The Population Dynamics and Feeding Preferences of Bursatella Leachii (Opisthobranchia: Anaspidea) in Northeast Queensland, Australia

Total Page:16

File Type:pdf, Size:1020Kb

The Population Dynamics and Feeding Preferences of Bursatella Leachii (Opisthobranchia: Anaspidea) in Northeast Queensland, Australia Records of lite Western Australian il.1H5eWr! Supplement No. 69: 11-21 (2006). The population dynamics and feeding preferences of Bursatella leachii (Opisthobranchia: Anaspidea) in northeast Queensland, Australia Cathryn L. ClaTke James Cook University, Townsville, Queensland 4811, Australia Email: [email protected] A!:-5tr~ct - Sea h",E'5 (OpisthoDranchi<t; Anaspidea) have iong been known to form dense aggregations in shallow marine hahitats Ho'.'!e'.'er, the)·!:' hi?\'e been few attempts to document the dynamics and causes of these i1bg,egations. ThE; present report investigates the population dynamics of Bursatella JeQchii found in assoCiation \·vith a cyanobacterial bloom in tropical north Queensland, Australia. The aggregatIon was fuelled by a continual source of recruits and in laboratory testing, this population preferred a green alga to its prey item in the field, the cyanobactepum, Calothrix crustacea. Therdore, B. Ieachil' has the ability to continually recruit in large numbers to seagrass beds in order to exploit an abundFmt but less preferred food resource. Key words: Bursatella leach ii, Stylocheilus stria/lis, sea hare, Anaspidea, feeding preference INTRODUCTION preference for low~i.ntensity wave action and their The single unifying feature of all populations is preference for intertidal algae species. In one year, their dynamism. Documenting natural population Plaut et aL (1998) observed a rare algal bloom in fluctuation has become increasingly important in deeper water and Aplysia oculi/era was found in recent times where the need exists to distinguish greater abundance in association with this bloom natural fluctuations in systems from those caused than those populations in the exposed shallow­ by anthropogenic disturbance. The majority of water habitats. fluctuations in populations occur on a local scale The second hypothesis is that the sea hares settle (Smith 1996). Aggregations of large numbers of in a range of habitats and migrate to areas of highly animab in a Single area are an extreme example of dense conspecifics for the purpose of breeding. In population fluctuation. These events are referred to California surf-grass beds, Aplysia califomica [arm as population explosions or irruptions (Colgan dense breeding aggregations in summer months 1987; 8uda and l:Zibi 1998; Cote and Reynolds 1998; (Audeskirk 1979). Breeding aggregations of B. Williams et aT. 2001). These aggregations are often leachii during th~ Florida wbter \vere also observed an obvious and highly visible incident to human but animals in summer aggregations were mostly visitors to the site in question and can have a strong immature (Lowe and Turner 1976). effect on the local animal and macrophyte The third hypothesis for aggregation is that it communities. occurs where food is localized (Carefoot 1987). In A l'ange of largely anecdotal evidence suggests habitats where food is concentrated sea hares may that some sea hare species exhibit boom-and-bust aggregate incidentally as a result of larvai cycles, forming large aggregations and then settlement or feeding preferences. That is, a large disappearing. TIl.ere are a number of hypotheses as recruitment of sea hares may settle in an area where to "\.-vhy populations of sea hares exhibit this a preferred host alga is high in abundance. In Israel, dynamic. One hypothesis for the cause of A. oculi/era abundance was hlghly correlated with aggregation is a response· to hydrological the variable presence of species of Ulva and conditions. Lowe and Turner (1976) hypothesized Enteromorpha (Plaut et aL 1998). A. californica that aggregations of juvenHe Bursatella leachii 1,',rere juveniles for example, are primarily found on the caused by the hydrological conditions in subtidal red algae Ploeamillm cartilagineum and Laurencia habitats. In addition, the intensity of water pacifica (Pennings 1991). However, Pawlik (1989) movement in Israel intertidal habitats was demonstrated that A. califomiea settles on a wide negatively related to adult sea hare abundance range of algae and crawls to