Opisthobranchia: Anaspidea) in Northeast Queensland, Australia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lipopeptides from Cyanobacteria: Structure and Role in a Trophic Cascade
Lipopeptides from Cyanobacteria : structure and role in a trophic cascade Louis Bornancin To cite this version: Louis Bornancin. Lipopeptides from Cyanobacteria : structure and role in a trophic cascade. Other. Université Montpellier, 2016. English. NNT : 2016MONTT202. tel-02478948 HAL Id: tel-02478948 https://tel.archives-ouvertes.fr/tel-02478948 Submitted on 14 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par Université de Montpellier Préparée au sein de l’école doctorale Sciences Chimiques Balard Et de l’unité de recherche Centre de Recherche Insulaire et Observatoire de l’Environnement (USR CNRS-EPHE-UPVD 3278) Spécialité : Ingénierie des Biomolécules Présentée par Louis BORNANCIN Lipopeptides from Cyanobacteria : Structure and Role in a Trophic Cascade Soutenue le 11 octobre 2016 devant le jury composé de Monsieur Ali AL-MOURABIT, DR CNRS, Rapporteur Institut de Chimie des Substances Naturelles Monsieur Gérald CULIOLI, MCF, Rapporteur Université de Toulon Madame Martine HOSSAERT-MCKEY, DR CNRS, Examinatrice, Centre d’Écologie -
<I>Aplysia Californica</I>
Temperature Eff ects on Growth, Maturation, and Lifes- pan of the California Sea Hare (Aplysia californica) DUSTIN STOMMES, BLA, LYNNE A. FIEBER, PHD,* CHRISTINA BENO, ROBERT GERDES, MS, and THOMAS R. CAPO, BS We conducted a hatchery growth study to describe the variability in growth rates, spawning, and mortality of Aplysia californica in regard to rearing temperature. Animals were housed at a standard hatchery density of fi ve animals per cage, at temperatures of 13, 15, 18, and 21°C. Animals reared at 13 or 15°C grew as much as four times as large, lived twice as long, matured later, and spawned longer than did animals reared at 18 or 21°C. At age 170 to 205 days the fastest growth rates occurred at 18 and 21°C, and the slowest at 13°C. As animals at 18 and 21°C reached sexual maturity at ages 190 to 197 days, or ∼60% through their lifespans, their growth rates slowed such that by age 260 days, the fastest growth rate was at 13°C, and the slowest was at 21°C. Animals reared at 13 and 15°C reached sexual maturity at 242 and 208 days, respectively, or at ∼40% of their life spans. Lifespan and maximum average animal weight were signifi cantly inversely correlated with temperature (P ≤ 0.0001). However, there were no signifi cant diff erences at any temperature in the age at which maximum animal weight was reached when this age was expressed as a percentage of the life span: animals reached their maximum weight at ∼80% of their life span. -
Draft Genome of the Peruvian Scallop Argopecten Purpuratus
GigaScience, 7, 2018, 1–6 doi: 10.1093/gigascience/giy031 Advance Access Publication Date: 2 April 2018 Data Note DATA NOTE Draft genome of the Peruvian scallop Argopecten Downloaded from https://academic.oup.com/gigascience/article/7/4/giy031/4958978 by guest on 29 September 2021 purpuratus Chao Li1, Xiao Liu2,BoLiu1, Bin Ma3, Fengqiao Liu1, Guilong Liu1, Qiong Shi4 and Chunde Wang 1,* 1Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China, 2Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China, 3Qingdao Oceanwide BioTech Co., Ltd., Qingdao 266101, China and 4Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China *Correspondence address. Chunde Wang, Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China. Tel: +8613589227997; E-mail: [email protected] http://orcid.org/0000-0002-6931-7394 Abstract Background: The Peruvian scallop, Argopecten purpuratus, is mainly cultured in southern Chile and Peru was introduced into China in the last century. Unlike other Argopecten scallops, the Peruvian scallop normally has a long life span of up to 7 to 10 years. Therefore, researchers have been using it to develop hybrid vigor. Here, we performed whole genome sequencing, assembly, and gene annotation of the Peruvian scallop, with an important aim to develop genomic resources for genetic breeding in scallops. Findings: A total of 463.19-Gb raw DNA reads were sequenced. A draft genome assembly of 724.78 Mb was generated (accounting for 81.87% of the estimated genome size of 885.29 Mb), with a contig N50 size of 80.11 kb and a scaffold N50 size of 1.02 Mb. -
