Common Lisp Object System Specification 1. Programmer

Total Page:16

File Type:pdf, Size:1020Kb

Common Lisp Object System Specification 1. Programmer Common Lisp Object System Specification 1. Programmer Interface Concepts Authors: Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales, and David A. Moon. Draft Dated: June 15, 1988 All Rights Reserved The distribution and publication of this document are not restricted. In order to preserve the integrity of the specification, any publication or distribution must reproduce this document in its entirety, preserve its formatting, and include this title page. For information about obtaining the sources for this document, send an Internet message to common-lisp-object-system-specifi[email protected]. The authors wish to thank Patrick Dussud, Kenneth Kahn, Jim Kempf, Larry Masinter, Mark Stefik, Daniel L. Weinreb, and Jon L White for their contributions to this document. At the X3J13 meeting on June 15, 1988, the following motion was adopted: “The X3J13 Committee hereby accepts chapters 1 and 2 of the Common Lisp Object System, as defined in document 88-002R, for inclusion in the Common Lisp language being specified by this committee. Subsequent changes will be handled through the usual editorial and cleanup processes.” Programmer Interface Concepts 1–1 CONTENTS Introduction ................................................................... 1–3 Error Terminology ............................................................... 1–4 Classes ....................................................................... 1–6 Defining Classes ............................................................... 1–7 Creating Instances of Classes ..................................................... 1–8 Slots ....................................................................... 1–8 Accessing Slots ............................................................... 1–9 Inheritance ................................................................... 1–10 Inheritance of Methods ......................................................... 1–10 Inheritance of Slots and Slot Options .............................................. 1–10 Inheritance of Class Options ..................................................... 1–11 Examples .................................................................. 1–12 Integrating Types and Classes ..................................................... 1–13 Determining the Class Precedence List ............................................... 1–16 Topological Sorting ........................................................... 1–16 Examples .................................................................. 1–17 Generic Functions and Methods .................................................... 1–19 Introduction to Generic Functions ................................................. 1–19 Introduction to Methods ....................................................... 1–20 Agreement on Parameter Specializers and Qualifiers ................................... 1–22 Congruent Lambda-Lists for All Methods of a Generic Function ........................... 1–23 Keyword Arguments in Generic Functions and Methods ................................. 1–23 Method Selection and Combination .................................................. 1–25 Determining the Effective Method ................................................. 1–25 Selecting the Applicable Methods ............................................... 1–25 Sorting the Applicable Methods by Precedence Order ................................ 1–25 Applying Method Combination to the Sorted List of Applicable Methods .................. 1–26 Standard Method Combination ................................................... 1–27 Declarative Method Combination ................................................. 1–29 Built-in Method Combination Types ............................................... 1–29 Meta-Objects .................................................................. 1–31 Metaclasses ................................................................. 1–31 Standard Metaclasses .......................................................... 1–31 Standard Meta-objects ......................................................... 1–31 Object Creation and Initialization ................................................... 1–33 Initialization Arguments ........................................................ 1–34 Declaring the Validity of Initialization Arguments ..................................... 1–34 Defaulting of Initialization Arguments .............................................. 1–35 Rules for Initialization Arguments ................................................. 1–36 Shared-Initialize .............................................................. 1–37 Initialize-Instance ............................................................. 1–38 Definitions of Make-Instance and Initialize-Instance .................................... 1–39 Redefining Classes .............................................................. 1–41 Modifying the Structure of Instances ............................................... 1–41 1–2 Common Lisp Object System Specification Initializing Newly Added Local Slots ............................................... 