Initial Achievements of Hayabusa2 in Asteroid Proximity Phase*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hayabusa2 and the Formation of the Solar System PPS02-25
PPS02-25 JpGU-AGU Joint Meeting 2017 Hayabusa2 and the formation of the Solar System *Sei-ichiro WATANABE1,2, Hayabusa2 Science Team2 1. Division of Earth and Planetary Sciences, Graduate School of Science, Nagoya University, 2. JAXA/ISAS Explorations of small solar system bodies bring us direct and unique information about the formation and evolution of the Solar system. Asteroids may preserve accretion processes of planetesimals or pebbles, a sequence of destructive events induced by the gas-driven migration of giant planets, and hydrothermal processes on the parent bodies. After successful small-body missions like Rosetta to comet 67P/Churyumov-Gerasimenko, Dawn to Vesta and Ceres, and New Horizons to Pluto, two spacecraft Hayabusa2 and OSIRIS-REx are now traveling to dark primitive asteroids.The Hayabusa2 spacecraft journeys to a C-type near-earth asteroid (162173) Ryugu (1999 JU3) to conduct detailed remote sensing observations and return samples from the surface. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on 3 Dec. 2014 by the H-IIA Launch Vehicle and performed an Earth swing-by on 3 Dec. 2015 to set it on a course toward its target. The spacecraft will reach Ryugu in the summer of 2018, observe the asteroid for 18 months, and sample surface materials from up to three different locations. The samples will be delivered to the Earth in Nov.-Dec. 2020. Ground-based observations have obtained a variety of optical reflectance spectra for Ryugu. Some reported the 0.7 μm absorption feature and steep slope in the short wavelength region, suggesting hydrated minerals. -
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1. -
A Self Reconfigurable Undulating Grasper for Asteroid Mining
A SELF RECONFIGURABLE UNDULATING GRASPER FOR ASTEROID MINING Suzanna Lucarotti1, Chakravarthini M Saaj1, Elie Allouis2 and Paolo Bianco3 1Surrey Space Centre, Guildford UK 2Airbus DS, Stevenage UK 3Airbus, Portsmouth UK ABSTRACT are estimated as over 1km diameter and 4133 as 300- 1000m diameter. While surface features remain mostly unknown, mass and orbit parameters are available. The Recent missions to asteroids have shown that many have closest NEAs can be reached with less ∆V than the rubble surfaces, which current extra-terrestrial mining Moon. techniques are unsuited for. This paper discusses mod- elling work for autonomous mining on small solar system There have been so far been five missions to the sur- bodies, such as Asteroids. A novel concept of a modular face of SSSBs - NEAR-Shoemaker to Eros, where they robot system capable of the helical caging and grasping unexpectedly landed [9], Hayabusa 1 to Itokawa [10], of surface rocks is presented. The kinematics and co- Rosetta to the Comet 67P Churyumov-Gerasimenko [11], ordinate systems of the Self RecoNfigurable Undulating Hayabusa 2 to Ryugu [12], and OSIRIS-Rex to Bennu Grasper (SNUG) are derived with a new mathematical [13]. Hayabusa 2 and OSIRUS-Rex are both currently formulation. This approach exploits rotational symmetry live missions. Detailed close-range surface images have and homogeneity to form a cage to safely grasp a target of been obtained from Itokawa, 67P and Ryugu, higher alti- uncertain properties. A simple model for grasping is eval- tude images from low orbit or prior to landing have been uated to assess the grasping capabilities of such a robot. -
Chapter 1, Version A
INCLUSIVE EDUCATION AND SCHOOL REFORM IN POSTCOLONIAL INDIA Mousumi Mukherjee MA, MPhil, Calcutta University; MA Loyola University Chicago; EdM University of Illinois, Urbana-Champaign Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Education Policy and Leadership Melbourne Graduate School of Education University of Melbourne [5 June 2015] Keywords Inclusive Education, Equity, Democratic School Reform, Girls’ Education, Missionary Education, Postcolonial theory, Globalization, Development Inclusive Education and School Reform in Postcolonial India i Abstract Over the past two decades, a converging discourse has emerged around the world concerning the importance of socially inclusive education. In India, the idea of inclusive education is not new, and is consistent with the key principles underpinning the Indian constitution. It has been promoted by a number of educational thinkers of modern India such as Vivekananda, Aurobindo, Gandhi, Ambedkar, Azad and Tagore. However, the idea of inclusive education has been unevenly and inadequately implemented in Indian schools, which have remained largely socially segregated. There are of course major exceptions, with some schools valiantly seeking to realize social inclusion. One such school is in Kolkata, which has been nationally and globally celebrated as an example of best practice. The main aim of this thesis is to examine the initiative of inclusive educational reform that this school represents. It analyses the school’s understanding of inclusive education; provides an account of how the school promoted its achievements, not only within its own community but also around the world; and critically assesses the extent to which the initiatives are sustainable in the long term. -
