PROCHLO: Strong Privacy for Analytics in the Crowd

Total Page:16

File Type:pdf, Size:1020Kb

PROCHLO: Strong Privacy for Analytics in the Crowd PROCHLO: Strong Privacy for Analytics in the Crowd Andrea Bittau? Ulfar´ Erlingsson? Petros Maniatis? Ilya Mironov? Ananth Raghunathan? David Liez Mitch Rudominer◦ Ushasree Kode◦ Julien Tinnes◦ Bernhard Seefeld◦ ?Google Brain zGoogle Brain and U. Toronto ◦Google Abstract 1. Introduction The large-scale monitoring of computer users’ software Online monitoring of client software behavior has long been activities has become commonplace, e.g., for application used for disparate purposes, such as measuring feature adop- telemetry, error reporting, or demographic profiling. This tion or performance characteristics, as well as large-scale paper describes a principled systems architecture—Encode, error-reporting [34]. For modern software, such monitoring Shuffle, Analyze (ESA)—for performing such monitoring may entail systematic collection of information about client with high utility while also protecting user privacy. The ESA devices, their users, and the software they run [17, 60, 69]. design, and its PROCHLO implementation, are informed by This data collection is in many ways fundamental to modern our practical experiences with an existing, large deployment software operations and economics, and provides many clear of privacy-preserving software monitoring. benefits, e.g., it enables the deployment of security updates With ESA, the privacy of monitored users’ data is guaran- that eliminate software vulnerabilities [62]. teed by its processing in a three-step pipeline. First, the data For such data, the processes, mechanisms, and other is encoded to control scope, granularity, and randomness. means of privacy protection are an increasingly high-profile Second, the encoded data is collected in batches subject to concern. This is especially true when data is collected au- a randomized threshold, and blindly shuffled, to break linka- tomatically and when it is utilized for building user profiles bility and to ensure that individual data items get “lost in the or demographics [21, 69, 71]. Regrettably, in practice, those crowd” of the batch. Third, the anonymous, shuffled data is concerns often remain unaddressed, sometimes despite the analyzed by a specific analysis engine that further prevents existence of strong incentives that would suggest otherwise. statistical inference attacks on analysis results. One reason for this is that techniques that can guarantee pri- ESA extends existing best-practice methods for sensitive- vacy exist mostly as theory, as limited-scope deployments, data analytics, by using cryptography and statistical tech- or as innovative-but-nascent mechanisms [5, 7, 25, 28]. niques to make explicit how data is elided and reduced in We introduce the Encode, Shuffle, Analyze (ESA) archi- precision, how only common-enough, anonymous data is an- tecture for privacy-preserving software monitoring, and its alyzed, and how this is done for only specific, permitted pur- PROCHLO implementation.1 The ESA architecture is in- poses. As a result, ESA remains compatible with the estab- formed by our experience building, operating, and maintain- lished workflows of traditional database analysis. ing the RAPPOR privacy-preserving monitoring system for Strong privacy guarantees, including differential pri- the Chrome Web browser [28]. Over the last 3 years, RAP- vacy, can be established at each processing step to defend POR has processed up to billions of daily, randomized re- against malice or compromise at one or more of those steps. ports in a manner that guarantees local differential privacy, PROCHLO develops new techniques to harden those steps, without assumptions about users’ trust; similar techniques including the Stash Shuffle, a novel scalable and efficient have since gained increased attention [6,7,70,74]. However, oblivious-shuffling algorithm based on Intel’s SGX, and new these techniques have limited utility, both in theory and in applications of cryptographic secret sharing and blinding. our experience, and their statistical nature makes them ill- We describe ESA and PROCHLO, as well as experiments suited to standard software engineering practice. that validate their ability to balance utility and privacy. Our ESA architecture overcomes the limitations of sys- tems like RAPPOR, by extending and strengthening current Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee best practices in private-data processing. In particular, ESA provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, enables any high-utility analysis algorithm to be compatible contact the owner/author(s). SOSP ’17, October 28, 2017, Shanghai, China with strong privacy guarantees, by appropriately building on c 2017 Copyright held by the owner/author(s). users’ trust assumptions, privacy-preserving randomization, ACM ISBN 978-1-4503-5085-3/17/10. DOI: https://doi.org/10.1145/3132747.3132769 Reprinted from SOSP ’17,, [Unknown Proceedings], October 28, 2017, Shanghai, China, pp. 1–19. 