1–42 Customizing Class Redefinition ................................................... 1–42 Extensions .................................................................. 1–43 Changing the Class of an Instance .................................................. 1–44 Modifying the Structure of the Instance ............................................ 1–44 Initializing Newly Added Local Slots ............................................... 1–44 Customizing the Change of Class of an Instance ...................................... 1–45 Reinitializing an Instance ......................................................... 1–46 Customizing Reinitialization ..................................................... 1–46 Programmer Interface Concepts 1–3 1–4 Common Lisp Object System Specification Introduction The Common Lisp Object System is an object-oriented extension to Common Lisp as defined in Common Lisp: The Language, by Guy L. Steele Jr. It is based on generic functions, multiple inheritance, declarative method combination, and a meta-object protocol. The first two chapters of this specification present a description of the standard Programmer Interface for the Common Lisp Object System. The first chapter contains a description of the concepts of the Common Lisp Object System, and the second contains a description of the functions and macros in the Common Lisp Object System Programmer Interface. The chapter “The Common Lisp Object System Meta-Object Protocol” describes how the Common Lisp Object System can be customized. The fundamental objects of the Common Lisp Object System are classes, instances, generic functions, and methods. A class object determines the structure and behavior of a set of other objects, which are called its instances. Every Common Lisp object is an instance of a class. The class of an object determines the set of operations that can be performed on the object. A generic function is a function whose behavior depends on the classes or identities of the arguments supplied to it. A generic function object contains a set of methods, a lambda-list, a method combination type, and other information. The methods define the class-specific behavior and operations of the generic function; a method is said to specialize a generic function. When invoked, a generic function executes a subset of its methods based on the classes of its arguments. A generic function can be used in the same ways that an ordinary function can be used in Com- mon Lisp; in particular, a generic function can be used as an argument to funcall and apply and can be given a global or a local name. A method is an object that contains a method function, a sequence of parameter specializers that specify when the given method is applicable, and a sequence of qualifiers that is used by the method combination facility to distinguish among methods. Each required formal parameter of each method has an associated parameter specializer, and the method will be invoked only on arguments that satisfy its parameter specializers. The method combination facility controls the selection of methods, the order in which they are run, and the values that are returned by the generic function. The Common Lisp Object System offers a default method combination type and provides a facility for declaring new types of method combination. Programmer Interface Concepts 1–5 Error Terminology The terminology used in this document to describe erroneous situations differs from the termi- nology used in Common Lisp: The Language, by Guy L. Steele Jr. This terminology involves situations; a situation is the evaluation of an expression in some specific context. For example, a situation might be the invocation of a function on arguments that fail to satisfy some specified constraints. In the specification of the Common Lisp Object System, the behavior of programs in all situations is described, and the options available to the implementor are defined. No implementation is allowed to extend the syntax or semantics of the Object System except as explicitly defined in the Object System specification. In particular, no implementation is allowed to extend the syntax of the Object System in such a way that ambiguity between the specified syntax of Object System and those extensions is possible. “When situation S occurs, an error is signaled.” This terminology has the following meaning: • If this situation occurs,
Recommended publications
  • The Java® Language Specification Java SE 8 Edition
    The Java® Language Specification Java SE 8 Edition James Gosling Bill Joy Guy Steele Gilad Bracha Alex Buckley 2015-02-13 Specification: JSR-337 Java® SE 8 Release Contents ("Specification") Version: 8 Status: Maintenance Release Release: March 2015 Copyright © 1997, 2015, Oracle America, Inc. and/or its affiliates. 500 Oracle Parkway, Redwood City, California 94065, U.S.A. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. The Specification provided herein is provided to you only under the Limited License Grant included herein as Appendix A. Please see Appendix A, Limited License Grant. To Maurizio, with deepest thanks. Table of Contents Preface to the Java SE 8 Edition xix 1 Introduction 1 1.1 Organization of the Specification 2 1.2 Example Programs 6 1.3 Notation 6 1.4 Relationship to Predefined Classes and Interfaces 7 1.5 Feedback 7 1.6 References 7 2 Grammars 9 2.1 Context-Free Grammars 9 2.2 The Lexical Grammar 9 2.3 The Syntactic Grammar 10 2.4 Grammar Notation 10 3 Lexical Structure 15 3.1 Unicode 15 3.2 Lexical Translations 16 3.3 Unicode Escapes 17 3.4 Line Terminators 19 3.5 Input Elements and Tokens 19 3.6 White Space 20 3.7 Comments 21 3.8 Identifiers 22 3.9 Keywords 24 3.10 Literals 24 3.10.1 Integer Literals 25 3.10.2 Floating-Point Literals 31 3.10.3 Boolean Literals 34 3.10.4 Character Literals 34 3.10.5 String Literals 35 3.10.6 Escape Sequences for Character and String Literals 37 3.10.7 The Null Literal 38 3.11 Separators