the preferred species. (Plaut et ~l. 1998). The Occurrence of sea hares in Sites with greater P. cartilageum cover contained intertidal habitats may be a compromise between a higher numbers of It ca1zfam.ica recruits however 12 c.L. Clarke this characteristic did not explain the varifltion in negatively correlated with macrophyte toughness recruihnent intensity which may be related to larval and calcification in D. auricularia. In addition, the supply (Pennings 1991). The combination of feeding preferences of A. califarnica have been found favourable larval conditions and a high abundance to expand with ontogenetic development (Penni..'lgs of a preferred algae species for competent larvae 199Gb) and this trend ~was thought to be caused by may cause high settlement of juveniles in these the soft weak mouth parts found in younger areas. individuals. The key to this last hypothesis is the feeding Biotic interactions, either competition or preference of the sea hare species under predation, have also rarely been examined as investigation. On the whole, feeding specialists influences on feeding preferences in sea hares. seem to be relatively rare in the marine Competition has been suggested by some authors environment when compared with terrestrial (Willan 1979; Achituv and Susswein 1985) although 5y~5tcms (Lubchenco attd (~aines 1981; 1-1" ay et al. never directly tested. Two studies on the influence 1989). In contrast, most sea hares are relatively of predation on feeding preferences yielded specialized feeders and there is a substantial body contradictory results (Pennings 1t,/90a; Rogers et £11. of work addressing the feeding preferences of 2000, 2002). various species (Carefoot 1967, 1987; Wu 1980; Stylocheilus striatus and B. leachii are often Pennings 199Gb; Pennings et al. 1993; Rogers et al. reported to be found in dense feedi..'l.g aggregations 1995; Nagle et al. 1998). These studies had mixed in association with blooms of cyanobacteria results and it can be difficult to sort out the factors (Switzer-Dunlap and Hadfield 1979; Paul and influencing feeding preference in sea hares. Factors Permings 1991). The dynamics of these aggregations such as nutritional value, abundance, secondary has never been quantitatively examined for either chemistry and biotic interactions have previously of these two species. A sole report, Lowe and been the focus of sea hare feeding preference Turner (1976) examined aggregations of B. leachii at studies. Analyses of the nutritional qualities of a beach in Florida but measured the densities of algae tested for sea hare feeding preferences have animals washed up on the shoreline, therefore largely failed to correlate speCific qualities,.. with giving no indication of the natural density of this feeding preferences (e.g., Carefoot 1967, 1970; species. The temporal dynamics of these types of Rogers et ai. 1995). aggregations have not been previously investigated Foraging theory states that feeding on the most and therefore, the underlying cause of population abundant and therefore readily obtainable food irruption in sea hares is unknown. In addition, the sources will require the least energy and thus is feeding preferences of B. leachii have not been most advantageous to the herbivore (Crawley determined for tropical populations. This report 1983). We would expect therefore that sea hares tests the third hypothesis as the cause for the would prefer abundant algae. This is true for some aggrega tions observed in tr<Jpical North species under certain conditions. For example, the Queensland; that is, aggregations caused by specialist sea hare, Aplysia juliana, feeds on and common feeding preferences. The population occupies the abundant green alga, Ulva lactuca, both dynamics of this aggregation were examined using in the laboratory and in the field (Carefoot 1970; descriptive length-frequency analysis to test Rogers et al. 1995), In contrast, Aplysia parvula whether B. leachii settled in a single pulse of utilizes two species of algae which are rare in the recruitment. Laboratory feeding preference was local environment (Rogers et al. 1995). tested to shed light on whether these sea hares were Numerous studies have examined the influence aggregating in response to a preferred food item. of algal secondary chemistry on the feeding preferences of sea hares. Investigations into the role of