Coral Reef Benthic Cyanobacteria As Food and Refuge: Diversity, Chemistry and Complex Interactions
Proceedings 9th International Coral Reef Symposium, Bali, Indonesia 23-27 October 2000,Vol. 1. Coral reef benthic cyanobacteria as food and refuge: Diversity, chemistry and complex interactions E. Cruz-Rivera1 and V.J. Paul1,2 ABSTRACT Benthic filamentous cyanobacteria are common in coral reefs, but their ecological roles are poorly known. We combined surveys of cyanobacteria-associated fauna with feeding preference experiments to evaluate the functions of benthic cyanobacteria as food and shelter for marine consumers. Cyanobacterial mats from Guam and Palau yielded 43 invertebrate species. The small sea hare Stylocheilus striatus was abundant on cyanobacterial mats, and only fed on cyanobacteria in multiple-choice experiments. In contrast, feeding experiments with urchins and fishes showed that these macrograzers preferred algae as food and did not consume either of two cyanobacteria offered. Extracts from the cyanobacterium Lyngbya majuscula stimulated feeding by sea hares but deterred feeding by urchins. Thus, some small coral reef grazers use cyanobacteria that are chemically-defended from macrograzers as food and refuge. Cyanobacteria could indirectly influence local biodiversity by affecting the distribution of cyanobacteria-dwelling organisms. Keywords Algal-herbivore interactions, Chemical differently as food by macro- and mesoconsumers?, and defenses, Cyanobacteria, Lyngbya, Mesograzers, Sea 3) Do cyanobacterial metabolites play a role in these hares interactions? Introduction Materials and Methods Studies of algal-herbivore interactions have offered Field surveys and collections were conducted at Piti important information on the roles of eukaryotic Reef in Guam (130 30’N, 1440 45’ E) during July 1999 macroalgae as food and shelter for marine consumers. and at three different sites (Lighthouse Channel, Oolong Complex interactions develop around chemically- Channel, and Short Drop Off) at the Republic of Palau (70 defended seaweeds that deter larger consumers such as 30’ N, 1340 30’ E) during April of 1999 and 2000. -
<I>Aplysia Californica</I>
Journal of the American Association for Laboratory Animal Science Vol 45, No 1 Copyright 2006 January 2006 by the American Association for Laboratory Animal Science Pages 40–47 Life History and Aging of Captive-Reared California Sea Hares (Aplysia californica) Robert Gerdes and Lynne A. Fieber* Although the California sea hare, Aplysia californica, is well known from neurobiological studies and is raised in the laboratory for this purpose, various aspects of its life history in the laboratory, such as aging dynamics, are unknown. There- fore we collected life history data on 4 cohorts of eggs from hatchery-reared animals and performed an actuarial analysis of mortality data. Temperature was controlled at 13 to 15 °C, the photoperiod was a 14:10-h light:dark cycle, and the seawater O2 concentration, pH, and salinity were held at optimized levels. The feeding protocol for 3 cohorts was unrestricted access to the red macroalga Gracilaria ferox, whereas the remaining cohort was fed standard hatchery rations of G. ferox 4 times per week. Growth was sigmoidal in each cohort and resulted in linear growth rates of 1.25 to 3.62 g/d during the exponential phase; these rates were not influenced by feeding level. Sexual maturity occurred at approximately 160 g, at ages ranging from 144 to 241 d. Egg production was highly variable in the different cohorts. Mean lifespan of cohorts fed ad libitum was approximately 228 d. In contrast, the cohort fed standard rations lived an average of 375 d and showed a lower initial mortality rate, suggesting that calorie restriction on a single-species diet prolongs lifespan in California sea hares. -