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • Allegro CL User Guide
    Allegro CL User Guide Volume 1 (of 2) version 4.3 March, 1996 Copyright and other notices: This is revision 6 of this manual. This manual has Franz Inc. document number D-U-00-000-01-60320-1-6. Copyright 1985-1996 by Franz Inc. All rights reserved. No part of this pub- lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, by photocopying or recording, or otherwise, without the prior and explicit written permission of Franz incorpo- rated. Restricted rights legend: Use, duplication, and disclosure by the United States Government are subject to Restricted Rights for Commercial Software devel- oped at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii). Allegro CL and Allegro Composer are registered trademarks of Franz Inc. Allegro Common Windows, Allegro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz inc. Unix is a trademark of AT&T. The Allegro CL software as provided may contain material copyright Xerox Corp. and the Open Systems Foundation. All such material is used and distrib- uted with permission. Other, uncopyrighted material originally developed at MIT and at CMU is also included. Appendix B is a reproduction of chapters 5 and 6 of The Art of the Metaobject Protocol by G. Kiczales, J. des Rivieres, and D. Bobrow. All this material is used with permission and we thank the authors and their publishers for letting us reproduce their material. Contents Volume 1 Preface 1 Introduction 1.1 The language 1-1 1.2 History 1-1 1.3 Format
    [Show full text]
  • Common Lisp - Viel Mehr Als Nur D¨Amliche Klammern
    Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Common Lisp - viel mehr als nur d¨amliche Klammern Alexander Schreiber <[email protected]> http://www.thangorodrim.de Chemnitzer Linux-Tage 2005 Greenspun’s Tenth Rule of Programming: “Any sufficiently-complicated C or Fortran program contains an ad-hoc, informally-specified bug-ridden slow implementation of half of Common Lisp.” Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 1 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Ubersicht¨ 1 Einf¨uhrung 2 Geschichtliches 3 Die Programmiersprache 4 Abschluß Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 2 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Lisp? Wof¨ur? NASA: Remote Agent (Deep Space 1), Planner (Mars Pathfinder), Viaweb, gekauft von Yahoo f¨ur50 Millionen $, ITA Software: Orbitz engine (Flugticket Planung), Square USA: Production tracking f¨ur“Final Fantasy”, Naughty Dog Software: Crash Bandicoot auf Sony Playstation, AMD & AMI: Chip-Design & Verifizierung, typischerweise komplexe Probleme: Wissensverarbeitung, Expertensysteme, Planungssysteme Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 3 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Lisp? Wof¨ur? NASA: Remote Agent (Deep Space 1), Planner (Mars Pathfinder), Viaweb, gekauft von Yahoo f¨ur50 Millionen $, ITA Software: Orbitz engine (Flugticket Planung), Square USA: Production tracking
    [Show full text]
  • Advanced Use of Lisp's FORMAT Function
    Advanced Use of Lisp’s FORMAT Function Gene Michael Stover created 22 January 2004 updated Saturday, 30 October 2004 Copyright c 2004 Gene Michael Stover. All rights reserved. Permission to copy, store, & view this document unmodified & in its entirety is granted. Contents 1 Introduction 1 2 Wanted & To Do 2 3 How to Print a Row 2 4 How to Print a Table 3 5 How to Use Format for Word Wrap 4 6 How to Print a Comma-Separated List 6 7 HowtoUseCommasinEnglishStyle 7 8 Conclusion 7 A Change Log 8 B Other File Formats 8 1 Introduction Lisp’s format function is analogous to C’s printf function, but format can do a whole lot more. format can iterate, use conditionals, process nested format strings, & recurse into format strings embedded into its arguments. The more-or-less official documentation for format is at the Common Lisp Hyperspec[X3J]. There is a complete if terse description of it in Paul Graham’s ANSI Common Lisp[Gra96], but my favorite description of format is in Franz’s Common Lisp The Reference[Inc88]. 1 Knowing the details of how something works isn’t the same as knowing how to use it well. Good applications of format aren’t obvious from its documentation. Thus this article. 2 Wanted & To Do Read the original article about format[Wat89]. Possibly incorporate ideas from it, or refer to them. Definitely refer to it in this article so people know it exists. (I didn’t know it existed at all even though I searched the web for such articles before I wrote this one.
