Gait Analysis in Prosthetics by James R

Total Page:16

File Type:pdf, Size:1020Kb

Gait Analysis in Prosthetics by James R Gait Analysis in Prosthetics by James R. Gage, M.D. Ramona Hicks, R.P.T., M.A. REVIEW lems faced by lower limb amputees. Inman's measurement techniques included motion pic­ Objective measurement systems which quan­ tures of coronal and sagittal views, as well as tify locomotion have been in use for the past transverse rotations from below using a glass century. But not until World War II, when walkway. Using interrupted light photography, thousands of men returned home to the United the Biomechanics Laboratory team studied the States with amputations, was technology really motion of body segments during gait. Force applied to the understanding of prosthetic gait. plates measured the subject's ground reaction Inman and colleagues1 founded the Biome­ forces, and muscle activity was recorded using chanics Laboratory at the University of Cali­ electromyography (EMG), which measures the fornia to establish fundamental principles of electrical signals associated with contraction of human walking, particularly in relation to prob­ a muscle. Prior to Inman's fundamental studies, prostheses were customized for the individual Temporal and kinematic data, which were col­ amputee, without any particular regard to ra­ lected at slow, free, and fast speeds, showed tional structural design. Inman's goal was to that the hydraulic knees improved the symmetry provide fundamental data essential for the de­ between the prosthetic limb and the sound limb, sign of prosthetic limbs. By analyzing normal especially at the fast and free speeds. This human walking, he and his colleagues laid the finding was true for both cadence and the groundwork for biomechanical analysis of am­ amount of knee-flexion at swing phase. putee gait.2 Since that time, numerous tech­ Hoy and colleagues,10 in one of the few niques have been developed to study human lo­ studies on gait in juvenile amputees, collected comotion,3 and numerous studies have been un­ kinematic data at various speeds to compare the dertaken to evaluate prosthetic gait. solid ankle cushioned heel (SACH) foot to a Child Amputee Prosthetic Project (CAPP) ex­ perimental foot. The authors found hip range RESEARCH APPLICATIONS of motion to be closer to normal and signifi­ Eberhart, et al.4 described the locomotor cantly less with the CAPP foot than the SACH mechanism of the above-knee amputee from ki­ foot. 11 nematic and kinetic data. They compared lateral Hannah and Morrison studied the effect of stick figures of amputees to normal subjects as alignment of the below-knee prosthesis on gait. a means to objectively identify gait deviations Using electrogoniometers to measure hip and in the sagittal plane. Force plate data were used knee joint rotations in the coronal, sagittal, and to compare the weight-bearing characteristics of transverse planes, they found that malalignment the prosthetic limb and the sound limb. From of the prosthetic foot was the most crucial for these comparisons, the authors identified am­ gait symmetry. 12 putees who walked well with their prostheses Grevsten and Stalberg used electromyog­ and those who were less adept. Eberhart be­ raphy to compare muscle activity in below-knee lieved that ultimately "optimal" patterns of amputees walking with patellar tendon-bearing gait could be determined for amputees and used (PTB) and PTB-suction prostheses. Surface as a reference for evaluating prosthetic gait. electrodes were placed over the tibialis anterior Zuniga, et al.5 studied gait in 20 above-knee and gastrocnemius muscles which, in normal amputees by using electrogoniometers attached gait, usually fire at opposite phases. The data to the knee and foot switches. Their data doc­ showed that these muscles contracted for longer umented asymmetry in the stance and swing periods when the PTB prosthesis was used than phase times between the prosthetic and sound with the PTB-suction prosthesis, suggesting limb. that the suction mechanism improved the adap­ In similar investigations, James and Oberg6 tation to the prosthesis. 13 and Murray, et al.7 studied temporal stride pa­ Thiele, et al. investigated possible neuro- rameters and knee flexion-extension angles, physiological reasons for weakness in above- and also examined above-knee gait at various knee amputees by recording electromyographic speeds. They confirmed the stance and swing activity of the quadriceps during gait. They did phase asymmetry between the prosthetic and not find abnormal recordings and concluded sound limb. They also showed that the asym­ that muscle weakness was secondary to bio­ metry was present regardless of the speed of mechanical, rather than neurophysiological, walking. factors. The collection of baseline data in above-knee amputees clearly demonstrated some shortcom­ CLINICAL APPLICATIONS ings in prosthetic gait. One of these, the longer swing time which is required on the prosthetic Until the present, gait analysis has been ap­ side, has led to the development of dozens of plied to prosthetics only for research purposes. prosthetic knees. Gait