A Stochastic Kriging Approach for the Minimization of Integrals

Total Page:16

File Type:pdf, Size:1020Kb

A Stochastic Kriging Approach for the Minimization of Integrals Felipe Carraro A stochastic Kriging approach for the minimization of integrals Florianópolis 2017 Felipe Carraro A stochastic Kriging approach for the minimization of integrals Dissertation submitted to the Civil Engineering Department of the Fed- eral University of Santa Catarina as a partial requirement to obtain the Master’s degree. Federal University of Santa Catarina Department of Civil Engineering Graduation Program in Civil Engineering Advisor: Prof. Rafael Holdorf Lopez Co-advisor: Prof. Leandro Fleck Fadel Miguel Florianópolis 2017 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC. Carraro, Felipe A stochastic Kriging approach for the minimization of integrals / Felipe Carraro ; orientador, Rafael Holdorf Lopez, coorientador, Leandro Fleck Fadel Miguel, 2017. 157 p. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós Graduação em Engenharia Civil, Florianópolis, 2017. Inclui referências. 1. Engenharia Civil. 2. minimização de integrais. 3. otimização global. 4. metamodelos. 5. kriging. I. Lopez, Rafael Holdorf. II. Miguel, Leandro Fleck Fadel. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Civil. IV. Título. Felipe Carraro A stochastic Kriging approach for the minimization of integrals Esta Dissertação foi julgada adequada para a obtenção do Título de MESTRE em Engenharia Civil e aprovada em sua forma final pelo Programa de Pós-Graduação em Engenharia Civil - PPGEC da Universidade Federal de Santa Catarina. Florianópolis, 05 de outubro de 2017: Glicério Trichês, Dr. Coordenador PPGEC Comissão Examinadora: Prof. Rafael Holdorf Lopez, Dr. (Orientador) Universidade Federal de Santa Catarina Prof. Breno Pinheiro Jacob, Dr. (Videoconferência) Universidade Federal do Rio de Janeiro Prof. Marcelo Krajnc Alves, Ph.D. Universidade Federal de Santa Catarina Prof. Wellison José de Santana Gomes, Dr. Universidade Federal de Santa Catarina Resumo Este estudo tem como objetivo propor um método eficiente baseado na metodologia Stochastic Kriging (SK) para a solução de problemas de minimização de integrais. O modelo SK é usado para criar uma aproxi- mação rápida para a função a ser minimizada. Além disso, estimativas de variância da simulação de Monte Carlo são usadas para auxiliar a otimização. O procedimento de otimização aplica o algoritmo Efficient Global Optimization com o critério de preenchimento Augmented Ex- pected Improvement. Observa-se que o alvo de variância influencia os resultados da otimização. Um alvo muito baixo faz com a otimização torne-se demasiadamente custosa, enquanto que um alvo muito alto pode estagnar a otimização. Desta maneira, uma seleção adaptativa do alvo de variância é proposta. De modo a verificar o desempenho do método proposto vários testes comparativos são conduzidos. O método é aplicado para diversas funções de referência da literatura submetidas a um ruído estocástico. Além disso, comparações são realizadas em relação a um algoritmo eficiente conhecido e ao uso de quadraturas para a avaliação da integral. Por fim, a abordagem proposta é também apli- cada a um problema de engenharia estrutural. Os resultados destacam o desempenho eficiente do método bem como a sua consistência ao longo de diversas execuções independentes. Palavras-chave: stochastic kriging. otimização global. minimização de integrais. Resumo expandido Introdução Atualmente, muitas áreas da engenharia como civil, mecânica, naval e aeroespacial usam técnicas de otimização como uma ferramenta para resolver problemas reais. Apesar do aumento da capacidade computa- cional disponível, os ambientes de engenharia continuam a evoluir a analisar sistemas mais complexos, que podem incluir mais detalhes, por exemplo, modelos mais refinados. A análise desse tipo de problema, em termos de otimização, pode tornar-se inviável uma vez que uma única análise do modelo pode ser bastante custosa computacionalmente. Pode ser necessário a avaliação das incertezas inerentes ao problema estudado. Neste caso, há ainda um custo adicional relacionado ao fato do modelo analisado ser estocástico. Objetivos Este estudo tem como objetivo propor um método eficiente baseado na metodologia Stochastic Kriging (SK) para a solução de problemas de minimização de integrais. Mais especificamente busca-se estudar técnicas de metamodelagem associadas a simulações de Monte