1 PROCHLO combines privacy with the Greek word ´oqloc for crowds. 1 and cryptographic mechanisms—in a principled manner, en- cryptographic primitives for secret-shared, blind data compassing realistic attack models. thresholding, reducing users’ trust requirements. With ESA, software users’ data is collected into a database • We evaluate PROCHLO on two representative monitoring of encrypted records to be processed only by a specific anal- use cases, as well as a collaborative filtering task and ysis, determined by the corresponding data decryption key. a deep-learning task, in each case achieving both high- Being centralized, this database is compatible with existing, utility and strong privacy guarantees in their analysis. standard software engineering processes, and its analysis may use the many known techniques for balancing utility On this basis we conclude that the ESA architecture for and privacy, including differentially-private release [27]. monitoring users’ data significantly advances the practical The contents of a materialized ESA database are guaran- state-of-the-art, compared to previous, deployed systems. teed to have been shuffled by a party that is trusted to remove implicit and indirect identifiers, such as arrival time, order, 2. Motivation and Alternatives or originating IP address. Shuffling operates on batches of data which are collected over an epoch of time and reach The systems community has long recognized the privacy concerns raised by software monitoring, and addressed them a minimum threshold cardinality. Thereby, shuffling ensures that each record becomes part of a crowd—not just by hiding in various ways, e.g., by authorization and access controls. timing and metadata, but also by ensuring that more than a Notably, for large-scale error reporting and profiling, it (randomized) threshold number of reported items exists for has become established best practice for systems software every different data partition forwarded for analysis. to perform data reduction, scrubbing, and minimization— Finally, each ESA database record is constructed by spe- respectively, to eliminate superfluous data, remove unique cific reporting software at a user’s client. This software en- identifiers, and to coarsen and minimize what is collected sures that records are encoded for privacy, e.g., by removing without eliminating statistical signals—and to require users’ direct identifiers or extra data, by fragmenting to make the opt-in approval for each collected report. For example, large- data less unique, or by adding noise for local differential pri- scale Windows error reporting operates in this manner [34]. vacy or plausible deniability. Encoded data is transmitted us- However, this established practice is ill-suited to auto- ing nested encryption to ensure that the data will be shuffled mated monitoring at scale, since it is based solely on users’ and analyzed only by the shuffler and analyzer in possession declared trust in the collecting party and explicit approval of of the corresponding private keys. each transmitted report, without any technical privacy guar- ESA protects privacy by building on users’ existing trust antees. Perhaps as a result, there has been little practical relationships as well as technical mechanisms. Users in- deployment of the many promising mechanisms based on dicate their trust assumptions by installing and executing pervasive monitoring developed by the systems community, client-side software with embedded cryptographic keys for e.g., for understanding software behavior or bugs, software a specific shuffler and analyzer. Based on those keys, the performance or resource use, or for other software improve- software’s reporting features encode and transmit data for ments [13, 39, 46, 59, 61, 77]. This is ironic, because these exclusive processing by the subsequent steps. Each of these mechanisms rely on common statistics and correlations— processing steps may independently take measures to pro- not individual users’ particular data—and should therefore tect privacy. In particular, by adding random noise to data, be compatible with protecting users’ privacy. To serve these purposes, the ESA architecture is a flex- thresholds, or analysis results, each step may guarantee dif- ferential privacy (as discussed in detail in x3.5). ible platform that allows high-utility analysis of software- monitoring data,
Recommended publications
  • Advanced Model Deployments with Tensorflow Serving Presentation.Pdf