analysis laboratories Routine prosthetic fitting and checkout are still have been used to evaluate some of these pros­ done by means of observational gait analysis. thetic designs. Godfrey, et al.,8 in a limited However, observational gait analysis has many study that compared gait with six cadence-re­ disadvantages. sponsive knee units, found no significant dif­ In the first place, even normal human ferences among them. Murray, et al.9 compared walking is extremely complex. With each step, the gait of above-knee amputees with hydraulic more than 30 major muscles have to contract knee units versus constant friction knee units. and/or relax synchronously in each lower ex- tremity. Also, normal human gait is rapid (ap­ this objective analysis is produced by the com­ proximately 105 steps per minute), and the puter in such a fashion that preconceived biases human eye is not fast enough to separate the and communication errors between observers various components of gait at this speed. Krebs, are minimized. Furthermore, some of the more et al.14 have shown that data vary widely when modern gait analysis facilities have the ability different examiners have observed a person's to compare records, for example, of a patient's gait and that observational analysis is only a gait pre- and post-operatively, or of an ampu­ moderately reliable technique. The variations tee's gait with two different prosthetic devices between observers may be due to the precon­ or components. Through comparisons like ceptions of individual observers, to limitations these, the presence or absence of benefit can be of human perception, or to problems in trans­ determined objectively. mitting the information or data to colleagues. In light of these findings, it is not surprising that the fit and quality of the limbs fabricated by different prosthetists vary greatly. KINESIOLOGY Technology has now progressed to the point The field of prosthetics can make use of the where automated gait laboratories can be built. new science of kinesiology, or the study of Their capabilities vary, but most labs monitor movement. Kinesiology consists of two major one or more of the following parameters: fields: 1) kinematics or movement measurements 1) kinematics, the study of motion exclusive through a motion analysis system, of the influences of mass or forces, i.e., 2) evaluation of ground reaction forces via without regard to the underlying cause of force plates or pressure sensitive the motion; and switches, and 2) kinetics, which deals with the forces that 3) dynamic electromyography (monitoring produce motion. the electrical activity of contracting mus­ cles). Kinematic Data The advantage of an automated motion mea­ Kinematic data can be gathered in a variety surement system is that automated data entry of ways—through interrupted light photog­ and rapid processing allow routine clinical use raphy, cinefilm, video systems, and/or electro- at a reasonable cost. Since the sampling rate of goniometers—and it can be displayed in many most automated motion systems is in excess of ways. Stick figures provide a visual display of 50 Hz (50 samples/second), all movement in the subject walking. the lower extremities during walking can be ex­ Figure 1 is a stick figure representation of an amined in detail and with excellent reproduc­ 11 year old girl with a right knee disarticula­ ibility. tion. The stick figures facilitate the identifica­ Thus, the analysis of walking becomes ob­ tion of gait deviations, e.g., knee hyperexten- jective, rather than subjective, and a record of sion on the prosthetic side at stance phase. With Figure 1. Lateral stick figures of the right gait cycle of an 11-year-old-girl with a right knee disarticulation. Figure 2. Comparison of knee flexion-extension motion in one above-knee amputee with an average composite of knee flexion- extension in seven above- knee amputees. observational gait analysis, this gait deviation Although all above-knee amputees hyperextend might be missed, or two examiners might argue their knees slightly during stance phase, this about its presence. With objective gait analysis, patient has 10 degrees more hyperextension we can prove the deviation's existence by than average. Following the gait analysis, it viewing the stick figures, and we can identify was discovered that the knee extension bumper the cause of the deviation by reviewing the was too soft, and it was replaced with a suff­ graphs that depict motion. These graphs display er one. motions of each joint of the lower extremities Kinematic data can also be used to compute in all three planes during a representative gait temporal data, such as stride length, cadence, cycle. and walking velocity. Figure 3 compares the Figure 2 is a graph showing knee flexion- temporal data of the child with knee disarticu­ extension of the same child with a knee disar­ lation with "normal" children the same age. ticulation. The child's sagittal knee motion is Notice that the stride length is normal but that compared with the mean or average flexion- the walking velocity and cadence are less than extension of seven other above-knee amputees.
