I I I HH M I I ^ Time-, 1 rock-, and soi -stratigraphic units used in the Peoria-Springf ield region are summarized in figure 2. Nomenclature and time-stratigraphic rela- tionships shown by figure 2 include recent tentative modifications that are discussed in the papers in this volume. Two major preglacial valleys, the Ancient Mississippi and the Teays- Mahomet, meet in Mason County between Peoria and Springfield. These valleys have been filled by repeated glacial advances during the Quaternary. Drift 2/REGIONAL STRATIGRAPHY Figure 1. Quaternary deposits of the Peoria- WISCONSINAN AND HOLOCENE Springfield region, Illinois. (Simplified from Lineback, in press. sm Surface mines—areas where Quaternary deposits and bedrock are mixed because of surface mining activity. c Cahokia Alluvium— deposits in floodplains and channels of modern rivers and streams; mostly poorly sorted sand, silt, or clay; in many places overlies well-sorted glacial outwash of the Henry Formation. pv Peyton Colluvium—narrow deposits of largely unsorted debris accumulating on and at the base of steep slopes by creep and slope wash. pi Parkland Sand— wind-blown sand, well-sorted medium- grained sand in dunes and thick sheets between dunes. gl Grayslake Peat— peat, muck, and marl; dominantly organic deposits in lake basins on floodplains. WISCONSINAN e Equality Formation— largely slack-water lakes in major valleys and tributaries. Occurs mostly as terrace rem- anents of fine-grained materials. h Henry Formation—sand and gravel, generally well sorted, glacial outwash in outwash plains, valley trains, terrace remanents of valley trains, and ice-contact deposits. pr Peoria Loess and Roxana Silt combined—wind-blown silt more than 6 meters (20 ft) thick on uplands; local lenses of fine-grained sand. Wedron Formation— mainly glacial till with some lenses and beds of sand, gravel, and silt. ws Snider Till Member— mostly gray silty clay till. wb Batestown (east) and Maiden (north) Till Members- wm gray silty till; oxidizes to olive brown.
Recommended publications
  • Wisconsinan and Sangamonian Type Sections of Central Illinois
    557 IL6gu Buidebook 21 COPY no. 21 OFFICE Wisconsinan and Sangamonian type sections of central Illinois E. Donald McKay Ninth Biennial Meeting, American Quaternary Association University of Illinois at Urbana-Champaign, May 31 -June 6, 1986 Sponsored by the Illinois State Geological and Water Surveys, the Illinois State Museum, and the University of Illinois Departments of Geology, Geography, and Anthropology Wisconsinan and Sangamonian type sections of central Illinois Leaders E. Donald McKay Illinois State Geological Survey, Champaign, Illinois Alan D. Ham Dickson Mounds Museum, Lewistown, Illinois Contributors Leon R. Follmer Illinois State Geological Survey, Champaign, Illinois Francis F. King James E. King Illinois State Museum, Springfield, Illinois Alan V. Morgan Anne Morgan University of Waterloo, Waterloo, Ontario, Canada American Quaternary Association Ninth Biennial Meeting, May 31 -June 6, 1986 Urbana-Champaign, Illinois ISGS Guidebook 21 Reprinted 1990 ILLINOIS STATE GEOLOGICAL SURVEY Morris W Leighton, Chief 615 East Peabody Drive Champaign, Illinois 61820 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/wisconsinansanga21mcka Contents Introduction 1 Stopl The Farm Creek Section: A Notable Pleistocene Section 7 E. Donald McKay and Leon R. Follmer Stop 2 The Dickson Mounds Museum 25 Alan D. Ham Stop 3 Athens Quarry Sections: Type Locality of the Sangamon Soil 27 Leon R. Follmer, E. Donald McKay, James E. King and Francis B. King References 41 Appendix 1. Comparison of the Complete Soil Profile and a Weathering Profile 45 in a Rock (from Follmer, 1984) Appendix 2. A Preliminary Note on Fossil Insect Faunas from Central Illinois 46 Alan V.