these chemicals have produced mixed resu.lts. MATERIALS AND METHODS The generalist herbivore, DolabeUa auricularia, was relatively unaffected by the presence of chemical Population monitoring defences in the host algae (Pennings and Paul 1992), Sea hare population sampling was conducted at a Yet, other sea hare species seem to be substantially site in Cleveland Bay near Townsville} Queensland, affected by the type and concentration of Australia (19°10'5, 146°45'E). Cleveland Bay is a macrophyte secondary metabolites (Stylocheilus shallow embayment spanning 30 km protected striatus: Nagle et aL 1998; A. parvula: Ginsburg and from the prevailing winds by Magnetic Island, Cape Paul 2001). Cleveland and the Great Barrier Reef (Lanyon and Physical characteristics of the host macrophyte Marsh 1995). Cleveland Bay is slightly turbid as a have been mostly overlooked in general studies on result of freshwater runoff from local creeks, a Sea hare feeding preferences. One exception is the shipping charmel and re-suspended sediment from study by Pennings and Paul (1992) where the wave turbulence (Walker
Recommended publications
  • SENCKENBERG First Observations of Attempted Nudibranch Predation By
    Mar Biodiv (2012) 42281-283 DOI 10.1007/S12526-011-0097-9 SENCKENBERG SHORT COMMUNICATION First observations of attempted nudibranch predation by sea anemones Sancia E. T. van der Meij • Bastian T. Reijnen Received: 18 April 2011 /Revised: 1 June2011 /Accepted: 6 June2011 /Published online:24 June2011 © The Author(s) 2011. This article is published with open access at Springerlink.com Abstract On two separate occasions during fieldwork in Material and methods Sempoma (eastern Sabah, Malaysia), sea anemones of the family Edwardsiidae were observed attempting to The observations were made dining fieldwork on coral feed on the nudibranch speciesNembrotha lineolata and reefs in the Sempoma district (eastern Sabah, Malaysia), Phyllidia ocellata. These are the first in situ observations as part of the Sempoma Marine Ecological Expedition in of nudibranch predation by sea anemones. This new December 2010 (SMEE2010). The reported observations record is compared with known information on sea slug were made on Creach Reef (04°18'58.8"N, 118°36T7.3" predators. E) and Pasalat Reef (04°30'47.8"N, 118°44'07.8"E), at approximately 10 m depth for both observations. The Keywords Actiniaria • Coral reef • Nudibranchia • nudibranch identifications were checked against Gosliner Polyceridae • Phylidiidae et al. (2008), whereas the identification of the sea anemone was done by A. Crowtheri No material was collected. Photos were taken with a Canon 400D with a Introduction Sigma 50-mm macro lens. Several organisms are known to prey on sea slugs (Gastropoda: Opisthobranchia), including fish, crabs, Results worms and sea spiders (e.g. Trowbridge 1994; Rogers et al.
    [Show full text]
  • <I>Aplysia Californica</I>
    Temperature Eff ects on Growth, Maturation, and Lifes- pan of the California Sea Hare (Aplysia californica) DUSTIN STOMMES, BLA, LYNNE A. FIEBER, PHD,* CHRISTINA BENO, ROBERT GERDES, MS, and THOMAS R. CAPO, BS We conducted a hatchery growth study to describe the variability in growth rates, spawning, and mortality of Aplysia californica in regard to rearing temperature. Animals were housed at a standard hatchery density of fi ve animals per cage, at temperatures of 13, 15, 18, and 21°C. Animals reared at 13 or 15°C grew as much as four times as large, lived twice as long, matured later, and spawned longer than did animals reared at 18 or 21°C. At age 170 to 205 days the fastest growth rates occurred at 18 and 21°C, and the slowest at 13°C. As animals at 18 and 21°C reached sexual maturity at ages 190 to 197 days, or ∼60% through their lifespans, their growth rates slowed such that by age 260 days, the fastest growth rate was at 13°C, and the slowest was at 21°C. Animals reared at 13 and 15°C reached sexual maturity at 242 and 208 days, respectively, or at ∼40% of their life spans. Lifespan and maximum average animal weight were signifi cantly inversely correlated with temperature (P ≤ 0.0001). However, there were no signifi cant diff erences at any temperature in the age at which maximum animal weight was reached when this age was expressed as a percentage of the life span: animals reached their maximum weight at ∼80% of their life span.