Carlo. A partir destas técnicas, objetiva-se a implementação de algoritmos computacionais bem como a realização de testes para a verificação do desempenho obtido. Uma das metas deste estudo também é propor uma maneira de incluir o erro cometido pela simulação de Monte Carlo na construção do metamodelo. Mais ainda, aplicar o método proposto a um problema de engenharia, como por exemplo o de controle ótimo da resposta dinâmica de estruturas sujeitas a carregamentos transientes. Por fim, busca-se verificar a eficiência dos métodos estudados. Metodologia O modelo SK é usado para criar uma aproximação rápida para a função a ser minimizada. Além disso, estimativas de variância da simulação de Monte Carlo são usadas para auxiliar a otimização. O procedimento de otimização aplica o algoritmo Efficient Global Optimization com o critério de preenchimento Augmented Expected Improvement. No entanto, este critério é modificado para que seja possível a inserção de pontos no modelo utilizando-se alvos de variância diversos. Mais ainda, de forma a balancear as características de exploração e refinamento da resposta, o alvo é alterado pelo uso de uma função de decaimento exponencial. Esta função realiza a adaptação do alvo conforme as características do ponto que deve ser adicionado ao metamodelo. De modo a verificar o desempenho do método proposto, vários testes comparativos são conduzidos. Inicialmente, o método é aplicado para quatro funções de referência da literatura submetidas a um ruído esto- cástico. As funções possuem 1, 2, 6 e 10 dimensões. O ruído estocástico é aplicado multiplicativamente a função determinística por meio de uma variável aleatória normal com média unitária e desvio padrão arbitrado para cada problema. Além disso, comparações são realizadas entre o método proposto e um al- goritmo eficiente conhecido, chamado Globalized Bounded Nelder–Mead (GBNM). Ainda, verifica-se existe vantagem em realizar a avaliação da integral que descreve o problema de otimização utilizando-se quadraturas ao invés da técnica de simulação de Monte Carlo. Por fim, a abordagem proposta é também aplicada a um problema de engenharia estrutural. Neste problema o objetivo é minimizar o valor esperado da probabilidade de falha de um pórtico plano de 10 pavimentos sujeito a ação sísmica. Uma forma de aleatoriedade do problema advém do sismo, que é simulado utilizando-se um processo estocástico filtrado pelo espectro Kanai-Tajimi. A outra, vem incorporada nos parâmetros estruturais de massa, amortecimento e rigidez. Estes são descritos por variáveis aleatórias com uma média fixa e um certo coeficiente de variação. A solução do problema se dá com uso do método proposto sendo que a parte dinâmica do problema é solucionada a partir da equação de Lyapunov. Esta equação descreve o problema em sua formulação de espaço de estado. Resultados e discussão Observa-se que o alvo de variância influencia os resultados da otimização. Um alvo muito baixo faz com a otimização torne-se demasiadamente custosa, enquanto que um alvo muito alto pode estagnar a otimização. É esta situação que motiva o uso de um esquema adaptativo para a seleção do alvo de variância. A partir dos resultados da otimização dos problemas referência da literatura, observam-se reduções no custo computacional e na variabilidade dos resultados quando da utilização do alvo adaptativo em relação ao constante. O uso de quadraturas, em sua forma mais simples com a utilização do produto de regras unidimensionais, acresce demasiadamente o número de avaliações para se chegar a uma resposta similar ao obtido pelo método proposto. Com relação ao algoritmo GBNM utilizado para comparação, o método proposto se mostrou mais eficiente e mesmo alterando-se os parâmetros internos daquele algoritimo não foi possível obter um número de avaliações equivalente para a partir do problema de duas dimensões. Os resultados destacam o desempenho eficiente do método bem como a sua consistência ao longo de diversas execuções independentes. Considerações finais De maneira geral pode-se dizer que os objetivos do estudo foram atingi- dos. Conseguiu-se propor um método que incorpora o erro de Monte Carlo na criação do metamodelo. Além disso, utilizando-se o algoritmo EGO foi possível realizar o refino iterativo do metamodelo objetivando a localização do ótimo global. Questões como a parada inesperada do algoritmo ou o alto número de avalições que estavam relacionadas ao valor do alvo de variância foram solucionados