    [Show full text]
  • Lexicon of Pleistocene Stratigraphic Units of Wisconsin
    Lexicon of Pleistocene Stratigraphic Units of Wisconsin ON ATI RM FO K CREE MILLER 0 20 40 mi Douglas Member 0 50 km Lake ? Crab Member EDITORS C O Kent M. Syverson P P Florence Member E R Lee Clayton F Wildcat A Lake ? L L Member Nashville Member John W. Attig M S r ik be a F m n O r e R e TRADE RIVER M a M A T b David M. Mickelson e I O N FM k Pokegama m a e L r Creek Mbr M n e M b f a e f lv m m i Sy e l M Prairie b C e in Farm r r sk er e o emb lv P Member M i S ill S L rr L e A M Middle F Edgar ER M Inlet HOLY HILL V F Mbr RI Member FM Bakerville MARATHON Liberty Grove M Member FM F r Member e E b m E e PIERCE N M Two Rivers Member FM Keene U re PIERCE A o nm Hersey Member W le FM G Member E Branch River Member Kinnickinnic K H HOLY HILL Member r B Chilton e FM O Kirby Lake b IG Mbr Boundaries Member m L F e L M A Y Formation T s S F r M e H d l Member H a I o V r L i c Explanation o L n M Area of sediment deposited F e m during last part of Wisconsin O b er Glaciation, between about R 35,000 and 11,000 years M A Ozaukee before present.
    [Show full text]
  • Vegetation and Fire at the Last Glacial Maximum in Tropical South America
    Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher
    [Show full text]
  • Introduction to Geological Process in Illinois Glacial
    INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • Glacial Geology of the Vandalia, Illinois, Region
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE i42 ILLINOtS GEOLOGICAL provided by Illinois Digital Environment for Access to Learning and Scholarship... S SURVEY LIBRARY 14.GS: CIR442 STATE ILLINOIS c. 1 OF DEPARTMENT OF REGISTRATION AND EDUCATION GLACIAL GEOLOGY OF THE VANDALIA. ILLINOIS. REGION Alan M. Jacobs Jerry A. Lineback CIRCULAR 442 1969 ILLINOIS STATE GEOLOGICAL SURVEY URBANA, ILLINOIS 61801 John C. Frye, Chief Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/glacialgeologyof442jaco GLACIAL GEOLOGY OF THE VANDALIA, ILLINOIS, REGION Alan M. Jacobs and Jerry A. Lineback ABSTRACT Deposits and soils of the Kansan, Yarmouthian, Illinoian, Sangamonian, and Wisconsinan Stages are pre- sent in the region surrounding Vandalia (south-central), Illinois. Kansan till exposures, with a truncated Yarmouth Soil, are exposed at a few places. The unaltered till is sandy and silty M and its less than 2-micron size fraction contains abundant illite and more calcite than dolomite. The Smithboro till (lowermost Illinoian) is relatively silty, plastic, and its less than 2-micron size fraction contains more dolomite than calcite and more expandable clay min- erals than any till in this region. The overlying Vandalia till (Illinoian) is relatively sandy, friable, and its less than 2-micron size fraction contains abundant illite and more dolomite than calcite. The Mulberry Grove silt lies between the Vandalia and Smithboro tills at some localities. The Hagarstown beds (Illinoian) overlie the Vandalia till and consist of sand, gravel, poorly sorted gravel, and gravelly till.
    [Show full text]
  • Stratigraphy and Pollen Analysis of Yarmouthian Interglacial Deposits
    22G FRANK R. ETTENSOHN Vol. 74 STRATIGRAPHY AND POLLEN ANALYSIS OP YARMOUTHIAN INTERGLACIAL DEPOSITS IN SOUTHEASTERN INDIANA1 RONALD O. KAPP AND ANSEL M. GOODING Alma College, Alma, Michigan 48801, and Dept. of Geology, Earlham College, Richmond, Indiana 47374 ABSTRACT Additional stratigraphic study and pollen analysis of organic units of pre-Illinoian drift in the Handley and Townsend Farms Pleistocene sections in southeastern Indiana have provided new data that change previous interpretations and add details to the his- tory recorded in these sections. Of particular importance is the discovery in the Handley Farm section of pollen of deciduous trees in lake clays beneath Yarmouthian colluvium, indicating that the lake clay unit is also Yarmouthian. The pollen diagram spans a sub- stantial part of Yarmouthian interglacial time, with evidence of early temperate and late temperate vegetational phases. It is the only modern pollen record in North America for this interglacial age. The pollen sequence is characterized by extraordinarily high per- centages of Ostrya-Carpinus pollen, along with Quercus, Pinus, and Corylus at the beginning of the record; this is followed by higher proportions of Fagus, Carya, and Ulmus pollen. The sequence, while distinctive from other North American pollen records, bears recogniz- able similarities to Sangamonian interglacial and postglacial pollen diagrams in the southern Great Lakes region. Manuscript received July 10, 1973 (73-50). THE OHIO JOURNAL OF SCIENCE 74(4): 226, July, 1974 No. 4 YARMOUTH JAN INTERGLACIAL DEPOSITS 227 The Kansan glaeiation in southeastern Indiana as discussed by Gooding (1966) was based on interpretations of stratigraphy in three exposures of pre-Illinoian drift (Osgood, Handley, and Townsend sections; fig.