    [Show full text]
  • 1960 1970 1980 1990 Japan California………………… UT IL in PA NJ NY Massachusetts………… Europe Lisp 1.5 TX
    Japan UT IL PA NY Massachusetts………… Europe California………………… TX IN NJ Lisp 1.5 1960 1970 1980 1990 Direct Relationships Lisp 1.5 LISP Family Graph Lisp 1.5 LISP 1.5 Family Lisp 1.5 Basic PDP-1 LISP M-460 LISP 7090 LISP 1.5 BBN PDP-1 LISP 7094 LISP 1.5 Stanford PDP-1 LISP SDS-940 LISP Q-32 LISP PDP-6 LISP LISP 2 MLISP MIT PDP-1 LISP Stanford LISP 1.6 Cambridge LISP Standard LISP UCI-LISP MacLisp Family PDP-6 LISP MacLisp Multics MacLisp CMU SAIL MacLisp MacLisp VLISP Franz Lisp Machine Lisp LISP S-1 Lisp NIL Spice Lisp Zetalisp IBM Lisp Family 7090 LISP 1.5 Lisp360 Lisp370 Interlisp Illinois SAIL MacLisp VM LISP Interlisp Family SDS-940 LISP BBN-LISP Interlisp 370 Spaghetti stacks Interlisp LOOPS Common LOOPS Lisp Machines Spice Lisp Machine Lisp Interlisp Lisp (MIT CONS) (Xerox (BBN Jericho) (PERQ) (MIT CADR) Alto, Dorado, (LMI Lambda) Dolphin, Dandelion) Lisp Zetalisp TAO (3600) (ELIS) Machine Lisp (TI Explorer) Common Lisp Family APL APL\360 ECL Interlisp ARPA S-1 Lisp Scheme Meeting Spice at SRI, Lisp April 1991 PSL KCL NIL CLTL1 Zetalisp X3J13 CLTL2 CLOS ISLISP X3J13 Scheme Extended Family COMIT Algol 60 SNOBOL METEOR CONVERT Simula 67 Planner LOGO DAISY, Muddle Scheme 311, Microplanner Scheme 84 Conniver PLASMA (actors) Scheme Revised Scheme T 2 CLTL1 Revised Scheme Revised2 Scheme 3 CScheme Revised Scheme MacScheme PC Scheme Chez Scheme IEEE Revised4 Scheme Scheme Object-Oriented Influence Simula 67 Smalltalk-71 LOGO Smalltalk-72 CLU PLASMA (actors) Flavors Common Objects LOOPS ObjectLisp CommonLOOPS EuLisp New Flavors CLTL2 CLOS Dylan X3J13 ISLISP Lambda Calculus Church, 1941 λ Influence Lisp 1.5 Landin (SECD, ISWIM) Evans (PAL) Reynolds (Definitional Interpreters) Lisp370 Scheme HOPE ML Standard ML Standard ML of New Jersey Haskell FORTRAN Influence FORTRAN FLPL Lisp 1.5 S-1 Lisp Lisp Machine Lisp CLTL1 Revised3 Zetalisp Scheme X3J13 CLTL2 IEEE Scheme X3J13 John McCarthy Lisp 1.5 Danny Bobrow Richard Gabriel Guy Steele Dave Moon Jon L White.
    [Show full text]
  • Release Notes
    LispWorks® Release Notes and Installation Guide Version 6.0 Copyright and Trademarks LispWorks Release Notes and Installation Guide Version 6.0 December 2009 Copyright © 2009 by LispWorks Ltd. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd. The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license. LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd. Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade- marks or trademarks of their respective holders. The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox Corporation. The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom: Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro- vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T.
