Heuristic Pathfinding Algorithm Based on Dijkstra Yan-Jiang SUN1, A, Xiang-Qian DING2, B, Lei-Na JIANG3, C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pathfinding in Computer Games
The ITB Journal Volume 4 Issue 2 Article 6 2003 Pathfinding in Computer Games Ross Graham Hugh McCabe Stephen Sheridan Follow this and additional works at: https://arrow.tudublin.ie/itbj Part of the Computer and Systems Architecture Commons Recommended Citation Graham, Ross; McCabe, Hugh; and Sheridan, Stephen (2003) "Pathfinding in Computer Games," The ITB Journal: Vol. 4: Iss. 2, Article 6. doi:10.21427/D7ZQ9J Available at: https://arrow.tudublin.ie/itbj/vol4/iss2/6 This Article is brought to you for free and open access by the Ceased publication at ARROW@TU Dublin. It has been accepted for inclusion in The ITB Journal by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License ITB Journal Pathfinding in Computer Games Ross Graham, Hugh McCabe, Stephen Sheridan School of Informatics & Engineering, Institute of Technology Blanchardstown [email protected], [email protected], [email protected] Abstract One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. This report will highlight pathfinding algorithms used presently in games and their shortcomings especially when dealing with real-time pathfinding. With the advances being made in other components, such as physics engines, it is AI that is impeding the next generation of computer games. This report will focus on how machine learning techniques such as Artificial Neural Networks and Genetic Algorithms can be used to enhance an agents ability to handle pathfinding in real-time. -
Quantum Algorithms for Matching Problems
Quantum Algorithms for Matching Problems Sebastian D¨orn Institut f¨urTheoretische Informatik, Universit¨atUlm, 89069 Ulm, Germany [email protected] Abstract. We present quantum algorithms for the following matching problems in unweighted and weighted graphs with n vertices and m edges: √ – Finding a maximal matching in general graphs in time O( nm log2 n). √ – Finding a maximum matching in general graphs in time O(n m log2 n). – Finding a maximum weight matching in bipartite graphs in time √ O(n mN log2 n), where N is the largest edge weight. – Finding a minimum weight perfect matching in bipartite graphs in √ time O(n nm log3 n). These results improve the best classical complexity bounds for the corre- sponding problems. In particular, the second result solves an open ques- tion stated in a paper by Ambainis and Spalekˇ [AS06]. 1 Introduction A matching in a graph is a set of edges such that for every vertex at most one edge of the matching is incident on the vertex. The task is to find a matching of maximum cardinality. The matching problem has many important applications in graph theory and computer science. In this paper we study the complexity of algorithms for the matching prob- lems on quantum computers and compare these to the best known classical algo- rithms. We will consider different versions of the matching problems, depending on whether the graph is bipartite or not and whether the graph is unweighted or weighted. For unweighted graphs, the best classical algorithm for finding a match- ing of maximum√ cardinality is based on augmenting paths and has running time O( nm) (see Micali and Vazirani [MV80]). -
Lecture 18 Solving Shortest Path Problem: Dijkstra's Algorithm
Lecture 18 Solving Shortest Path Problem: Dijkstra’s Algorithm October 23, 2009 Lecture 18 Outline • Focus on Dijkstra’s Algorithm • Importance: Where it has been used? • Algorithm’s general description • Algorithm steps in detail • Example Operations Research Methods 1 Lecture 18 One-To-All Shortest Path Problem We are given a weighted network (V, E, C) with node set V , edge set E, and the weight set C specifying weights cij for the edges (i, j) ∈ E. We are also given a starting node s ∈ V . The one-to-all shortest path problem is the problem of determining the shortest path from node s to all the other nodes in the network. The weights on the links are also referred as costs. Operations Research Methods 2 Lecture 18 Algorithms Solving the Problem • Dijkstra’s algorithm • Solves only the problems with nonnegative costs, i.e., cij ≥ 0 for all (i, j) ∈ E • Bellman-Ford algorithm • Applicable to problems with arbitrary costs • Floyd-Warshall algorithm • Applicable to problems with arbitrary costs • Solves a more general all-to-all shortest path problem Floyd-Warshall and Bellman-Ford algorithm solve the problems on graphs that do not have a cycle with negative cost. Operations Research Methods 3 Lecture 18 Importance of Dijkstra’s algorithm Many more problems than you might at first think can be cast as shortest path problems, making Dijkstra’s algorithm a powerful and general tool. For example: • Dijkstra’s algorithm is applied to automatically find directions between physical locations, such as driving directions on websites like Mapquest or Google Maps. -