por meio do esquema adaptativo. O método proposto obteve uma maior eficiência com relação ao número de chamadas da função objetivo além de consistentemente chegar mais próximo ao ótimo global. Palavras-chave: stochastic kriging. otimização global. minimização de integrais. Abstract This study aims at proposing an efficient method based on the Stochastic Kriging (SK) methodology for the solution of integral minimization problems. The SK metamodel is used to create a fast approximation for the function being minimized. Moreover, variance estimates from Monte Carlo simulation are used to aid the optimization. The minimization procedure employed the Efficient Global
Recommended publications
  • Industrial and Systems Engineering (ISE)
    Lehigh University 2021-22 1 Industrial and Systems Engineering (ISE) Courses ISE 224 Information Systems Analysis and Design 3 Credits ISE 100 Industrial Employment 0 Credits An introduction to the technological as well as methodological Usually following the junior year, students in the industrial engineering aspects of computer information systems. Content of the course curriculum are required to do a minimum of eight weeks of practical stresses basic knowledge in database systems. Database design and work, preferably in the field they plan to follow after graduation. A evaluation, query languages and software implementation. Students report is required. Must have sophomore standing. that take CSE 241 cannot receive credit for this course. ISE 111 Engineering Probability 3 Credits ISE 226 Engineering Economy and Decision Analysis 3 Credits Random variables, probability models and distributions. Poisson Economic analysis of engineering projects; interest rate factors, processes. Expected values and variance. Joint distributions, methods of evaluation, depreciation, replacement, breakeven covariance and correlation. analysis, aftertax analysis. decision-making under certainty and risk. Prerequisites: MATH 022 or MATH 096 or MATH 032 or MATH 052 Prerequisites: ISE 111 or MATH 231 or IE 111 Can be taken Concurrently: ISE 111, MATH 231, IE 111 ISE 112 Computer Graphics 1 Credit Introduction to interactive graphics and construction of multiview ISE 230 Introduction to Stochastic Models in Operations representations in two and three dimensional space. Applications in Research 3 Credits industrial engineering. Must have sophomore standing in industrial Formulating, analyzing, and solving mathematical models of real- engineering. world problems in systems exhibiting stochastic (random) behavior. Discrete and continuous Markov chains, queueing theory, inventory ISE 121 Applied Engineering Statistics 3 Credits control, Markov decision process.
    [Show full text]
  • Major Factors That Influence the Employment Decisions of Generation X Consulting Engineers
    Old Dominion University ODU Digital Commons Engineering Management & Systems Engineering Management & Systems Engineering Theses & Dissertations Engineering Spring 2002 Major Factors That Influence the Employment Decisions of Generation X Consulting Engineers Robert William Mayfield Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds Part of the Engineering Commons, Organizational Behavior and Theory Commons, and the Work, Economy and Organizations Commons Recommended Citation Mayfield, Robert W.. "Major Factors That Influence the Employment Decisions of Generation X Consulting Engineers" (2002). Master of Science (MS), Thesis, Engineering Management & Systems Engineering, Old Dominion University, DOI: 10.25777/t41p-rd52 https://digitalcommons.odu.edu/emse_etds/102 This Thesis is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. MAJOR FACTORS THAT INFLUENCE THE EMPLOYMENT DECISIONS OF GENERATION X CONSULTING ENGINEERS bv Robert William Mayfield B.S. March 1994, The Ohio State University A Thesis Submitted to the Faculty o f Old Dominion University in Partial Fulfillment o f the Requirement for the Degree of MASTER OF SCIENCE ENGINEERING MANAGEMENT OLD DOMINION UNIVERSITY May 2002 Approved by: Charles Keating (Direct Paul Kauffmai ember) Andres Sousa-Poza (Member) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT MAJOR FACTORS THAT INFLUENCE THE EMPLOYMENT DECISIONS OF GENERATION X CONSULTING ENGINEERS Robert William Mayfield Old Dominion University. 2002 Director: Dr. Charles Keating The purpose of this research was to study Generation X consulting engineers (those bom between the years 1964 and 1980) in Lynchburg.