    Most models don’t get deployed. Hi, I’m Hannes. An inefficient model deployment import json from flask import Flask from keras.models import load_model from utils import preprocess model = load_model('model.h5') app = Flask(__name__) @app.route('/classify', methods=['POST']) def classify(): review = request.form["review"] preprocessed_review = preprocess(review) prediction = model.predict_classes([preprocessed_review])[0] return json.dumps({"score": int(prediction)}) Simple Deployments @app.route('/classify', methods=['POST']) Why Flask is insufficient def classify(): review = request.form["review"] ● No consistent APIs ● No consistent payloads preprocessed_review = preprocess(review) ● No model versioning prediction = model.predict_classes( ● No mini-batching support [preprocessed_review])[0] ● Inefficient for large models return json.dumps({"score": int(prediction)}) Image: Martijn Baudoin, Unsplash TensorFlow Serving TensorFlow Serving Production ready Model Serving ● Part of the TensorFlow Extended Ecosystem ● Used internally at Google ● Highly scalable model serving solution ● Works well for large models up to 2GB TensorFlow 2.0 ready! * * With small exceptions Deploy your models in 90s ... Export your Model import tensorflow as tf TensorFlow 2.0 Export tf.saved_model.save( ● Consistent model export model, ● Using Protobuf format export_dir="/tmp/saved_model", ● Export of graphs and signatures=None estimators possible ) $ tree saved_models/ Export your Model saved_models/ └── 1555875926 ● Exported model as Protobuf ├── assets (Saved_model.pb)
    [Show full text]
  • An Evaluation of Tensorflow As a Programming Framework for HPC Applications
    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 An Evaluation of TensorFlow as a Programming Framework for HPC Applications WEI DER CHIEN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE An Evaluation of TensorFlow as a Programming Framework for HPC Applications WEI DER CHIEN Master in Computer Science Date: August 28, 2018 Supervisor: Stefano Markidis Examiner: Erwin Laure Swedish title: En undersökning av TensorFlow som ett utvecklingsramverk för högpresterande datorsystem School of Electrical Engineering and Computer Science iii Abstract In recent years, deep-learning, a branch of machine learning gained increasing popularity due to their extensive applications and perfor- mance. At the core of these application is dense matrix-matrix multipli- cation. Graphics Processing Units (GPUs) are commonly used in the training process due to their massively parallel computation capabili- ties. In addition, specialized low-precision accelerators have emerged to specifically address Tensor operations. Software frameworks, such as TensorFlow have also emerged to increase the expressiveness of neural network model development. In TensorFlow computation problems are expressed as Computation Graphs where nodes of a graph denote operation and edges denote data movement between operations. With increasing number of heterogeneous accelerators which might co-exist on the same cluster system, it became increasingly difficult for users to program efficient and scalable applications. TensorFlow provides a high level of abstraction and it is possible to place operations of a computation graph on a device easily through a high level API. In this work, the usability of TensorFlow as a programming framework for HPC application is reviewed.
    [Show full text]
  • From XML to Flat Buffers: Markup in the Twenty-Teens Warning! the Contenders
    Elliotte Rusty Harold [email protected] August 2018 From XML to Flat Buffers: Markup in the Twenty-teens Warning! The Contenders ● XML ● JSON ● YAML ● EXI ● Protobufs ● Flat Protobufs XML JSON YAML EXI Protobuf Flat Buffers App Engine X X Standard Java App Engine X Flex What Uses What Kubernetes X X From technology, tools, and systems Eclipse X I use frequently. There are many others. Maven X Ant X Google X X X X X “APIs” Publishing X XML XML ● Very well defined standard ● By far the most general format: ○ Mixed content ○ Attributes and elements ● By far the best tool support. Nothing else is close: ○ XSLT ○ XPath ○ Many schema languages: ■ W3C XSD ■ RELAX NG More Reasons to Choose XML ● Most composable for mixing and matching markup; e.g. MathML+SVG in HTML ● Does not require a schema. ● Streaming support: very large documents ● Better for interchange amongst unrelated parties ● The deeper your needs the more likely you’ll end up here. Why Not XML? ● Relatively complex for simple tasks ● Limited to no support for non-string programming types: ○ Numbers, booleans, dates, money, etc. ○ Lists, maps, sets ○ You can encode all these but APIs don’t necessarily recognize or support them. ● Lots of sharp edges to surprise the non-expert: ○ 9/10 are namespace related ○ Attribute value normalization ○ White space ● Some security issues if you’re not careful (Billion laughs) JSON ● Simple for object serialization and program data. If your data is a few basic types (int, string, boolean, float) and data structures (list, map) this works well. ● More or less standard (7-8 of them in fact) ● Consumption libraries for essentially all significant languages Why Not JSON? ● It is surprising how fast needs grow past a few basic types and data structures.