An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1]. -
Argops) Solution to the 2017 Astrodynamics Specialist Conference Student Competition
AAS 17-621 THE ASTRODYNAMICS RESEARCH GROUP OF PENN STATE (ARGOPS) SOLUTION TO THE 2017 ASTRODYNAMICS SPECIALIST CONFERENCE STUDENT COMPETITION Jason A. Reiter,* Davide Conte,1 Andrew M. Goodyear,* Ghanghoon Paik,* Guanwei. He,* Peter C. Scarcella,* Mollik Nayyar,* Matthew J. Shaw* We present the methods and results of the Astrodynamics Research Group of Penn State (ARGoPS) team in the 2017 Astrodynamics Specialist Conference Student Competition. A mission (named Minerva) was designed to investigate Asteroid (469219) 2016 HO3 in order to determine its mass and volume and to map and characterize its surface. This data would prove useful in determining the necessity and usefulness of future missions to the asteroid. The mission was designed such that a balance between cost and maximizing objectives was found. INTRODUCTION Asteroid (469219) 2016 HO3 was discovered recently and has yet to be explored. It lies in a quasi-orbit about the Earth such that it will follow the Earth around the Sun for at least the next several hundred years providing many opportunities for relatively low-cost missions to the body. Not much is known about 2016 HO3 except a general size range, but its close proximity to Earth makes a scientific mission more feasible than other near-Earth objects. A Request For Proposal (RFP) was provided to university teams searching for cost-efficient mission design solutions to assist in the characterization of the asteroid and the assessment of its potential for future, more in-depth missions and possible resource utilization. The RFP provides constraints on launch mass, bus size as well as other mission architecture decisions, and sets goals for scientific mapping and characterization. -
Initial Analysis Team Introduction
Summary and contents of the press conference Overview • Since the return of the sample in December of last year, curation activities have been conducted for the initial analysis of the sample. • Curation activities are aimed at cataloguing the sample without compromising the scientific value in order to provide information that contributes to further detailed scientific analysis. • Today’s report is that part of the catalogued sample is ready for delivery. Contents 1. Report from the curation team (T. Usui, E. Nakamura, M. Ito) 2. Report from the initial analysis teamS. TachibanaH. YurimotoT. Nakamura T. NoguchiR. OkazakiH. YabutaH. Naraoka 2021/6/17 Hayabusa2 reporter briefing 2 Report from the curation team Tomohiro USUIJAXA Eizo NAKAMURAOkayama University Motoo ITOJAMSTEC Ryugu sample curation work The initial description of the Ryugu sample was performed without removing the sample from the clean chamber, in order to avoid contamination from the global environment CC3-1 Opening the sample container under vacuum environment CC3-2 Sample collection under vacuum CC3-3 Transition from vacuum to nitrogen environment CC4-1 Handling of submillimeter-sized particles CC4-2 Handling / observation / sorting of relatively large particles (> mm) 2021/6/17 Hayabusa2 reporter briefing 4 Achievement of the world’s first sample collection and storage of asteroid samples under vacuum conditions Samples collected under vacuum on December 15, 2020 will not be distributed at this time, but continued to be stored under vacuum (CC3-2) for future -
Mercurian Impact Ejecta: Meteorites and Mantle
Meteoritics & Planetary Science 44, Nr 2, 285–291 (2009) Abstract available online at http://meteoritics.org Mercurian impact ejecta: Meteorites and mantle Brett GLADMAN* and Jaime COFFEY University of British Columbia, Department of Physics and Astronomy, 6244 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada *Corresponding author. E-mail: [email protected] (Submitted 28 January 2008; revision accepted 15 October2008) Abstract–We have examined the fate of impact ejecta liberated from the surface of Mercury due to impacts by comets or asteroids, in order to study 1) meteorite transfer to Earth, and 2) reaccumulation of an expelled mantle in giant-impact scenarios seeking to explain Mercury’s large core. In the context of meteorite transfer during the last 30 Myr, we note that Mercury’s impact ejecta leave the planet’s surface much faster (on average) than other planets in the solar system because it is the only planet where impact speeds routinely range from 5 to 20 times the planet’s escape speed; this causes impact ejecta to leave its surface moving many times faster than needed to escape its gravitational pull. Thus, a large fraction of Mercurian ejecta may reach heliocentric orbit with speeds sufficiently high for Earth-crossing orbits to exist immediately after impact, resulting in larger fractions of the ejecta reaching Earth as meteorites. We calculate the delivery rate to Earth on a time scale of 30 Myr (typical of stony meteorites from the asteroid belt) and show that several percent of the high-speed ejecta reach Earth (a factor of 2–3 less than typical launches from Mars); this is one to two orders of magnitude more efficient than previous estimates. -
Updated Inflight Calibration of Hayabusa2's Optical Navigation Camera (ONC) for Scientific Observations During the C