Branch and Bound Algorithm to Determine the Best Route to Get Around Tokyo
Branch and Bound Algorithm to Determine The Best Route to Get Around Tokyo Muhammad Iqbal Sigid - 13519152 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10 Bandung E-mail: [email protected] Abstract—This paper described using branch and bound Fig. 1. State Space Tree example for Branch and Bound Algorithm (Source: algorithm to determined the best route to get around six selected https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma- places in Tokyo, modeled after travelling salesman problem. The Branch-and-Bound-2021-Bagian1.pdf accessed May 8, 2021) bound function used is reduced cost matrix using manual calculation and a python program to check the solution. Branch and Bound is an algorithm design which are usually used to solve discrete and combinatorial optimization Keywords—TSP, pathfinding, Tokyo, BnB problems. Branch and bound uses state space tree by expanding its nodes (subset of solution set) based on the minimum or I. INTRODUCTION maximum cost of the active node. There is also a bound which is used to determine if a node can produce a better solution Pathfinding algorithm is used to find the most efficient than the best one so far. If the node cost violates this bound, route between two points. It can be the shortest, the cheapest, then the node will be eliminated and will not be expanded the faster, or other kind. Pathfinding is closely related to the further. shortest path problem, graph theory, or mazes. Pathfinding usually used a graph as a representation. The nodes represent a Branch and bound algorithm is quite similar to Breadth place to visit and the edges represent the nodes connectivity. -
Faster Shortest-Path Algorithms for Planar Graphs
Journal of Computer and System SciencesSS1493 journal of computer and system sciences 55, 323 (1997) article no. SS971493 Faster Shortest-Path Algorithms for Planar Graphs Monika R. Henzinger* Department of Computer Science, Cornell University, Ithaca, New York 14853 Philip Klein- Department of Computer Science, Brown Univrsity, Providence, Rhode Island 02912 Satish Rao NEC Research Institute and Sairam Subramanian Bell Northern Research Received April 18, 1995; revised August 13, 1996 and matching). In this paper we improved algorithms for We give a linear-time algorithm for single-source shortest paths in single-source shortest paths in planar networks. planar graphs with nonnegative edge-lengths. Our algorithm also The first algorithm handles the important special case of yields a linear-time algorithm for maximum flow in a planar graph nonnegative edge-lengths. For this case, we obtain a linear- with the source and sink on the same face. For the case where time algorithm. Thus our algorithm is optimal, up to con- negative edge-lengths are allowed, we give an algorithm requiring O(n4Â3 log(nL)) time, where L is the absolute value of the most stant factors. No linear-time algorithm for shortest paths in negative length. This algorithm can be used to obtain similar bounds for planar graphs was previously known. For general graphs computing a feasible flow in a planar network, for finding a perfect the best bounds known in the standard model, which for- matching in a planar bipartite graph, and for finding a maximum flow in bids bit-manipulation of the lengths, is O(m+n log n) time, a planar graph when the source and sink are not on the same face. -
Shortest Path Problems and Algorithms
Shortest path problems and algorithms 1. Shortest path problems . Shortest path problem . Single-source shortest path problem . Single-destination shortest path problem . All-pairs shortest path problem 2. Algorithms . Dijkstra’s algorithm for single source shortest path problem (positive weight) . Bellman–Ford algorithm for single source shortest path problem (allow negative weight) . Floyd–Warshall algorithm for all pairs shortest paths . Johnson's algorithm for all pairs shortest paths CP412 ADAII 1. Shortest path problems Shortest path problem: Input: weight graph G = (V, E, W), source vertex s and destination vertex t. Output: a shortest path of G from s to t. Single-source shortest path problem: Output: shortest paths from source vertex s to all other vertices of G. Single-destination shortest path problem: Output: shortest paths from all vertices of G to a single destination t. All-pairs shortest path problem: Output: shortest paths between every pair of vertices u, v in the graph. CP412 ADAII History of SPP and algorithms Shimbel (1955). Information networks. Ford (1956). RAND, economics of transportation. Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, Seitz (1957). Combat Development Dept. of the Army Electronic Proving Ground. Dantzig (1958). Simplex method for linear programming. Bellman (1958). Dynamic programming. Moore (1959). Routing long-distance telephone calls for Bell Labs. Dijkstra (1959). Simpler and faster version of Ford's algorithm. CP412 ADAII Dijkstra’s algorithms Edger W. Dijkstra’s quotes . The question of whether computers can think is like the question of whether submarines can swim. In their capacity as a tool, computers will be but a ripple on the surface of our culture. -
The On-Line Shortest Path Problem Under Partial Monitoring
Journal of Machine Learning Research 8 (2007) 2369-2403 Submitted 4/07; Revised 8/07; Published 10/07 The On-Line Shortest Path Problem Under Partial Monitoring Andras´ Gyor¨ gy [email protected] Machine Learning Research Group Computer and Automation Research Institute Hungarian Academy of Sciences Kende u. 13-17, Budapest, Hungary, H-1111 Tamas´ Linder [email protected] Department of Mathematics and Statistics Queen’s University, Kingston, Ontario Canada K7L 3N6 Gabor´ Lugosi [email protected] ICREA and Department of Economics Universitat Pompeu Fabra Ramon Trias Fargas 25-27 08005 Barcelona, Spain Gyor¨ gy Ottucsak´ [email protected] Department of Computer Science and Information Theory Budapest University of Technology and Economics Magyar Tudosok´ Kor¨ utja´ 2. Budapest, Hungary, H-1117 Editor: Leslie Pack Kaelbling Abstract The on-line shortest path problem is considered under various models of partial monitoring. Given a weighted directed acyclic graph whose edge weights can change in an arbitrary (adversarial) way, a decision maker has to choose in each round of a game a path between two distinguished vertices such that the loss of the chosen path (defined as the sum of the weights of its composing edges) be as small as possible. In a setting generalizing the multi-armed bandit problem, after choosing a path, the decision maker learns only the weights of those edges that belong to the chosen path. For this problem, an algorithm is given whose average cumulative loss in n rounds exceeds that of the best path, matched off-line to the entire sequence of the edge weights, by a quantity that is proportional to 1=pn and depends only polynomially on the number of edges of the graph. -
Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Nikulin, Yury Working Paper — Digitized Version Solving the robust shortest path problem with interval data using a probabilistic metaheuristic approach Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 597 Provided in Cooperation with: Christian-Albrechts-University of Kiel, Institute of Business Administration Suggested Citation: Nikulin, Yury (2005) : Solving the robust shortest path problem with interval data using a probabilistic metaheuristic approach, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 597, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel This Version is available at: http://hdl.handle.net/10419/147655 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel No. -
Shared Shortest Paths in Graphs
Shared Shortest Paths in Graphs Ronald Fenelus, Florida International University Zeal Jagannatha, Ohio Wesleyan University Mentor: Sean McCulloch Department of Mathematics and Computer Science, Ohio Wesleyan University Graph Theory Background NP-Complete Nash Equilibrium Finder The Shared Shortest Path Problem (SSPP) asks A Nash Equilibrium can be found algorithmically Basics how to route paths in a graph to minimize cost when Finding minimum total cost solutions to the SSPP is from any valid configuration, such as one derived paths split evenly the costs of journeys they mutually classified as an NP-Complete problem. from the above approximation methods, of the SSPP A graph is a set of vertices and a set of edges. Each use. game. edge consists of a pair of verticies. This can be determined by a simple polynomial time reduction from the Steiner Tree Problem which asks The algorithm for finding an equilibrium simply In the case of the SSPP, graphs are weighted what is the minimum total weight tree that connects Game Theory checks whether any journey can make a better path meaning in addition to a pair of verticies each edge a set of points R. These points are then treated as choice and moves this journey if it can. has a cost associated to it. start and destination points of journeys in an One method of analysis takes a game theoretic instance of the SSPP problem. approach to the problem, treating each individual Because the SSPP game is a congestion game this Graphs may be directed or undirected, meaning that journey as a selfish agent. -