    [Show full text]
  • Trifacta Data Preparation for Amazon Redshift and S3 Must Be Deployed Into an Existing Virtual Private Cloud (VPC)
    Install Guide for Data Preparation for Amazon Redshift and S3 Version: 7.1 Doc Build Date: 05/26/2020 Copyright © Trifacta Inc. 2020 - All Rights Reserved. CONFIDENTIAL These materials (the “Documentation”) are the confidential and proprietary information of Trifacta Inc. and may not be reproduced, modified, or distributed without the prior written permission of Trifacta Inc. EXCEPT AS OTHERWISE PROVIDED IN AN EXPRESS WRITTEN AGREEMENT, TRIFACTA INC. PROVIDES THIS DOCUMENTATION AS-IS AND WITHOUT WARRANTY AND TRIFACTA INC. DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES TO THE EXTENT PERMITTED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE AND UNDER NO CIRCUMSTANCES WILL TRIFACTA INC. BE LIABLE FOR ANY AMOUNT GREATER THAN ONE HUNDRED DOLLARS ($100) BASED ON ANY USE OF THE DOCUMENTATION. For third-party license information, please select About Trifacta from the Help menu. 1. Quick Start . 4 1.1 Install from AWS Marketplace . 4 1.2 Upgrade for AWS Marketplace . 7 2. Configure . 8 2.1 Configure for AWS . 8 2.1.1 Configure for EC2 Role-Based Authentication . 14 2.1.2 Enable S3 Access . 16 2.1.2.1 Create Redshift Connections 28 3. Contact Support . 30 4. Legal 31 4.1 Third-Party License Information . 31 Page #3 Quick Start Install from AWS Marketplace Contents: Product Limitations Internet access Install Desktop Requirements Pre-requisites Install Steps - CloudFormation template SSH Access Troubleshooting SELinux Upgrade Documentation Related Topics This guide steps through the requirements and process for installing Trifacta® Data Preparation for Amazon Redshift and S3 through the AWS Marketplace.