Recommended publications
  • Pes Anserine Bursitis
    BRIGHAM AND WOMEN’S HOSPITAL Department of Rehabilitation Services Physical Therapy Standard of Care: Pes Anserine Bursitis ICD 9 Codes: 726.61 Case Type / Diagnosis: The pes anserine bursa lies behind the medial hamstring, which is composed of the tendons of the sartorius, gracilis and semitendinosus (SGT) muscles. Because these 3 tendons splay out on the anterior aspect of the tibia and give the appearance of the foot of a goose, pes anserine bursitis is also known as goosefoot bursitis.1 These muscles provide for medial stabilization of the knee by acting as a restraint to excessive valgus opening. They also provide a counter-rotary torque function to the knee joint. The pes anserine has an eccentric role during the screw-home mechanism that dampens the effect of excessively forceful lateral rotation that may accompany terminal knee extension.2 Pes anserine bursitis presents as pain, tenderness and swelling over the anteromedial aspect of the knee, 4 to 5 cm below the joint line.3 Pain increases with knee flexion, exercise and/or stair climbing. Inflammation of this bursa is common in overweight, middle-aged women, and may be associated with osteoarthritis of the knee. It also occurs in athletes engaged in activities such as running, basketball, and racquet sports.3 Other risk factors include: 1 • Incorrect training techniques, or changes in terrain and/or distanced run • Lack of flexibility in hamstring muscles • Lack of knee extension • Patellar malalignment Indications for Treatment: • Knee Pain • Knee edema • Decreased active and /or passive ROM of lower extremities • Biomechanical dysfunction lower extremities • Muscle imbalances • Impaired muscle performance (focal weakness or general conditioning) • Impaired function Contraindications: • Patients with active signs/symptoms of infection (fever, chills, prolonged and obvious redness or swelling at hip joint).
    [Show full text]
  • Common Gait Deviations in the Patient with Hemiplegia
    Common gait deviations in the patient with hemiplegia Kim Carter, PT, NCS Things to consider • How did the patient walk before? • Any previous orthopedic conditions? • House set up • Where can they practice walking outside of therapy? • Caregiver’s ability (and/or willingness) to help patient Initial Contact • Problems – Ankle • Contacts with forefoot/flat foot – Is the step too short? – Is the gastroc tight? » Stretch in sitting » Stretch in long sit » Stretch in standing » Stretch in supine Initial Contact • Problems – Ankle • Contacts with the forefoot/flat foot – Are the dorsiflexors weak? » Seated exercises » Standing exercises » Supine exercises » Taping » Bracing Initial Contact Initial Contact • Problems – Knee • Flexed at contact – Look at the ankle first – Tone-inability to extend knee with hip flexion at terminal swing – Are the hamstrings tight? » Supine stretch » Long sit stretch » Sitting stretch » Standing stretch Initial Contact • Problems – Pelvis • Rotation – Inadequate advancing of the leg » Manual cues for orientation of pelvis » Muscular tightness Initial Contact • Problems – Trunk • Flexed – Tight hip flexors – May be due to increased plantarflexion • Rotated – May be rotated forward to advance the leg Loading response • Ankle – Foot slap • Weak dorsiflexors – Closed chain dorsiflexion Loading Response • Knee – Hyperextension • May be due to short step • Muscular weakness – Modified stride squats – Standing knee extension against theraband – Affected leg on step, step up with sound side Midstance • Problems – Ankle
    [Show full text]
  • Normal and Abnormal Gaits in Dogs
    Pagina 1 di 12 Normal And Abnormal Gait Chapter 91 David M. Nunamaker, Peter D. Blauner z Methods of Gait Analysis z The Normal Gaits of the Dog z Effects of Conformation on Locomotion z Clinical Examination of the Locomotor System z Neurologic Conditions Associated With Abnormal Gait z Gait Abnormalities Associated With Joint Problems z References Methods of Gait Analysis Normal locomotion of the dog involves proper functioning of every organ system in the body, up to 99% of the skeletal muscles, and most of the bony structures.