    [Show full text]
  • Common Lisp Ultraspec – a Project for Modern Common Lisp Documentation
    Common Lisp UltraSpec – A Project For Modern Common Lisp Documentation Michał „phoe” Herda #lisp-pl @ Freenode Jagiellonian University, Cracow, Poland Previously on European Lisp Symposium 2016 Yet Another Rant About The State Of Common Lisp Documentation Michał „phoe” Herda Presenting the European Lisp Symposium 2017 Exclusive: Yet Another Rant About The State Of Common Lisp Documentation, Part 2 Michał „phoe” Herda http://www.lispworks.com/documentation/HyperSpec/... http://www.sbcl.org/manual/... http://ccl.clozure.com/manual/... http://www.clisp.org/... http://bauhh.dyndns.org:8000/clim-spec/... http://bauhh.de/clxman/... http://metamodular.com/CLOS-MOP/... 50+(?) more websites with library-specific docs Fin, Part 2 (...except it’s not) A Possible Solution To The State Of Common Lisp Documentation, Part 2 Michał „phoe” Herda Parsing dpANS with RegEx Parsing HTML (context-free grammar) with RegEx (regular grammar): Parsing TeX (context-sensitive grammar) with RegEx (regular grammar): Parsing a known subset of TeX used in dpANS with RegEx (regular grammar): (with proper care) What’s done so far? ● Done ● All Dictionaries (e.g. MAPCAR, ADJOIN, …) ● Glossary ● Not done / TODO ● Concepts (e.g. 2.2 Reader Algorithm) ● Linking (esp. glossary entries) What’s done so far? ● Done ● All Dictionaries (e.g. MAPCAR, ADJOIN, …) ● Glossary ● Not done / TODO ● Concepts (e.g. 2.2 Reader Algorithm) ● Linking (esp. glossary entries) ● Review ● Diffs to the original dpANS ● Once it’s finished, SHIP IT! What am I aiming for? Editable Complete Downloadable
    [Show full text]
  • "Documentation Update: Future-Common-Lisp
    Genera 8.1ReleaseNotes Genera8.1:IntroductionandHighlights Genera 8.1 includes several new features as well as a number of bug fixes and performance improvements. Genera 8.1 is a unified release for all Symbolics plat forms,includingthenewMacIvorynodel3. Thenewfeaturesareasfollows: • Common Lisp Interface Manager (CLIM). CLIM provides a highlevel language for defining presentationbased user interfaces that run under Genera and CLOE, on UNIXbasedworkstations, and on PCs that support Common Lisp.The importantfeaturesofCLIMare: ° CLIM provides a portable user interface. CLIM fits into an existing host system. With CLIM you can achieve the look and feel of the target host system without implementing it directly, and with outusingthelowlevelimplementationlanguageofthehostsystem. ° CLIM is based on a presentation model. The CLIM presentation model provides the advantages of having the visual representation of an object linked directly to its semantics. CLIM’s presenta tionmodelissimilartothatusedinDynamicWindows. ° CLIM supports high-level programming techniques. Using CLIM capabilities you can develop a user interfaceconveniently, includ ing formatted output, graphics,windowing, and commands that are invoked by typingtextorclickingamouse,amongothertechniques. • Some features from the X3J13 Common Lisp, including Conditions and the LOOP Facility See the section "X3J13 Common Lisp Features". See the section "Documentation Update: futurecommonlisp:loop". See the section "Documenta tionUpdate:X3J13Conditions". • Netbooting for Ivory machines. In Genera 8.1, netbooting Ivory machines works exactly the same as netbooting 3600family machines. See the section "Netboot ing". You should note, however, that you cannot netboot preGenera 8.1 worlds fromIvorymachines. • Significant performance improvement of Tables. The external interface is un changed, but the underlying implementation has been redesigned and reimple mentedforspeed. Page 62 • Optical and SCSI disk drive support on XL machines.