    [Show full text]
  • Argiris 1 Color Change in Dolabrifera Dolabrifera (Sea Hare)
    Argiris 1 Color change in Dolabrifera dolabrifera (sea hare) in response to substrate change Jennay Argiris Department of Molecular, Cellular and Developmental Biology University of California, Santa Barbara EAP Tropical Biology and Conservation Program, Fall 2017 15 December 2017 ABSTRACT Dolabrifera dolabrifera is an Opisthobranch (sea slug) known for its cryptic coloration. This coloration is an important defense mechanism, but D. dolabrifera have never been studied to see if they change colors to increase their cryptic nature. After photographing 12 D. dolabrifera on different substrates, the color of the slugs and their substrate were determined. These colors were then depicted as hue values. Each D. dolabrifera was photographed three times, in different tide pools and over time. Every D. dolabrifera was graphed with the hue value found for the slug, substrate and reference for the three photographs taken. After analyzing the graphs, I found a correlation between the slug and substrate hue in eight out of the twelve trials. D. dolabrifera changes its color based on its substrate. RESUMEN Dolabrifera dolabrifera es una Opisthobranch (babosa del mar) conocido por su coloración críptica. Esta coloración es un mecanismo de defensa importante, pero nunca se ha estudiado para ver si los D. dolabrifera cambian de color para aumentar su naturaleza críptica. Después de fotografiar 12 D. dolabrifera en diferentes charcas de mareas a través del tiempo, se determine el color de las babosas y su sustrato. Estos colores fueron luego representados como valores de tono. Cada D. dolabrifera fue fotografiada tres veces, en diferentes charcos de mareas y con el tiempo. Cada D.
    [Show full text]
  • Selection of an Omnivorous Diet by the Mangrove Tree Crab Aratus Pisonii in Laboratory Experiments ⁎ Amy A
    Journal of Sea Research 59 (2008) 59–69 www.elsevier.com/locate/seares Selection of an omnivorous diet by the mangrove tree crab Aratus pisonii in laboratory experiments ⁎ Amy A. Erickson a, , Ilka C. Feller b, Valerie J. Paul a, Lisa M. Kwiatkowski a, Woody Lee a a Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL, USA 34949 b Smithsonian Environmental Research Center, 647 Contees Wharf Rd., PO Box 28, Edgewater, MD, USA 21037 Received 16 October 2006; accepted 12 June 2007 Available online 26 July 2007 Abstract Observational studies on leaf damage, gut content analyses, and crab behaviour have demonstrated that like numerous other mangrove and salt-marsh generalists, the mangrove tree crab Aratus pisonii feeds on a variety of food resources. This study is the first that experimentally tests feeding preferences of A. pisonii, as well as the first to test experimentally whether chemical composition of food resources is responsible for food selection. Feeding preferences were determined among a variety of plant, algal, and animal resources available in the field both in Florida and Belize, using multiple-choice feeding assays, where male and female crabs simultaneously were offered a variety of food items. To test whether chemistry of food resources was responsible for feeding preferences, chemical extracts of food resources were incorporated in an agar-based artificial food, and used in feeding assays. Results of feeding assays suggest that crabs prefer animal matter from ∼ 2.5 to 13× more than other available resources, including leaves of the red mangrove Rhizophora mangle, which contribute the most to their natural diet.
    [Show full text]
  • As Fast As a Hare: Colonization of the Heterobranch Aplysia Dactylomela (Mollusca: Gastropoda: Anaspidea) Into the Western Mediterranean Sea
    Cah. Biol. Mar. (2017) 58 : 341-345 DOI: 10.21411/CBM.A.97547B71 As fast as a hare: colonization of the heterobranch Aplysia dactylomela (Mollusca: Gastropoda: Anaspidea) into the western Mediterranean Sea Juan MOLES1,2, Guillem MAS2, Irene FIGUEROA2, Robert FERNÁNDEZ-VILERT2, Xavier SALVADOR2 and Joan GIMÉNEZ2,3 (1) Department of Evolutionary Biology, Ecology, and Environmental Sciences and Biodiversity Research Institute (IrBIO), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Catalonia, Spain E-mail: [email protected] (2) Catalan Opisthobranch Research Group (GROC), Mas Castellar, 17773 Pontós, Catalonia, Spain (3) Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Americo Vespucio 26 Isla Cartuja, 42092 Seville, Andalucía, Spain Abstract: The marine cryptogenic species Aplysia dactylomela was recorded in the Mediterranean Sea in 2002 for the first time. Since then, this species has rapidly colonized the eastern Mediterranean, successfully establishing stable populations in the area. Aplysia dactylomela is a heterobranch mollusc found in the Atlantic Ocean, and commonly known as the spotted sea hare. This species is a voracious herbivorous with generalist feeding habits, possessing efficient chemical defence strategies. These facts probably promoted the acclimatation of this species in the Mediterranean ecosystems. Here, we report three new records of this species in the Balearic Islands and Catalan coast (NE Spain). This data was available due to the use of citizen science platforms such as GROC (Catalan Opisthobranch Research Group). These are the first records of this species in Spain and the third in the western Mediterranean Sea, thus reinforcing the efficient, fast, and progressive colonization ability of this sea hare.