    [Show full text]
  • Cloud Native Communication Patterns with Grpc
    Cloud Native Communication Patterns with gRPC Kasun Indrasiri Author “gRPC Up and Running” and “Microservices for Enterprise” About Me ● Author “gRPC Up & Running”, “Microservices for Enterprise” ● Product Manager/Senior Director at WSO2. ● Committer and PMC member at Apache Software Foundation. ● Founder “Bay area Microservices, APIs and Integration” meetup group. What is gRPC? ● Modern Inter-process communication technology. ● Invoking remote functions as easy as making a local function invocation. ● Contract-first. ● Binary messaging on the wire on top of HTTP2 ● Polyglot. Fundamentals of gRPC - Service Definition syntax = "proto3"; ● Defines the business capabilities of package ecommerce; your service. service ProductInfo { rpc addProduct(Product) returns (ProductID); ● Protocol Buffers used as the IDL for rpc getProduct(ProductID) returns (Product); define services. } message Product { ● Protocol Buffers : string id = 1; ○ A language-agnostic, platform-neutral, string name = 2; extensible mechanism to serializing string description = 3; float price = 4; structured data. } ● Defines service, remote methods, and message ProductID { data types. string value = 1; } ProductInfo.proto Fundamentals of gRPC - gRPC Service // AddProduct implements ecommerce.AddProduct ● gRPC service implements the func (s *server) AddProduct(ctx context.Context, in *pb.Product) (*pb.ProductID, business logic. error) { ● Generate server side skeleton from // Business logic } service definition. // GetProduct implements ecommerce.GetProduct func (s *server) GetProduct(ctx
    [Show full text]
  • Integrating R with the Go Programming Language Using Interprocess Communication
    Integrating R with the Go programming language using interprocess communication Christoph Best, Karl Millar, Google Inc. [email protected] Statistical software in practice & production ● Production environments !!!= R development environment ○ Scale: machines, people, tools, lines of code… ● “discipline of software engineering” ○ Maintainable code, common standards and processes ○ Central problem: The programming language to use ● How do you integrate statistical software in production? ○ Rewrite everything in your canonical language? ○ Patch things together with scripts, dedicated servers, ... ? Everybody should just write Java! Programming language diversity ● Programming language diversity is hard … ○ Friction, maintenance, tooling, bugs, … ● … but sometimes you need to have it ○ Many statistics problems can “only” be solved in R* ● How do you integrate R code with production code? ○ without breaking production *though my colleagues keep pointing out that any Turing-complete language can solve any problem The Go programming language ● Open-source language, developed by small team at Google ● Aims to put the fun back in (systems) programming ● Fast compilation and development cycle, little “baggage” ● Made to feel like C (before C++) ● Made not to feel like Java or C++ (enterprise languages) ● Growing user base (inside and outside Google) Integration: Intra-process vs inter-process ● Intra-process: Link different languages through C ABI ○ smallest common denominator ○ issues: stability, ABI evolution, memory management, threads, … Can we do better? Or at least differently? ● Idea: Sick of crashes? Execute R in a separate process ○ Runs alongside main process, closely integrated: “lamprey” ● Provide communication layer between R and host process ○ A well-defined compact interface surface Integration: Intra-process vs inter-process C runtime Go R RPC client C++ runtime IPC Messages Java (library) Python RPC server ..
    [Show full text]
  • SESSION 2 YANG, Openconfig, and Gnmi
    SESSION 2 YANG, OpenConfig, and gNMI Copyright © 2019 - Open Networking Foundation Session 2 Overview 1. YANG: Configuration Modeling Language 2. OpenConfig: Configuration and telemetry model instances 3. gNMI: Runtime Configuration and Monitoring Interface 4. gNOI: Runtime Operations Interface Copyright © 2019 - Open Networking Foundation YANG Overview YANG is a data modeling language for network configuration ● Used to express the structure of data, NOT the data itself ● Instances of data can be expressed in XML, JSON, Protobuf, etc. and are considered valid if they adhere to the YANG data model (schema) From a YANG model, we care about 2 things: 1. Data tree organization (from which we get the paths and leaf data types) 2. Semantics of the leaf nodes (from the description field, usually in English) History: YANG was originally designed as a data modeling language for NETCONF. It borrows the syntactic structure and base types from SMIng, which is an evolution of SMI, the data modeling language for SNMP used for MIBs. Copyright © 2019 - Open Networking Foundation YANG Module A module is a self-contained tree of nodes. Modules are the smallest unit that can be “compiled” by YANG tools. // A module is a self-contained tree of nodes module demo-port { A module contains: // YANG Boilerplate ● boilerplate, like a namespace, yang-version "1"; prefix for reference in other namespace "https://opennetworking.org/yang/demo"; modules, description, version / prefix "demo-port"; description "Demo model for managing ports"; revision history, etc. revision "2019-09-10" { ● identities and derived types description "Initial version"; ● modular groupings reference "1.0.0"; } ● a top-level container that defines tree of data nodes // ..