(1-75) Coordination of these functioning parts represents the poorly understood phenomenon referred to as gait. The veterinary literature is interspersed with only a few reports addressing primarily this system. Although gait relates closely to orthopaedics, it is often not included in orthopaedic training programs or orthopaedic textbooks. The current problem of gait analysis in humans and dogs is the inability of the study of gait to relate significantly to clinical situations. Hundreds of papers are included in the literature describing gait in humans, but up to this point there has been little success in organizing the reams of data into a useful diagnostic or therapeutic regime. Studies on human and animal locomotion commonly involve the measurement and analysis of the following: Temporal characteristics Electromyographic signals Kinematics of limb segments Kinetics of the foot-floor and joint resultants The analyses of the latter two types of measurements require the collection and reduction of voluminous amounts of data, but the lack of a rapid method of processing this data in real time has precluded the use of gait analysis as a routine clinical tool, particularly in animals.
    [Show full text]
  • Health Sciences Library New Book List: July - December 2018 Page 1 of 6
    Health Sciences Library New Book List: July - December 2018 Page 1 of 6 Peer support best practice toolkit: a resource for individuals developing and providing peer support programs for families of children with medical complexity and other lifelong disabilities. Contents: 1. Background and models of peer support -- 2. Current HQ759.913 .P43 programs in Ontario: case studies -- 3. Resources to help you get started - - 4. Rapid evidence review: peer support for families of children with disabilities. Holland Bloorview Kids Rehabilitation Hospital. Holland Bloorview Kids Rehabilitation Hospital, [2015]. 1 volume (unpaged). A therapeutic clown emerges: our story of recruitment and training. A full-length documentary film which traces the recruitment and training of the newest therapeutic clown. WB880 .D66 Conceived and written by Helen Donnelly. Directed and edited by Helen Donnelly & Greg Vanden Kroonenberg. Narrated by Diane Savage. Holland Bloorview Kids Rehabilitation Hospital, 2018. 1 videodisc (107 min.) Cognitive rehabilitation for pediatric neurological disorders. Chapter contributed by Holland Bloorview staff: Chapter 6 – Lisa Kakonge WS340 .C63 Locascio, Gianna, editor. Cambridge University Press, [2018]. xi, 263 pages Goal setting and motivation in therapy. Chapter contributed by Holland Bloorview staff: Chapter 5 – Gillian King WS350.2 .G62 Poulsen, Anne A., editor. Jessica Kingsley Publishers, 2015. 269 pages. Qualitative research design: an interactive approach. Maxwell, Joseph Alex, 1941-, SAGE Publications, 2013. xi, 218
    [Show full text]
  • Section I Introduction
    SECTION I INTRODUCTION 1. OVERVIEW The National Center for Medical Rehabilitation Research (NCMRR) was established within the National Institutes of Health (NIH) by legislation (P.L. 101-613) passed in 1990. The Center is a component of the National Institute of Child Health and Human Development (NICHD). The mission of NCMRR is to foster development of scientific knowledge needed to enhance the health, productivity, independence, and quality of life of people with physical disabilities. The primary goal of the Center is to bring the health related problems of people with disabilities to the attention of America’s best scientists in order to capitalize upon the myriad advances occurring in the biological, behavioral, and engineering sciences. This is accomplished in part, by supporting research on enhancing the functioning of people with disabilities in daily life. Periodically the Center also sponsors workshops which allow experts in a field to gather and focus on a topic of interest. This document contains a detailed description of the design, execution, results and interpretation of the workshop “Gait Analysis in Rehabilitation Medicine.” 1.1 Purpose The primary purpose of the workshop, described within this document, was to develop and prioritize a set of recommendations that pertain to the future role of gait analysis in enhancing the function of people with disabilities due to functional limitations of the locomotion system. Although the workshop was entitled "Gait Analysis in Rehabilitation Medicine," the range of topics which gait encompasses is much broader than the classical definition of bi or quadri pedal motion might imply. Gait clinics and laboratories include analysis of many forms of human locomotion which often include the use of assistive devices such as crutches, canes, prosthetics, and wheelchairs.