An Adipokinetic Hormone Acts As a Volume Regulator in the Intertidal Gastropod Mollusk, Aplysia Californica
ORIGINAL RESEARCH published: 24 August 2018 doi: 10.3389/fendo.2018.00493 An Adipokinetic Hormone Acts as a Volume Regulator in the Intertidal Gastropod Mollusk, Aplysia californica Anthony W. Martillotti and Pei-San Tsai* Department of Integrative Physiology, University of Colorado, Boulder, CO, United States Adipokinetic hormone (AKH) is a multifunctional neuropeptide in the gonadotropin-releasing hormone superfamily. In insects, AKH acts to mobilize energy stores during times of high energetic demand, but has been shown to have other effects. In lophotrochozoans, the presence and function of AKH are less characterized. We have previously identified an AKH in an intertidal gastropod mollusk, the California sea hare (Aplysia californica), and named it ac-AKH. Our previous data showed ac-AKH induced an acute weight loss, suggesting a role in volume regulation. The overarching goals of this study were to test the role of ac-AKH as a volume regulator and examine the mechanism by which ac-AKH induced the acute weight loss. Our results showed that ac-AKH Edited by: reduced body mass, in part, through the reduction of hemolymph volume without Honoo Satake, Suntory Foundation for Life Sciences, altering hemolymph osmolality or specific osmolytes. The effect of ac-AKH on volume Japan loss was accentuated under a hyposaline condition. We further showed that ac-akh Reviewed by: expression was inhibited during a hyposaline challenge, and that the administration of Fumihiro Morishita, ac-AKH partially reversed the increase in body mass, but not hemolymph osmolality Hiroshima University, Japan Makoto Osada, change, caused by the hyposaline challenge. These data collectively show that ac-AKH Tohoku University, Japan is a proximate regulator controlling the fluid volume, but not osmolality, in A. -
The Embryonic Life History of the Tropical Sea Hare Stylocheilus Striatus (Gastropoda: Opisthobranchia) Under Ambient and Elevated Ocean Temperatures
The embryonic life history of the tropical sea hare Stylocheilus striatus (Gastropoda: Opisthobranchia) under ambient and elevated ocean temperatures Rael Horwitz1,2, Matthew D. Jackson3 and Suzanne C. Mills1,2 1 Paris Sciences et Lettres (PSL) Research University: École Pratique des Hautes Études (EPHE)-Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Unité de Service et de Recherche 3278 Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), Papetoai, Moorea, French Polynesia 2 Laboratoire d'Excellence ``CORAIL'', Moorea, French Polynesia 3 School of Geography and Environmental Sciences, Ulster University, Coleraine, UK ABSTRACT Ocean warming represents a major threat to marine biota worldwide, and forecasting ecological ramifications is a high priority as atmospheric carbon dioxide (CO2) emis- sions continue to rise. Fitness of marine species relies critically on early developmental and reproductive stages, but their sensitivity to environmental stressors may be a bottleneck in future warming oceans. The present study focuses on the tropical sea hare, Stylocheilus striatus (Gastropoda: Opisthobranchia), a common species found throughout the Indo-West Pacific and Atlantic Oceans. Its ecological importance is well-established, particularly as a specialist grazer of the toxic cyanobacterium, Lyngbya majuscula. Although many aspects of its biology and ecology are well-known, description of its early developmental stages is lacking. First, a detailed account of this species' life history is described, including reproductive behavior, egg mass characteristics and embryonic development phases. Key developmental features are then compared between embryos developed in present-day (ambient) and predicted end-of-century elevated ocean temperatures (C3 ◦C). Results showed developmental stages of embryos reared at ambient temperature were typical of other opisthobranch Submitted 17 October 2016 species, with hatching of planktotrophic veligers occurring 4.5 days post-oviposition. -
Species Report Bursatella Leachii (Ragged Sea Hare)