    [Show full text]
  • Almond Variety Detection Using Deep Learning
    Almond Variety Detection using Deep Learning Benarous Ahmed Omar Farouq - a41369 Thesis presented to the School of Technology and Management in the scope of the Master in Information Systems. Supervisors: Prof. Maria João Tinoco Varanda Pereirar This document does not include the suggestions made by the board. Bragança 2019-2020 Dedication I dedicate my dissertation work to my family. A special feeling of gratitude to my loving parents, whose words of encouragement and push for tenacity ring in my ears. I also dedicate this dissertation to my many friends who have supported me throughout the process. I will always appreciate all they have done. v Acknowledgment In the name of Allah, the Most Gracious, the Most Merciful I would like to express my deep sense of gratitude, respect and heartfelt thanks to Prof. Maria João Tinoco Varanda Pereira, for her great contribu- tions, encouragement and support during the thesis writing, understanding and patience that have accompanied me during the research time. I would like to acknowledge and thank to ESTIG-IPB school division for providing me of the necessary materials needed to conduct my research and providing any assistance requested. I would like to acknowledge and thank to ESA-IPB school division for allow- ing me to conduct my research and providing any assistance requested. Special thanks goes to the members of the lab Professors Nuno Rodrigues and José Alberto Pereira for their continued support. Finally I would like to thank all professor of the hassiba benbouali university where i have started my journey of studying computer science. And special thank and acknowledgment to all community of computer science, this dynamic and healthy community is the reason why computer science, which is very new vi field compared to other sciences, has evolved so dramatically fast and now have huge impact on almost everything.
    [Show full text]
  • Developing the Guidelines for Migration from Restful Microservices to Grpc
    Masaryk University Faculty of Informatics Developing the guidelines for migration from RESTful microservices to gRPC Master’s Thesis Michal Štefanič Brno, Spring 2021 Masaryk University Faculty of Informatics Developing the guidelines for migration from RESTful microservices to gRPC Master’s Thesis Michal Štefanič Brno, Spring 2021 This is where a copy of the official signed thesis assignment and a copy ofthe Statement of an Author is located in the printed version of the document. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Michal Štefanič Advisor: RNDr. Josef Spurný i Acknowledgements I would like to thank my advisors, RNDr. Josef Spurný for his time and valuable consultations, and doc. Mouzhi Ge, Ph.D. who left the university, but still found a time for thesis consultations. I would also like to thank the colleagues from Kiwi.com, especially Matouš Dziviak with whom I consulted a lot of technical questions related to the thesis. And Tomáš Gerich for proofreading the thesis. ii Abstract With the rising popularity of microservice architecture, Google de- cided to revive the "Remote procedure call" (RPC) concept to facili- tate effective communication between single services and developed their own framework (gRPC) for RPC service communication. gRPC became quickly popular and many famous companies as Netflix, Mi- crosoft, Slack integrated it into their systems. However, there is not a clear, step-by-step guide on when and how to migrate your services to gRPC architecture.