    [Show full text]
  • Draft Genome of the Peruvian Scallop Argopecten Purpuratus
    GigaScience, 7, 2018, 1–6 doi: 10.1093/gigascience/giy031 Advance Access Publication Date: 2 April 2018 Data Note DATA NOTE Draft genome of the Peruvian scallop Argopecten Downloaded from https://academic.oup.com/gigascience/article/7/4/giy031/4958978 by guest on 29 September 2021 purpuratus Chao Li1, Xiao Liu2,BoLiu1, Bin Ma3, Fengqiao Liu1, Guilong Liu1, Qiong Shi4 and Chunde Wang 1,* 1Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China, 2Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China, 3Qingdao Oceanwide BioTech Co., Ltd., Qingdao 266101, China and 4Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China *Correspondence address. Chunde Wang, Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China. Tel: +8613589227997; E-mail: [email protected] http://orcid.org/0000-0002-6931-7394 Abstract Background: The Peruvian scallop, Argopecten purpuratus, is mainly cultured in southern Chile and Peru was introduced into China in the last century. Unlike other Argopecten scallops, the Peruvian scallop normally has a long life span of up to 7 to 10 years. Therefore, researchers have been using it to develop hybrid vigor. Here, we performed whole genome sequencing, assembly, and gene annotation of the Peruvian scallop, with an important aim to develop genomic resources for genetic breeding in scallops. Findings: A total of 463.19-Gb raw DNA reads were sequenced. A draft genome assembly of 724.78 Mb was generated (accounting for 81.87% of the estimated genome size of 885.29 Mb), with a contig N50 size of 80.11 kb and a scaffold N50 size of 1.02 Mb.
    [Show full text]
  • Aplysia Dactylomela Ordine Anaspidea Rang, 1828 Famiglia Aplysiidae
    Identificazione e distribuzione nei mari italiani di specie non indigene Classe Gastropoda Aplysia dactylomela Ordine Anaspidea Rang, 1828 Famiglia Aplysiidae SINONIMI RILEVANTI Nessuno. DESCRIZIONE COROLOGIA / AFFINITA’ Senza dati. Animale di grandi dimensioni, presenta anelli di forma irregolare distribuiti su tutto il corpo. Parapodi molto sviluppati. DISTRIBUZIONE ATTUALE Circumtropicale, Mediterraneo: Italia, Grecia, Cipro, Turchia, Israele COLORAZIONE Il colore base è verde con gli anelli di colore scuro. PRIMA SEGNALAZIONE IN MEDITERRANEO 2002, Lampedusa (IT) (Trainito, 2005). FORMULA MERISTICA - PRIMA SEGNALAZIONE IN ITALIA TAGLIA MASSIMA 2002, Lampedusa (IT) (Trainito, 2005). - ORIGINE STADI LARVALI Indo-Pacifico. - SPECIE SIMILI VIE DI DISPERSIONE PRIMARIE Traffici marittimi. - CARATTERI DISTINTIVI VIE DI DISPERSIONE SECONDARIE - - STATO DELL ’INVASIONE Insediato. Identificazione e distribuzione nei mari italiani di specie non indigene HABITAT MOTIVI DEL SUCCESSO Sconosciuti. Gli individui trovati a Lampedusa sono stati rinvenuti ad una profondità di 4 metri su un SPECIE IN COMPETIZIONE substrato misto di Posidonia oceanica e Caulerpa racemosa . - Nel mese di ottobre 2002 un esemplare di A. IMPATTI dactylomela è stato rinvenuto in una pozza di scogliera ad Acitrezza (Sicilia orientale) (Scuderi - et al., 2004). DANNI ECOLOGICI - PARTICOLARI CONDIZIONI AMBIENTALI Sconosciute. DANNI ECONOMICI - BIOLOGIA Sconosciuta. IMPORTANZA PER L ’UOMO Sconosciuta BANCA DEI CAMPIONI - PRESENZA IN G -BANK - PROVENIENZA DEL CAMPIONE TIPOLOGIA : (MUSCOLO / ESEMPLARE INTERO / CONGELATO / FISSATO ECC ) LUOGO DI CONSERVAZIONE CODICE CAMPIONE Identificazione e distribuzione nei mari italiani di specie non indigene BIBLIOGRAFIA Cinar M.E., Bilecenoglu M., Ozturk B., Can A., 2006 - New records of alien species on the Levantine coast of Turkey. Aquatic Invasion, 1(2): 84-90. Eales N.B., 1957 - Revision of the species of Aplysia of the Museum National d'histoire naturelle (Malacologie), Paris.