Mediterranean invasive species factsheet www.iucn-medmis.org Species report Bursatella leachii (Ragged sea hare) AFFILIATION MOLLUSCS SCIENTIFIC NAME AND COMMON NAME REPORTS Bursatella leachii 17 Key Identifying Features This large sea slug can reach more than 10 cm in length. The body has numerous long, branching, white papillae (finger-like outgrowths) that give the animal its ragged appearance. A key distinctive feature is its grey-brown body with dark brown blotches on the white papillae and bright blue eyespots scattered over the body. The head bears four tentacles: two olfactory tentacles originating on the dorsal part of the head resembling long ears, and two oral tentacles, similar in shape, near the mouth. Adults lack an external shell. 2013-2021 © IUCN Centre for Mediterranean Cooperation. More info: www.iucn-medmis.org Pag. 1/5 Mediterranean invasive species factsheet www.iucn-medmis.org Identification and Habitat Other species that look similar This species occurs most commonly in shallow, sheltered waters, often on sandy or muddy bottoms with Caulerpa prolifera, well camouflaged in seagrass beds, and occasionally in harbour environments. If disturbed or touched it can release purple ink. Its behaviour varies with the time of day, as it is more active during the daytime and hides at night. In the early morning sea hares are found clustered together in groups of 8–12 individuals, and they disperse to feed on algal films during the day. They reassemble again at night. Reproduction Bursatella leachii is a hermaphroditic species with a very fast life cycle and continuous reproduction. When mating, one individual acts as a male and crawls onto another one to fertilize it. -
Developmental Transcriptome of Aplysia Californica'
RESEARCH ARTICLE Developmental Transcriptome of Aplysia californica ANDREAS HEYLAND1Ã, ZER VUE2, CHRISTIAN R. VOOLSTRA2,3, 2 4,5Ã MO´ NICA MEDINA , AND LEONID L. MOROZ 1Integrative Biology, University of Guelph, Ontario, Canada 2University of California, Merced, School of Natural Sciences, Merced, California 3Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia 4The Whitney Laboratory for Marine Bioscience, University of Florida, Florida 5Department of Neuroscience, University of Florida, Florida ABSTRACT Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages—many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization—a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms -
Acclimatisation and Adaptive Capacity of Echinoderms in Response to Ocean Acidification and Warming
Acclimatisation and adaptive capacity of echinoderms in response to ocean acidification and warming Kate Marie Sparks Thesis submitted for the degree of Doctor of Philosophy University of Otago Department of Marine Science New Zealand December 2017 Abstract Future ocean acidification and warming pose a substantial threat to the viability of some marine populations. In order to persist, marine species will need to acclimate or adapt to the forecasted changes. Recent research into adaptive capacity of marine species has identified mechanisms of non-genetic inheritance including trans-generational plasticity as important sources of resilience. Based on literature indicating that echinoderms are tolerant to moderate increases in temperature and seawater pCO2, this study hypothesises three outcomes of long-term exposure to combined ocean acidification and warming: 1. Echinoderms possess the genetic capacity to adapt over long time-scales to predicted levels of combined ocean acidification and warming. 2. Echinoderms possess the physiological capability to acclimatize to ocean acidification and warming over long time-scales without a significant cost to metabolic energy budget. 3. After long-term exposure to ocean acidification and warming, echinoderm parents would alter the phenotype (Anticipatory Parental Effect) of their offspring to increase fitness in the F1 generation in response to the environment to which the parents were exposed. Broadcast-spawning echinoderms from the phylum Echinodermata (Fellaster zelandiae; Arachnoides placenta; Acanthaster spp.; Patiriella regularis; Odontaster validus) are used to investigate these hypotheses. 2 Adaptive capacity was investigated using a quantitative genetic approach to examine the response in gastrula-stage offspring of multiple half-sib families raised in fully crossed treatment combinations of temperature (ambient, +2.0, +4.0 °C) and pCO2 (ambient; 2x; 3x ambient ppm). -