    [Show full text]
  • Novel Substructural Health Monitoring Method Without Interface Measurements Using State Space Analysis and Extended Kalman Filtering
    Novel Substructural Health Monitoring Method without Interface Measurements using State Space Analysis and Extended Kalman Filtering by Arianne Layard Muelhausen Under the Supervision of Prof. Brock Hedegaard A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (Civil and Environmental Engineering) at the University of Wisconsin-Madison 2018 Contents 1 Introduction 2 2 Literature Review 4 3 Methodology 8 3.1 State Space Analysis . .8 3.2 Kalman Filter . .9 3.3 Extended Kalman Filter . 11 3.4 Substructural Identification using Extended Kalman Filtering . 12 3.4.1 Global Equation of Motion . 13 3.4.2 Substructural Equation of Motion . 14 3.4.3 State Space Formulation: State Transition Equation . 17 3.4.4 State Space Formulation: Measurement Equation . 18 3.4.5 Implementation of Extended Kalman Filter . 19 3.5 Methodology Step-by-Step Summary . 24 4 Results 25 4.1 Model Description . 25 4.2 Case One: All DOFs Measured . 26 4.3 Case Two: All Interface and Some Interior DOFs Measured . 29 4.4 Case Three: Some Interface and Some Interior DOFs Measured . 31 4.5 Case Four: No Interface and Some Interior DOFs Measured . 38 4.6 Discussion on Limitations of Method . 40 5 Conclusion 41 6 Work Cited 42 1 1 Introduction Structural Health Monitoring (SHM) at its core is a process to identify damage, defined as either material or geometric change, of a system that negatively affects the systems performance[7]. SHM seeks to address four questions: (Level 1) Detection: Is damage present? (Level 2) Localization: What is the probable location of damage? (Level 3) Assessment: What is the severity of the damage? (Level 4) Prognosis: What is the remaining service life of the damaged system? SHM can be used to monitor structures affected by external stimuli, long-term movement, ma- terial degradation, or demolition.
    [Show full text]
  • Multivariate Statistical Process Monitoring Using Classical
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Newcastle University eTheses Multivariate Statistical Process Monitoring Using Classical Multidimensional Scaling Prepared by: Mohd Yusri Mohd Yunus A Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy School of Chemical Engineering and Advanced Materials Newcastle University UK May 2012 ABSTRACT A new Multivariate Statistical Process Monitoring (MSPM) system, which comprises of three main frameworks, is proposed where the system utilizes Classical Multidimensional Scaling (CMDS) as the main multivariate data compression technique instead of using the linear- based Principal Component Analysis (PCA). The conventional method which usually applies variance-covariance or correlation measure in developing the multivariate scores is found to be inappropriately used especially in modelling nonlinear processes, where a high number of principal components will be typically required. Alternatively, the proposed method utilizes the inter-dissimilarity scales in describing the relationships among the monitored variables instead of variance-covariance measure for the multivariate scores development. However, the scores are plotted in terms of variable structure, thus providing different formulation of statistics for monitoring. Nonetheless, the proposed statistics still correspond to the conceptual objective of Hotelling’s T2 and Squared Prediction Errors (SPE). The first framework corresponds to the original
    [Show full text]
  • On Simulation of Cross Correlated Random Fields Using Series Expansion Methods
    ENGINEERING MECHANICS 2009 National Conference with International Participation pp. 1431–1443 Svratka, Czech Republic, May 11 – 14, 2009 Paper #139 ON SIMULATION OF CROSS CORRELATED RANDOM FIELDS USING SERIES EXPANSION METHODS M. Vorechovskˇ y´ 1 Summary: A practical framework for generating cross correlated fields with a specified marginal distribution function, an autocorrelation function and cross cor- relation coefficients is presented in the paper. The approach relies on well known series expansion methods for simulation of a Gaussian random field. The proposed method requires all cross correlated fields over the domain to share an identical au- tocorrelation function and the cross correlation structure between each pair of sim- ulated fields to be simply defined by a cross correlation coefficient. Such relations result in specific properties of eigenvectors of covariance matrices of discretized field over the domain. These properties are used to decompose the eigenproblem which must normally be solved in computing the series expansion into two smaller eigenproblems. Such a decomposition represents a significant reduction of compu- tational effort. Non-Gaussian components of a multivariate random field are proposed to be sim- ulated via memoryless transformation of underlying Gaussian random fields for which the Nataf model is employed to modify the correlation structure. In this method, the autocorrelation structure of each field is fulfilled exactly while the cross correlation is only approximated. The associated errors can be computed before performing simulations and it is shown that the errors happen especially in the cross correlation between distant points and that they are negligibly small in practical situations. 1. Introduction The random nature of many features of physical events is widely recognized both in industry and by researchers.