    [Show full text]
  • <I>Aplysia Californica</I>
    Journal of the American Association for Laboratory Animal Science Vol 45, No 1 Copyright 2006 January 2006 by the American Association for Laboratory Animal Science Pages 40–47 Life History and Aging of Captive-Reared California Sea Hares (Aplysia californica) Robert Gerdes and Lynne A. Fieber* Although the California sea hare, Aplysia californica, is well known from neurobiological studies and is raised in the laboratory for this purpose, various aspects of its life history in the laboratory, such as aging dynamics, are unknown. There- fore we collected life history data on 4 cohorts of eggs from hatchery-reared animals and performed an actuarial analysis of mortality data. Temperature was controlled at 13 to 15 °C, the photoperiod was a 14:10-h light:dark cycle, and the seawater O2 concentration, pH, and salinity were held at optimized levels. The feeding protocol for 3 cohorts was unrestricted access to the red macroalga Gracilaria ferox, whereas the remaining cohort was fed standard hatchery rations of G. ferox 4 times per week. Growth was sigmoidal in each cohort and resulted in linear growth rates of 1.25 to 3.62 g/d during the exponential phase; these rates were not influenced by feeding level. Sexual maturity occurred at approximately 160 g, at ages ranging from 144 to 241 d. Egg production was highly variable in the different cohorts. Mean lifespan of cohorts fed ad libitum was approximately 228 d. In contrast, the cohort fed standard rations lived an average of 375 d and showed a lower initial mortality rate, suggesting that calorie restriction on a single-species diet prolongs lifespan in California sea hares.
    [Show full text]
  • An Adipokinetic Hormone Acts As a Volume Regulator in the Intertidal Gastropod Mollusk, Aplysia Californica
    ORIGINAL RESEARCH published: 24 August 2018 doi: 10.3389/fendo.2018.00493 An Adipokinetic Hormone Acts as a Volume Regulator in the Intertidal Gastropod Mollusk, Aplysia californica Anthony W. Martillotti and Pei-San Tsai* Department of Integrative Physiology, University of Colorado, Boulder, CO, United States Adipokinetic hormone (AKH) is a multifunctional neuropeptide in the gonadotropin-releasing hormone superfamily. In insects, AKH acts to mobilize energy stores during times of high energetic demand, but has been shown to have other effects. In lophotrochozoans, the presence and function of AKH are less characterized. We have previously identified an AKH in an intertidal gastropod mollusk, the California sea hare (Aplysia californica), and named it ac-AKH. Our previous data showed ac-AKH induced an acute weight loss, suggesting a role in volume regulation. The overarching goals of this study were to test the role of ac-AKH as a volume regulator and examine the mechanism by which ac-AKH induced the acute weight loss. Our results showed that ac-AKH Edited by: reduced body mass, in part, through the reduction of hemolymph volume without Honoo Satake, Suntory Foundation for Life Sciences, altering hemolymph osmolality or specific osmolytes. The effect of ac-AKH on volume Japan loss was accentuated under a hyposaline condition. We further showed that ac-akh Reviewed by: expression was inhibited during a hyposaline challenge, and that the administration of Fumihiro Morishita, ac-AKH partially reversed the increase in body mass, but not hemolymph osmolality Hiroshima University, Japan Makoto Osada, change, caused by the hyposaline challenge. These data collectively show that ac-AKH Tohoku University, Japan is a proximate regulator controlling the fluid volume, but not osmolality, in A.