Map-Matching Using Shortest Paths
Map-Matching Using Shortest Paths Erin Chambers Brittany Terese Fasy Department of Computer Science School of Computing and Dept. Mathematical Sciences Saint Louis University Montana State University Saint Louis, Missouri, USA Montana, USA [email protected] [email protected] Yusu Wang Carola Wenk Department of Computer Science and Engineering Department of Computer Science The Ohio State University Tulane University Columbus, Ohio, USA New Orleans, Louisianna, USA [email protected] [email protected] ABSTRACT desired path Q should correspond to the actual path in G that the We consider several variants of the map-matching problem, which person has traveled. Map-matching algorithms in the literature [1, seeks to find a path Q in graph G that has the smallest distance to 2, 6] consider all possible paths in G as potential candidates for Q, a given trajectory P (which is likely not to be exactly on the graph). and apply similarity measures such as Hausdorff or Fréchet distance In a typical application setting, P models a noisy GPS trajectory to compare input curves. from a person traveling on a road network, and the desired path Q We propose to restrict the set of potential paths in G to a natural should ideally correspond to the actual path in G that the person subset: those paths that correspond to shortest paths, or concatena- has traveled. Existing map-matching algorithms in the literature tions of shortest paths, in G. Restricting the set of paths to which consider all possible paths in G as potential candidates for Q. We a path can be matched makes sense in many settings. -
Memory-Constrained Pathfinding Algorithms for Partially-Known Environments
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2007 Memory-constrained pathfinding algorithms for partially-known environments Denton Cockburn University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Cockburn, Denton, "Memory-constrained pathfinding algorithms for partially-known environments" (2007). Electronic Theses and Dissertations. 4672. https://scholar.uwindsor.ca/etd/4672 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Memory-Constrained Pathfinding Algorithms for Partially-Known Environments by Denton Cockbum A Thesis Submitted to the Faculty of Graduate Studies through The School of Computer Science in Partial Fulfillment of the -
The Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles
The Shortest Path Problem Revisited: Optimal routing for Electric Vehicles Martin Sachenbacher Technische Universit¨atM¨unchen, Department of Informatics Boltzmannstraße 3, 85748 Garching, Germany {sachenba}@in.tum.de Introduction. Electric vehicles (EV) powered by This problem is similar to the shortest path prob- batteries will likely play a significant role in the road lem (SP), which consists of finding a path P in a graph traffic of the future: they can be powered by regenera- from a source vertex s to a destination vertex t such tive energy sources such as wind and solar power, and that c(P ) = minQ2U (c(Q)), where U is the set of all they can recover some of their kinetic and/or poten- paths from s to t, and c : E ! Z is a weight func- tial energy during deceleration phases. However, the tion on the edges E of the graph. SP is polynomial; unique characteristics of EVs { limited cruising range, the best known algorithm for the case of non-negative long recharge times, and the ability to regain energy edges is Dijkstra (Dijkstra 1959) with time complexity during deceleration { have an impact on algorithms O(n2), while in the general case, Bellman-Ford (Bell- used in navigation systems and route planners, since man 1958), (L. R. Ford 1956) has O(n3). However, it now becomes more important to determine the most most commonly used SP algorithms like contraction hi- economical route rather than just the fastest or short- erarchies (Geisberger et al. 2008), highway hierarchies est one. This modification might appear insignificant at (Sanders and Schultes 2005) and transit vertex rout- first glance, as it seems enough to simply exchange time ing (Bast et al.