    [Show full text]
  • Jon L. White Collection on Common Lisp
    http://oac.cdlib.org/findaid/ark:/13030/c89w0mkb No online items Jon L. White collection on Common Lisp Finding aid prepared by Bo Doub, Kim Hayden, and Sara Chabino Lott Processing of this collection was made possible through generous funding from The Andrew W. Mellon Foundation, administered through the Council on Library and Information Resources' Cataloging Hidden Special Collections and Archives grant. Computer History Museum 1401 N. Shoreline Blvd. Mountain View, CA, 94043 (650) 810-1010 [email protected] March 2017 Jon L. White collection on X6823.2013 1 Common Lisp Title: Jon L. White collection Identifier/Call Number: X6823.2013 Contributing Institution: Computer History Museum Language of Material: English Physical Description: 8.75 Linear feet,7 record cartons Date (bulk): Bulk, 1978-1995 Date (inclusive): 1963-2012 Abstract: The Jon L. White collection on Common Lisp contains material relating to the development and standardization of the programming language Common Lisp and, more generally, the Lisp family of programming languages. Records date from 1963 to 2012, with the bulk of the material ranging from 1978 to 1995, when White was working at MIT’s Artificial Intelligence Laboratory, Xerox PARC (Palo Alto Research Center), Lucid, and Harlequin Group. Throughout many of these positions, White was serving on the X3J13 Committee to formalize a Common Lisp standard, which aimed to combine and standardize many previous dialects of Lisp. This collection consists of conference proceedings, manuals, X3J13 Committee correspondence and meeting minutes, notebooks, technical papers, and periodicals documenting White’s work in all of these roles. Other dialects of Lisp--especially MAClisp--are also major focuses of the collection.
    [Show full text]
  • History of the Lisp Language
    History of the Lisp Language History of the Lisp Language The following information is derived from the history section of dpANS Common Lisp. Lisp is a family of languages with a long history. Early key ideas in Lisp were developed by John McCarthy during the 1956 Dartmouth Summer Research Project on Artificial Intelligence. McCarthy’s motivation was to develop an algebraic list processing language for artificial intelligence work. Implementation efforts for early dialects of Lisp were undertaken on the IBM 704, the IBM 7090, the Digital Equipment Corporation (DEC) PDP−1, the DEC PDP−6, and the PDP−10. The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s there were two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp. For further information about very early Lisp dialects, see The Anatomy of Lisp or Lisp 1.5 Programmer’s Manual. MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also introduced the concept of functions that could take a variable number of arguments, macros, arrays, non−local dynamic exits, fast arithmetic, the first good Lisp compiler, and an emphasis on execution speed. For further information about Maclisp, see Maclisp Reference Manual, Revision 0 or The Revised Maclisp Manual. Interlisp introduced many ideas into Lisp programming environments and methodology. One of the Interlisp ideas that influenced Common Lisp was an iteration construct implemented by Warren Teitelman that inspired the loop macro used both on the Lisp Machines and in MacLisp, and now in Common Lisp.
    [Show full text]
  • Object Database Management Systems: Concepts and Features
    nIST Special Publication 500-179 Computer Systems Object Database Technology Management Systems: U.S. DEPARTMENT OF COMMERCE National Institute of Concepts and Features Standards and Technology Christopher E. Dabrowski Nisr Elizabeth N. Fong Deyuan Yang NAT L INST. OF STAND & TECH R.I.C, A111D3 3aTS7t, REFERENCE NIST PUBLICATIONS -QC" 100 U57 500-179 1990 NATIONAL MSTrrUTE OF STANDARDS & TECHNOLOGY Research Informatm Center Gaithersburg, MD 20899 NIST Special Publication 500-179 t Object Database Management Systems: Concepts and Features Christopher E. Dabrowski Elizabeth N. Fong Deyuan Yang National Computer Systems Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 April 1990 U.S. DEPARTMENT OF COMMERCE Robert A. Mosbacher, Secretary NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY John W. Lyons, Director Reports on Computer Systems Technology The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards) has a unique responsibility for computer systems technology within the Federal government. NIST's National Computer Systems Laboratory (NCSL) develops standards and guidelines, provides technical assistance, and conducts research for computers and related telecommunications systems to achieve more effective utilization of Federal information technology resources. NCSL's responsibilities include development of technical, management, physical, and administrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified information processed in Federal computers. NCSL assists agencies in developing security plans and in improving computer security awareness train- ing. This Special Publication 500 series reports NCSL research and guidelines to Federal agencies as well as to organizations in industry, government, and academia. National Institute of Standards and Technology Special Publication 500-179 Natl.
    [Show full text]