    [Show full text]
  • Recent Advances and Unanswered Questions in Deep Molluscan Phylogenetics Author(S): Kevin M
    Recent Advances and Unanswered Questions in Deep Molluscan Phylogenetics Author(s): Kevin M. Kocot Source: American Malacological Bulletin, 31(1):195-208. 2013. Published By: American Malacological Society DOI: http://dx.doi.org/10.4003/006.031.0112 URL: http://www.bioone.org/doi/full/10.4003/006.031.0112 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Amer. Malac. Bull. 31(1): 195–208 (2013) Recent advances and unanswered questions in deep molluscan phylogenetics* Kevin M. Kocot Auburn University, Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, Alabama 36849, U.S.A. Correspondence, Kevin M. Kocot: [email protected] Abstract. Despite the diversity and importance of Mollusca, evolutionary relationships among the eight major lineages have been a longstanding unanswered question in Malacology. Early molecular studies of deep molluscan phylogeny, largely based on nuclear ribosomal gene data, as well as morphological cladistic analyses largely failed to provide robust hypotheses of relationships among major lineages.
    [Show full text]
  • Species Report Bursatella Leachii (Ragged Sea Hare)
    Mediterranean invasive species factsheet www.iucn-medmis.org Species report Bursatella leachii (Ragged sea hare) AFFILIATION MOLLUSCS SCIENTIFIC NAME AND COMMON NAME REPORTS Bursatella leachii 17 Key Identifying Features This large sea slug can reach more than 10 cm in length. The body has numerous long, branching, white papillae (finger-like outgrowths) that give the animal its ragged appearance. A key distinctive feature is its grey-brown body with dark brown blotches on the white papillae and bright blue eyespots scattered over the body. The head bears four tentacles: two olfactory tentacles originating on the dorsal part of the head resembling long ears, and two oral tentacles, similar in shape, near the mouth. Adults lack an external shell. 2013-2021 © IUCN Centre for Mediterranean Cooperation. More info: www.iucn-medmis.org Pag. 1/5 Mediterranean invasive species factsheet www.iucn-medmis.org Identification and Habitat Other species that look similar This species occurs most commonly in shallow, sheltered waters, often on sandy or muddy bottoms with Caulerpa prolifera, well camouflaged in seagrass beds, and occasionally in harbour environments. If disturbed or touched it can release purple ink. Its behaviour varies with the time of day, as it is more active during the daytime and hides at night. In the early morning sea hares are found clustered together in groups of 8–12 individuals, and they disperse to feed on algal films during the day. They reassemble again at night. Reproduction Bursatella leachii is a hermaphroditic species with a very fast life cycle and continuous reproduction. When mating, one individual acts as a male and crawls onto another one to fertilize it.
    [Show full text]
  • Phylum Mollusca • Second-Largest Phylum in Number of Species- Over 100,000 Described
    Phylum Mollusca • Second-largest phylum in number of species- over 100,000 described. • Ecologically widespread- marine, freshwater, terrestrial (gastropods very successful on land) • Variety of body plans (therefore, many classes within the phylum) • Variety in body size- from ~1 mm to ~18 m (60 feet). 80% are under 5 cm, but many are large and therefore significant as food for man. Extant Molluscan classes Gastropoda Cephalopoda Bivalvia (snails) (octopus, squid, (clams, mussels) nautilus) Aplacophora Polyplacophora Monoplacophora (chitons) Scaphopoda (tusk shells) Mollusk characteristics • Ciliated body surface • Calcareous shell- composed of three primary layers- outer periostracum, middle prismatic layer (columnar crystals of calcite) and inner nacre (flat crystals of calcite) • Mantle- dorsal surface of body wall, modified to secrete shell More mollusk characteristics • Radula- a rasping “tongue” with chitin teeth, sometimes also chitinous jaws • Ctenidia- ciliated gills for respiratory gas exchange, usually located in a mantle cavity • Open circulatory system (hemocoel)- coelom is reduced Class Polyplacophora (chitons) • ~800 species, all marine, many intertidal • Shell is distinctive- 8 overlapping plates imbedded partly or entirely in tough “girdle”. • Mantle space extends around perimeter of animal (not just posterior). • Ctenidia are lateral and multiple. • Very conservative class. Fossils date to mid/late Cambrian (500 my). A collection of chitons Class Bivalvia Clams, Oysters, Shipworms 10 Class Bivalvia • Two shells • Most
    [Show full text]