    [Show full text]
  • Code Smell Prediction Employing Machine Learning Meets Emerging Java Language Constructs"
    Appendix to the paper "Code smell prediction employing machine learning meets emerging Java language constructs" Hanna Grodzicka, Michał Kawa, Zofia Łakomiak, Arkadiusz Ziobrowski, Lech Madeyski (B) The Appendix includes two tables containing the dataset used in the paper "Code smell prediction employing machine learning meets emerging Java lan- guage constructs". The first table contains information about 792 projects selected for R package reproducer [Madeyski and Kitchenham(2019)]. Projects were the base dataset for cre- ating the dataset used in the study (Table I). The second table contains information about 281 projects filtered by Java version from build tool Maven (Table II) which were directly used in the paper. TABLE I: Base projects used to create the new dataset # Orgasation Project name GitHub link Commit hash Build tool Java version 1 adobe aem-core-wcm- www.github.com/adobe/ 1d1f1d70844c9e07cd694f028e87f85d926aba94 other or lack of unknown components aem-core-wcm-components 2 adobe S3Mock www.github.com/adobe/ 5aa299c2b6d0f0fd00f8d03fda560502270afb82 MAVEN 8 S3Mock 3 alexa alexa-skills- www.github.com/alexa/ bf1e9ccc50d1f3f8408f887f70197ee288fd4bd9 MAVEN 8 kit-sdk-for- alexa-skills-kit-sdk- java for-java 4 alibaba ARouter www.github.com/alibaba/ 93b328569bbdbf75e4aa87f0ecf48c69600591b2 GRADLE unknown ARouter 5 alibaba atlas www.github.com/alibaba/ e8c7b3f1ff14b2a1df64321c6992b796cae7d732 GRADLE unknown atlas 6 alibaba canal www.github.com/alibaba/ 08167c95c767fd3c9879584c0230820a8476a7a7 MAVEN 7 canal 7 alibaba cobar www.github.com/alibaba/
    [Show full text]
  • Angularjs Controller Request Parameters
    Angularjs Controller Request Parameters Clyde daunts her Urtext interdentally, adjuvant and rhizomorphous. Prepared Nikki sometimes reappear his expiations touchingly and repaginate so atomistically! Midship and bubbly Barde flats irreverently and disestablish his gasifier provisorily and banefully. Topic names and descriptions for each course. Rather Provide The Parameters At Resolution Time, will execute the post on the network. URL and the route. Here, we now have a simple, How would you get Google Alerts information into a database other than to parse the text of the email message that Google sends you? If we want to add multiple parameters, instead of reloading the entire page. No more posts to show. However, We Will Export These Data In Excel Sheet. Get practical advice to start your career in programming! Because this data is known, and the function body. Everytime a property of the controller changes, you will add reference links to the various available routes in your application. It has a name field which is initially null. We have another great solution. We can get HTTP status code of the response. Well, where we have the big advantage of providing deep links to our app through the URL. This second JS file will provide the services functionality of calling the RESTFul service. Find this content useful? In this example I have used simple test code where you would normally put your service logic to load items from the server or resolve other required data for your controller. Swallow errors for now. Consider the code snippet below. PATCH, this is not a good practice since Data Access gets complex as the application grows.
    [Show full text]
  • Faasten Your Decisions: Classification Framework And
    FaaSten Your Decisions: Classification Framework and Technology Review of Function-as-a-Service Platforms Vladimir Yussupova, Jacopo Soldanib, Uwe Breitenb¨uchera, Antonio Brogib, Frank Leymanna aInstitute of Architecture of Application Systems, University of Stuttgart, Germany bDepartment of Computer Science, University of Pisa, Italy Abstract Function-as-a-Service (FaaS) is a cloud service model enabling developers to offload event-driven executable snippets of code. The execution and management of such functions becomes a FaaS provider's responsibility, hereby included their on-demand provisioning and automatic scaling. Key enablers for this cloud service model are FaaS platforms, e.g., AWS Lambda, Microsoft Azure Functions or OpenFaaS. At the same time, the choice of the most appropriate FaaS platform for deploying and running a serverless application is not trivial, as various organizational and technical aspects have to be taken into account. In this work, we present (i) a FaaS platform classification framework derived using a mixed method study and (ii) a systematic technology review of the ten most prominent FaaS platforms, based on the proposed classification framework. Moreover, we present (iii) a FaaS platform selection support system, called FaaStener, which helps researchers and practitioners to choose the FaaS platform most suited for their requirements. Keywords: Serverless, Function-as-a-Service, FaaS, Platform, Classification Framework, Technology Review 1. Introduction The FaaS service model started gaining a lot of atten- tion after the release of AWS Lambda [4] in 2015, which In the context of cloud computing, the term server- started the overall serverless trend. Afterwards, all major less is typically used to describe a paradigm focusing on cloud providers introduced their FaaS offerings including cloud architectures that comprise provider-managed com- notable examples such as Microsoft Azure Functions [5], ponents [1].
    [Show full text]