    [Show full text]
  • Categorization of Functional Impairments in Human Locomotion
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2010-01-01 Categorization of Functional Impairments in Human Locomotion using the Methods of the Fusion of Multiple Sensors and Computational Intelligence Huiying Yu University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biomedical Commons, and the Electrical and Electronics Commons Recommended Citation Yu, Huiying, "Categorization of Functional Impairments in Human Locomotion using the Methods of the Fusion of Multiple Sensors and Computational Intelligence" (2010). Open Access Theses & Dissertations. 2814. https://digitalcommons.utep.edu/open_etd/2814 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. CATEGORIZATION OF FUNCTIONAL IMPAIRMENTS IN HUMAN LOCOMOTION USING THE METHODS OF THE FUSION OF MULTIPLE SENSORS AND COMPUTATIONAL INTELLIGENCE HUIYING YU Department of Electrical and Computer Engineering APPROVED: ________________________________ Thompson Sarkodie-Gyan, Ph.D., Chair ________________________________ Scott Starks, Ph.D. ________________________________ Richard Brower, M.D. ________________________________ Bill Tseng, Ph.D. ________________________________ Eric Spier, M.D. __________________________________ Patricia D. Witherspoon, Ph.D. Dean of the Graduate
    [Show full text]
  • Use of Osteopathic Manipulative Treatment to Manage Compensated Trendelenburg Gait Caused by Sacroiliac Somatic Dysfunction
    Editor’s Note: Corrections to this article were published in the March 2010 issue of JAOA—The Journal of the CASE REPORT American Osteopathic Association (2010;110[3]:210). The corrections have been incorporated in this online version of the article, which was posted January 2011. An expla - nation of these changes is available at http://www.jaoa .org/cgi/content /full/110/3/210-a. Use of Osteopathic Manipulative Treatment to Manage Compensated Trendelenburg Gait Caused by Sacroiliac Somatic Dysfunction Adam C. Gilliss, DO; Randel L. Swanson, II, OMS III; Deanna Janora, MD; and Venkat Venkataraman, PhD Gait dysfunctions are commonly encountered in the pri - In the present case report, we provide evidence that com - mary care setting. Compensated Trendelenburg gait is a gait pensated Trendelenburg gait may represent a secondary gait dysfunction that was originally described in patients with dysfunction stemming from somatic dysfunction of the weakness of ipsilateral hip abduction. This condition is sacroiliac joints. We also describe evidence of osteopathic thought to result from neuronal injury or myopathy. No manipulative treatment (OMT) resulting in quantitative treatment modalities currently exist for compensated Tren - improvements in the gait cycle. delenburg gait. The authors present a case in which osteo - pathic manipulative treatment may have improved a Tren - Traditional and Osteopathic Gait Theory delenburg gait dysfunction in a man aged 65 years with The gait cycle is divided into two main phases—stance and multiple sclerosis. Evidence of this improvement was swing, each consisting of numerous subphases. 2,3 Traditionally, obtained with the GaitMat II system for measuring the human gait cycle is considered to have six determinants that numerous gait parameters.