    [Show full text]
  • Routing of Meltwater from the Laurentide Ice Sheet During The
    LETTERS TO NATURE very high sulphate concentrations (Fig. 1). Thus, differences in P release has yet to prove the mechanism behind this relation­ P cycling between fresh waters and salt waters may also influence ship. If sediment P release were controlled largely by sulphur, the switch in nutrient limitation. our view of the lakes that are being affected by atmospheric A further implication of our findings is a possible effect of S pollution could be altered. It is believed generally that anthropogenic S pollution on P cycling in lakes. Our data lakes with well-buffered watersheds are insensitive to the effects indicate that aquatic systems with low sulphate concentrations of atmospheric S pollution. However, because changing have low RPR under either oxic or anoxic conditions; systems atmospheric S inputs can alter the sulfate concentration in with only slightly elevated sulphate concentrations have sig­ surface waters22 independent of acid neutralization in the water­ nificantly elevated RPR, particularly under anoxic conditions shed, the P cycle of even so-called 'insensitive' lakes may be (Fig. 1). Work on the relationship between sulphate loading and affected. D Received 22 February; accepted 15 August 1987. 17. Nurnberg. G. Can. 1 Fish. aquat. Sci. 43, 574-560 (1985). 18. Curtis, P. J. Nature 337, 156-156 (1989). 1. Bostrom, B .. Jansson. M. & Forsberg, G. Arch. Hydrobiol. Beih. Ergebn. Limno/. 18, 5-59 (1982). 19. Carignan, R. & Tessier, A. Geochim. cosmochim. Acta 52, 1179-1188 (1988). 2. Mortimer. C. H. 1 Ecol. 29, 280-329 (1941). 20. Howarth, R. W. & Cole, J. J. Science 229, 653-655 (1985).
    [Show full text]
  • Overkill, Glacial History, and the Extinction of North America's Ice Age Megafauna
    PERSPECTIVE Overkill, glacial history, and the extinction of North America’s Ice Age megafauna PERSPECTIVE David J. Meltzera,1 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved September 23, 2020 (received for review July 21, 2020) The end of the Pleistocene in North America saw the extinction of 38 genera of mostly large mammals. As their disappearance seemingly coincided with the arrival of people in the Americas, their extinction is often attributed to human overkill, notwithstanding a dearth of archaeological evidence of human predation. Moreover, this period saw the extinction of other species, along with significant changes in many surviving taxa, suggesting a broader cause, notably, the ecological upheaval that occurred as Earth shifted from a glacial to an interglacial climate. But, overkill advocates ask, if extinctions were due to climate changes, why did these large mammals survive previous glacial−interglacial transitions, only to vanish at the one when human hunters were present? This question rests on two assumptions: that pre- vious glacial−interglacial transitions were similar to the end of the Pleistocene, and that the large mammal genera survived unchanged over multiple such cycles. Neither is demonstrably correct. Resolving the cause of large mammal extinctions requires greater knowledge of individual species’ histories and their adaptive tolerances, a fuller understanding of how past climatic and ecological changes impacted those animals and their biotic communities, and what changes occurred at the Pleistocene−Holocene boundary that might have led to those genera going extinct at that time. Then we will be able to ascertain whether the sole ecologically significant difference between previous glacial−interglacial transitions and the very last one was a human presence.