    [Show full text]
  • Integrated Reliable and Robust Design
    Scholars' Mine Masters Theses Student Theses and Dissertations Spring 2011 Integrated reliable and robust design Gowrishankar Ravichandran Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Mechanical Engineering Commons Department: Recommended Citation Ravichandran, Gowrishankar, "Integrated reliable and robust design" (2011). Masters Theses. 4860. https://scholarsmine.mst.edu/masters_theses/4860 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. INTEGRATED RELIABLE AND ROBUST DESIGN by GOWRISHANKAR RAVICHANDRAN A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN MECHANICAL ENGINEERING 2011 Approved by Xiaoping Du, Advisor Arindam Banerjee Shun Takai iii ABSTRACT The objective of this research is to develop an integrated design methodology for reliability and robustness. Reliability-based design (RBD) and robust design (RD) are important to obtain optimal design characterized by low probability of failure and minimum performance variations respectively. But performing both RBD and RD in a product design may be conflicting and time consuming. An integrated design model is needed to achieve both reliability and robustness simultaneously. The purpose of this thesis is to integrate reliability and robustness. To achieve this objective, we first study the general relationship between reliability and robustness. Then we perform a numerical study on the relationship between reliability and robustness, by combining the reliability based design, robust design, multi objective optimization and Taguchi’s quality loss function to formulate an integrated design model.
    [Show full text]
  • Interaction Graphs for a Two-Level Combined Array Experiment Design by Dr
    Journal of Industrial Technology • Volume 18, Number 4 • August 2002 to October 2002 • www.nait.org Volume 18, Number 4 - August 2002 to October 2002 Interaction Graphs For A Two-Level Combined Array Experiment Design By Dr. M.L. Aggarwal, Dr. B.C. Gupta, Dr. S. Roy Chaudhury & Dr. H. F. Walker KEYWORD SEARCH Research Statistical Methods Reviewed Article The Official Electronic Publication of the National Association of Industrial Technology • www.nait.org © 2002 1 Journal of Industrial Technology • Volume 18, Number 4 • August 2002 to October 2002 • www.nait.org Interaction Graphs For A Two-Level Combined Array Experiment Design By Dr. M.L. Aggarwal, Dr. B.C. Gupta, Dr. S. Roy Chaudhury & Dr. H. F. Walker Abstract interactions among those variables. To Dr. Bisham Gupta is a professor of Statistics in In planning a 2k-p fractional pinpoint these most significant variables the Department of Mathematics and Statistics at the University of Southern Maine. Bisham devel- factorial experiment, prior knowledge and their interactions, the IT’s, engi- oped the undergraduate and graduate programs in Statistics and has taught a variety of courses in may enable an experimenter to pinpoint neers, and management team members statistics to Industrial Technologists, Engineers, interactions which should be estimated who serve in the role of experimenters Science, and Business majors. Specific courses in- clude Design of Experiments (DOE), Quality Con- free of the main effects and any other rely on the Design of Experiments trol, Regression Analysis, and Biostatistics. desired interactions. Taguchi (1987) (DOE) as the primary tool of their trade. Dr. Gupta’s research interests are in DOE and sam- gave a graph-aided method known as Within the branch of DOE known pling.