A Historical Summary of the Distribution and Diet of Australian Sea Hares (Gastropoda: Heterobranchia: Aplysiidae) Matt J
Zoological Studies 56: 35 (2017) doi:10.6620/ZS.2017.56-35 Open Access A Historical Summary of the Distribution and Diet of Australian Sea Hares (Gastropoda: Heterobranchia: Aplysiidae) Matt J. Nimbs1,2,*, Richard C. Willan3, and Stephen D. A. Smith1,2 1National Marine Science Centre, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW 2450, Australia 2Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2456, Australia. E-mail: [email protected] 3Museum and Art Gallery of the Northern Territory, G.P.O. Box 4646, Darwin, NT 0801, Australia. E-mail: [email protected] (Received 12 September 2017; Accepted 9 November 2017; Published 15 December 2017; Communicated by Yoko Nozawa) Matt J. Nimbs, Richard C. Willan, and Stephen D. A. Smith (2017) Recent studies have highlighted the great diversity of sea hares (Aplysiidae) in central New South Wales, but their distribution elsewhere in Australian waters has not previously been analysed. Despite the fact that they are often very abundant and occur in readily accessible coastal habitats, much of the published literature on Australian sea hares concentrates on their taxonomy. As a result, there is a paucity of information about their biology and ecology. This study, therefore, had the objective of compiling the available information on distribution and diet of aplysiids in continental Australia and its offshore island territories to identify important knowledge gaps and provide focus for future research efforts. Aplysiid diversity is highest in the subtropics on both sides of the Australian continent. Whilst animals in the genus Aplysia have the broadest diets, drawing from the three major algal groups, other aplysiids can be highly specialised, with a diet that is restricted to only one or a few species. -
Sea Slug Stylocheilus Longicauda (Gastropoda: Opisthobranchia) from Southwest Coast of India
Available online at: www.mbai.org.in doi: 10.6024/jmbai.2014.56.2.01794-12 First record of long-tailed pelagic sea slug Stylocheilus longicauda (Gastropoda: Opisthobranchia) from southwest coast of India S. Chinnadurai*, Vishal Bhave1, Deepak Apte1 and K. S. Mohamed Central Marine Fisheries Research Institute, Kochi- 682 018, Kerala, India 1 Bombay Natural History Society, S.B. Singh Road, Mumbai, Maharashtra, India- 400 001. *Correspondence e-mail: [email protected] Received: 23 May 2014, Accepted: 30 Jul 2014, Published: 15 Nov 2014 Original Article Abstract Aplysiomorpha, Acochlidiacea, Sacoglossa, Cylindrobullida, The long-tailed sea slug Stylocheilus longicauda was recorded Umbraculida and Nudipleura (Bouchet and Rocroi, 2005). In for the first time from southwest coast of India. A single clade Aplysiomorpha, (clade to which sea slugs belongs) shell specimen measuring a total length of 70.51mm was collected is small (in some it is lost) and covered by mantle and it is from a floating bottle, along with bunch of goose-neck barnacles from Arabian sea off Narakkal, Vypeen Island, Kochi. absent in nudibranchs. Sea hares or sea slugs belong to the Earlier identifications were made based on the morphology of family Aplysiidae. These gastropods breathe either through the animal without resorting to description of radula. This gills, which are located behind the heart, or through the body makes it difficult to differentiate the species from Stylocheilus surface. The sea hares are characterized by a shell reduced to striatus which has similar characters. The present description a flat plate, prominent tentacles (resembling rabbit ears), and details the external and radular morphology of Stylocheilus a smooth or warty body.