    [Show full text]
  • Modelling the Concentration of Atmospheric CO2 During the Younger Dryas Climate Event
    Climate Dynamics (1999) 15:341}354 ( Springer-Verlag 1999 O. Marchal' T. F. Stocker'F. Joos' A. Indermu~hle T. Blunier'J. Tschumi Modelling the concentration of atmospheric CO2 during the Younger Dryas climate event Received: 27 May 1998 / Accepted: 5 November 1998 Abstract The Younger Dryas (YD, dated between 12.7}11.6 ky BP in the GRIP ice core, Central Green- 1 Introduction land) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but Pollen continental sequences indicate that the Younger controversial hypothesis to explain the cooling is a re- Dryas cold climate event of the last deglaciation (YD) duction of the Atlantic thermohaline circulation (THC) a!ected mainly northern Europe and eastern Canada and associated northward heat #ux as triggered by (Peteet 1995). This event has been dated by annual layer counting between 12 700$100 y BP and glacial meltwater. Recently, a CH4-based synchroniza- d18 11550$70 y BP in the GRIP ice core (72.6 3N, tion of GRIP O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmo- 37.6 3W; Johnsen et al. 1992) and between 12 940$ 260 !5. y BP and 11 640$ 250 y BP in the GISP2 ice core spheric CO2 (CO2 ) rose steadily during the YD, sug- !5. (72.6 3N, 38.5 3W; Alley et al. 1993), both drilled in gesting a minor in#uence of the THC on CO2 at that !5. Central Greenland. A popular hypothesis for the YD is time. Here we show that the CO2 change in a zonally averaged, circulation-biogeochemistry ocean model a reduction in the formation of North Atlantic Deep when THC is collapsed by freshwater #ux anomaly is Water by the input of low-density glacial meltwater, consistent with the Byrd record.
    [Show full text]
  • 13. Late Pliocene-Pleistocene Glaciation
    13. LATE PLIOCENE - PLEISTOCENE GLACIATION W. A. Berggren, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts The discussion in this chapter is broken down into two increase in the former exceeding that of the latter; or parts: the first deals with glaciation in the North Atlantic as (v) less detritals, clay and carbonate deposited per unit time revealed in the data obtained on Leg 12; in the second part (that is, decreased sedimentation rate) with the decrease in an attempt is made to provide a chronologic framework of the latter exceeding the former. In view of the demon- Late Pliocene-Pleistocene glaciation and to correlate gla- strable increase in sedimentation rate above the preglacial/ cial/interglacial sequences as recorded in land and deep-sea glacial boundary at Sites 111, 112 and 116 due to increased sediments. amounts of detrital minerals and the fact that glacial periods in high latitudes are characterized by a carbonate GLACIATION IN THE NORTH ATLANTIC minimum (Mclntyre et al., in press) it can be seen that the One of the most significant aspects of Leg 12 was the correct explanation for the increase in natural gamma activ- various results which were obtained regarding glaciation in ity in the glacial part of the section is rather complex. Thin the North Atlantic. Glacial sediments were encountered at bands of carbonate were found at various levels intercalated all sites in the North Atlantic with the exception of Site with detrital-rich clays which indicates interglacial intervals, 117 (for the purpose of this discussion the North Atlantic so that the correct explanation probably lies with (iii) encompasses Sites 111 through 117; Sites 118 and 119 are above.
    [Show full text]
  • Climate Modeling in Las Leñas, Central Andes of Argentina
    Glacier - climate modeling in Las Leñas, Central Andes of Argentina Master’s Thesis Faculty of Science University of Bern presented by Philippe Wäger 2009 Supervisor: Prof. Dr. Heinz Veit Institute of Geography and Oeschger Centre for Climate Change Research Advisor: Dr. Christoph Kull Institute of Geography and Organ consultatif sur les changements climatiques OcCC Abstract Studies investigating late Pleistocene glaciations in the Chilean Lake District (~40-43°S) and in Patagonia have been carried out for several decades and have led to a well established glacial chronology. Knowledge about the timing of late Pleistocene glaciations in the arid Central Andes (~15-30°S) and the mechanisms triggering them has also strongly increased in the past years, although it still remains limited compared to regions in the Northern Hemisphere. The Southern Central Andes between 31-40°S are only poorly investigated so far, which is mainly due to the remoteness of the formerly glaciated valleys and poor age control. The present study is located in Las Leñas at 35°S, where late Pleistocene glaciation has left impressive and quite well preserved moraines. A glacier-climate model (Kull 1999) was applied to investigate the climate conditions that have triggered this local last glacial maximum (LLGM) advance. The model used was originally built to investigate glacio-climatological conditions in a summer precipitation regime, and all previous studies working with it were located in the arid Central Andes between ~17- 30°S. Regarding the methodology applied, the present study has established the southernmost study site so far, and the first lying in midlatitudes with dominant and regular winter precipitation from the Westerlies.
    [Show full text]