    [Show full text]
  • Correlation Between Gait Asymmetry and Leg Length Discrepancy—What Is the Role of Clinical Abnormalities?
    applied sciences Article Correlation between Gait Asymmetry and Leg Length Discrepancy—What Is the Role of Clinical Abnormalities? Sam Khamis 1,2,* , Barry Danino 3,4, Dror Ovadia 3,4 and Eli Carmeli 2 1 Gait and Motion Analysis Laboratory, Department of Pediatric Orthopedics, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel 2 Department of Physical Therapy, Faculty of Social Welfare and Health sciences, University of Haifa, Haifa 3498838, Israel; [email protected] 3 Department of Pediatric Orthopedics, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, 6, Weizmann St., Tel Aviv 64239, Israel; [email protected] (B.D.); [email protected] (D.O.) 4 Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel * Correspondence: [email protected]; Tel.: +972-50-5452699 Received: 22 July 2018; Accepted: 16 October 2018; Published: 18 October 2018 Abstract: Reducing the effect of leg length discrepancy (LLD) on gait abnormalities while other abnormal conditions such as spasticity, joint contractures or weak muscle strength are exhibited is challenging. This study aimed to evaluate the impact of mild LLD on lower limb biomechanics, on participants with anatomic LLD with and without other clinical abnormalities. A motion capture system was utilized on 32 participants to measure lower limb kinematics and dynamic leg length (DLL) throughout the gait cycle, calculated as the absolute distance from the hip joint center, either to the heel, ankle joint center, or forefoot. The Pearson correlation coefficient found that LLD was associated with 5 kinematic variables only when LLD appeared with no other clinical abnormalities present (r = 0.574 – 0.846, p < 0.05).
    [Show full text]
  • Primary and Secondary Gait Deviations of Stroke Survivors and Their Association with Gait Performance
    J. Phys. Ther. Sci. 28: 2634–2640, 2016 The Journal of Physical Therapy Science Original Article Primary and secondary gait deviations of stroke survivors and their association with gait performance Hyung-Sik Kim, PhD1), Soon-Cheol Chung, PhD1), Mi-Hyun Choi, PhD1), Seon-You ng Gim, BS1), Woo-Ram Kim, BS1), Gye-Rae Tack, PhD1), Dae-Woon Lim, PhD2), Sung-Kuk Chun, MS3), Jin-Wook Kim, PhD3), Kyung-Ryoul Mun, PhD3)* 1) Department of Biomedical Engineering, BK21+ Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Republic of Korea 2) Department of Information and Communication Engineering, Dongguk University, Republic of Korea 3) Imaging Media Research Center, Korea Institute of Science and Technology: Seoul 136791, Republic of Korea Abstract. [Purpose] Stroke survivors exhibit abnormal pelvic motion and significantly deteriorated gait perfor- mance. Although the gait of stroke survivors has been evaluated at the primary level pertaining to ankle, knee, and hip motions, secondary deviations involving the pelvic motions are strongly related to the primary level. Therefore, the aim of this study was to identify the kinematic differences of the primary and secondary joints and to identify mechanism differences that alter the gait performance of stroke survivors. [Subjects and Methods] Five healthy subjects and five stroke survivors were recruited. All the subjects were instructed to walk at a self-selected speed. The joint kinematics and gait parameters were calculated. [Results] For the stroke survivors, the range of motion of the primary-joint motions were significantly reduced, and the secondary-joint motions were significantly increased. Additionally, for the healthy subjects, the primary joint kinematics were the main factors ensuring gait perfor- mance, whereas for the stoke survivors, the secondary-joint motions were the main factors.