Updated Inflight Calibration of Hayabusa2’s Optical Navigation Camera (ONC) for Scientific Observations during the Cruise Phase Eri Tatsumi1 Toru Kouyama2 Hidehiko Suzuki3 Manabu Yamada 4 Naoya Sakatani5 Shingo Kameda6 Yasuhiro Yokota5,7 Rie Honda7 Tomokatsu Morota8 Keiichi Moroi6 Naoya Tanabe1 Hiroaki Kamiyoshihara1 Marika Ishida6 Kazuo Yoshioka9 Hiroyuki Sato5 Chikatoshi Honda10 Masahiko Hayakawa5 Kohei Kitazato10 Hirotaka Sawada5 Seiji Sugita1,11 1 Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan 2 National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan 3 Meiji University, Kanagawa, Japan 4 Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan 5 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan 6 Rikkyo University, Tokyo, Japan 7 Kochi University, Kochi, Japan 8 Nagoya University, Aichi, Japan 9 Department of Complexity Science and Engineering, The University of Tokyo, Chiba, Japan 10 The University of Aizu, Fukushima, Japan 11 Research Center of the Early Universe, The University of Tokyo, Tokyo, Japan 6105552364 Abstract The Optical Navigation Camera (ONC-T, ONC-W1, ONC-W2) onboard Hayabusa2 are also being used for scientific observations of the mission target, C-complex asteroid 162173 Ryugu. Science observations and analyses require rigorous instrument calibration. In order to meet this requirement, we have conducted extensive inflight observations during the 3.5 years of cruise after the launch of Hayabusa2 on 3 December 2014. In addition to the first inflight calibrations by Suzuki et al. (2018), we conducted an additional series of calibrations, including read- out smear, electronic-interference noise, bias, dark current, hot pixels, sensitivity, linearity, flat-field, and stray light measurements for the ONC. -
Shape Reconstruction of the Asteroid Ryugu in Hayabusa2 Mission
Asteroid Science 2019 (LPI Contrib. No. 2189) 2093.pdf SHAPE RECONSTRUCTION OF THE ASTEROID RYUGU IN HAYABUSA2 MISSION. Naru Hirata1, Naoyuki Hirata2, S. Tanaka2, N. Nishikawa2, T. Sugiyama1, R. Noguchi3, Y. Shimaki3, R. Gaskell4, E. Palmer4, K. Matsumoto5, H. Senshu6, Y. Yamamoto3, S. Murakami3, Y. Ishihara3, 7, S. Sugita8, T. Morota8, R. Honda9, M. Arakawa2, K. Ogawa2, Y. Tsuda3, S. Watanabe10, 1ARC-Space, the University of Aizu (Aizu-Wakamatsu, Fukushima, 965-8580, Japan, [email protected]), 2Kobe University, 3ISAS/JAXA, 4Planetary Science Institute, 5NAOJ, 6Chiba Institute of Technology, 7NIES, 8University of Tokyo, 9Kochi University, 10Nagoya University. Introduction: The Hayabusa2 spacecraft arrived during initial observation campaigns from 07/2018 to at the asteroid Ryugu in 06/2018 and started its 08/2018. These campaigns include the Box-A (20 km proximity observation to select candidates of landing altitude), Box-B (6.5 km altitude), and Mid-Altitude sites for touchdown operations. The shape of the (5.1 km altitude) observations. Models were then asteroid is one of the most critical information not only revised with data from following various observations, for landing site selection but also for scientific including close-up imaging during decent operations, discussions. high- and low-phase angle observations, and high sub- We successfully reconstructed and updated the spacecraft latitude observations. Because of constraints shape models of Ryugu with images taken by the on the relative position of the spacecraft to the asteroid, optical navigation camera (ONC) onboard the the sub-spacecraft latitude is limited within ±30˚. This spacecraft and relating ancillary data acquired during limitation affects the performance of the shape model proximity observation of the asteroid [1]. -
Dean Cain Bettina Zimmermann
DEAN CAIN BETTINA ZIMMERMANN POST IMPACT POST IMPACT In 2012, a meteor crashes into tion plane to Europe is destroyed Siberia with the force of several by a mysterious satellite signal, thousand nuclear warheads. In controlled from the ruins of Berlin, 2015, a few survivors will travel a city that was considered dead into “the death zone”, to try and and buried – under 30 feet of ice locate a device that could give and snow – the President of the mankind new hope – or forever New United Northern Sates orders finish it… a new expedition to find and destroy the base and the satellite. In 2012, a meteor strikes Earth, Tom Parker (Dean Cain) volunteers causing earthquakes, tidal waves, to lead a group of highly trained and a dust cloud that soon covers specialists on a suicide mission most of the Northern hemisphere, to Berlin – with ground vehicles, turning it into an ice-covered no reliable intel, and zero radio “death-zone”. contact. Three years later, most of the sur- In the ruins of what was once one vivors have settled in the only hab- of the most dynamic cities in itable territories below the equa- Europe, a desperate fight ensues tor. It’s a harsh life, with little hope for the power to change every- of Earth’s climate ever reverting thing – for better or for worse… back to normal. When an expedi- POST IMPACT SNOWBLIND LLC presents a TANDEM PRODUCTIONS GMBH, UFO IPS LLC in co-production with LUCKY 7 PRODUCTIONS LLC and AMERICAN FILM CINEMA in association with RTL TELEVISION GMBH and THE TOWER LIMITED LIABILITY PARTNERSHIP Production