    [Show full text]
  • USCP Gait Patterns – Rang Lovell & Winter 2Nd Ed
    UNILATERAL SPASTIC CEREBRAL PALSY: GAIT PATTERNS AND SURGICAL MANAGEMENT Jon R. Davids, MD Assistant Chief of Orthopaedic Surgery Director, Motion Analysis Laboratory Shriners Hospital for Children Professor and Ben Ali Chair in Pediatric Orthopaedics Department of Orthopaedic Surgery University of California Davis Medical School Sacramento, CA USA Presenter Disclosure Information JON R. DAVIDS, MD Unilateral Spastic Cerebral Palsy: Gait Patterns and Surgical Management Disclosure Information The following relationships exist: • OrthoPediatrics – Consultant • OrthoPediatrics Foundation for Education and Research – Board Member USCP: Gait Patterns and Surgical Management • Classification of CP – Historical / Critical Overview • Unilateral Spastic CP (USCP) – Definition – Common Deviations – Management Options • Surgical • Orthotic – “A Tale of 2 Unis” Classification of CP • Definitions – Classification: systematic arrangement in groups or categories according to established criteria • https://www.merriam- webster.com/dictionary/classification – Purpose • Incidence/Prevalence • Natural History • Clinical Decision Making • Outcome Assessment Classification of CP • Definitions – Hemiplegia: total or partial paralysis of one side of the body that results from disease of or injury to the motor centers of the brain • https://www.merriam- webster.com/dictionary/hemiplegia – Causes • Normal Brain – Trauma / Infection / Tumor / Vascular • Abnormal Brain Structure – Neuronal Migration Disorders Classification of CP • Definitions – Hemiplegia: total
    [Show full text]
  • The Impact of Increased Femoral Antetorsion on Gait Deviations In
    Journal of Biomechanics 86 (2019) 167–174 Contents lists available at ScienceDirect Journal of Biomechanics journal homepage: www.elsevier.com/locate/jbiomech www.JBiomech.com The impact of increased femoral antetorsion on gait deviations in healthy adolescents q ⇑ Nathalie Alexander a,b, , Kathrin Studer c, Harald Lengnick c, Erika Payne c, Harry Klima c, Regina Wegener a,b a Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland b Department of Orthopaedics and Traumatology, Cantonal Hospital St. Gallen, Switzerland c Department of Paediatric Orthopaedics, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland article info abstract Article history: Increased femoral antetorsion leads to several gait deviations, and amongst others, an increased knee Accepted 8 February 2019 flexion was reported in mid and terminal stance. Therefore, the purpose of this retrospective study was to identify gait deviations caused by increased femoral antetorsion and to perform subgroup analy- ses based on sagittal knee kinematics. Patients with isolated, CT confirmed increased femoral antetorsion Keywords: (n = 42) and age-matched typically developing children (TDC, n = 17) were included in this study. Patients Coxa antetorta were referred to gait analysis because of gait abnormalities going along with an increased femoral ante- Gait analysis torsion 30°. Kinematic and kinetic data were recorded during 3D gait analysis and three valid gait cycles Principal component analysis were analyzed. Principal component (PC) analysis was used to achieve data transformation. A linear Linear mixed model Hip internal rotation mixed model was used to estimate the group effect of PC-scores of retained PCs explaining 90% of the Knee flexion cumulative variance.
    [Show full text]
  • Gait and Posture – Assessment in General Practice
    THEME Musculoskeletal medicine Gait and posture Assessment in general practice BACKGROUND A basic analysis of a patient’s gait and posture provides information about the body and the capability of the musculoskeletal system to adjust to physical stressors. An understanding of normal gait and posture is essential for Kent Sweeting identifying and treating musculoskeletal pain. BHlthSc(Pod)(Hons), MAPodA, OBJECTIVE is a podiatrist, Brisbane, and a This article discusses normal gait and how to assess gait. It also outlines common musculoskeletal conditions and their researcher, Griffith University, Queensland. k.sweeting@ association with abnormal gait and posture. General practitioners can detect faulty postural syndromes and abnormal griffith.edu.au gait by visual scanning and awareness of pain referral patterns. Michael Mock DISCUSSION MBBS, MMed(PhysMed), Awareness of pain that can arise from faulty gait and posture will assist GPs to shift their focus away from structural FRACGP, FACPM, is a general diagnoses and unhelpful radiological investigations. The GP can become an effective facilitator of the prevention and practitioner, Wetherill Park rehabilitation of pain problems where abnormal gait and posture are found to be a main contributing factor. and St Leonards, New South Wales. Gait analysis is comparable to an X-ray or blood test; 40% respectively.5 Figure 1 summarises all events and it is a powerful investigative tool, which together with the timing of just over one complete gait cycle. When the patient history and physical examination, may examining gait, clinicians can fall into the trap of solely be used to assess and diagnose patients suffering focusing on the stance phase and miss vital pieces of musculoskeletal pain, and predict successful treatment information that can be gathered from the patient’s swing of these pathologies.1–3 Understanding the basic phase (eg.
    [Show full text]