    [Show full text]
  • Industrial Engineering (IE) 1
    Industrial Engineering (IE) 1 IE 288. Industrial Engineering Cooperative Education Seminar 0 Units INDUSTRIAL ENGINEERING Grading Basis: Pass/Fail Term Typically Offered: Fall, Spring, Summer (IE) Prerequisite(s): CHEM 201, ENGL 101, ENGR 102, ENGR 110, PHYS 298, student must be in Good Standing with GPA of 2.25 or higher; IE 240. Subject-area course lists indicate courses currently active for offering Corequisite(s): IE 240. at the University of Louisville. Not all courses are scheduled in any Description: Discussion of the policies and procedures for cooperative given academic term. For class offerings in a specific semester, refer to education and instruction in self- directed job search techniques, the Schedule of Classes (http://htmlaccess.louisville.edu/classSchedule/ including interviewing skills, resume preparation, and guidelines for the setupSearchClassSchedule.cfm). co-op report. This is a prerequisite for each cooperative education term. For class offerings for a specific term, refer to the Schedule 500-level courses generally are included in both the undergraduate- and of Classes (http://htmlaccess.louisville.edu/classSchedule/ graduate-level course listings; however, specific course/section offerings setupSearchClassSchedule.cfm) may vary between semesters. Students are responsible for ensuring that they enroll in courses that are applicable to their particular academic IE 289. Industrial Engineering Cooperative Education I 1 Unit programs. Grading Basis: Pass/Fail Term Typically Offered: Fall, Spring, Summer Course Fees Prerequisite(s): IE 288. Fee: An additional $300.00 is charged for this course. Some courses may carry fees beyond the standard tuition costs to cover Description: Full-time technical work experience related to the student's additional support or materials.
    [Show full text]
  • Department of Construction Management & Civil and Construction
    Department of Construction Management &ETAS, Civil Room 203 and | (501) 569-8133 Construction | fax (501) 569-8341 | ualr.edu/constructionmanagement Engineering Chairperson: Construction is our nation’s largest industry. It encompasses the residential sector, commercial Tramel, Michael and retail buildings, office and high-rise structures, major industrial and process complexes, and engineering infrastructure such as highways, dams, bridges, airports, and seaports. The Coordinator of Undergraduate complexity of projects demands that professional constructors and engineers possess detailed Construction Management knowledge of the many aspects of the industry to effectively lead and manage the design and Programs: construction processes. Ray, Chris UALR’s construction-related programs provide curricula that equip for a wide range Coordinator of Graduate of design, managerial, and supervisory roles within this multi-faceted, dynamic industry. Technological, computer, and software orientation assist our graduates to develop into Construction Management contributing members of the architectural, engineering, and construction industry with high Programs: paying entry level jobs. There are substantial opportunities for rapid advancement and salary Pellicane, Patrick increases with experience in the industry. Career opportunities for our graduates can be found with general and specialty contractors, architectural and engineering design firms, testing Coordinator of Architectural, Civil, laboratories, government agencies, financial institutions, insurance and surety companies, Construction, and Environmental and manufacturers of construction equipment and products. The courses provide an in-depth Engineering Programs: study of construction management, construction science, engineering, business, mathematics, Jovanovic, Nickolas and sciences. Extensive applications with construction and engineering computer software and hardware emphasize the most current technologies used by industry. Professors: Blacklock, James General Information Carr, James K.
    [Show full text]
  • Technical Work in the Engineering and Architecture Group 0800
    Technical Work in the Engineering and Architecture Group, 0800 May 2007 TABLE OF CONTENTS INTRODUCTION........................................................................................................................................... 2 COVERAGE ...............................................................................................................................................2 MODIFICATIONS TO OR CANCELLATIONS OF OTHER EXISTING OCCUPATIONAL SERIES AND STANDARDS ..........................................................................................................................................3 PART I – OCCUPATIONAL INFORMATION .................................................................................................. 4 GENERAL SERIES DETERMINATION GUIDELINES...................................................................................4 DISTINGUISHING BETWEEN TECHNICAL AND TRADE, CRAFT, OR LABOR WORK ................................5 DISTINGUISHING BETWEEN TECHNICAL AND PROFESSIONAL WORK ...................................................6 OFFICIAL TITLING PROVISIONS ..............................................................................................................7 INFORMATION BY SERIES IN NUMBER ORDER........................................................................................8 OCCUPATIONAL INFORMATION BY SERIES .............................................................................................9 ENGINEERING TECHNICAL, 0802.......................................................................................................9
    [Show full text]
  • Damage Diagnosis Algorithms Using Statistical Pattern Recognition for Civil Structures Subjected to Earthquakes
    Department of Civil and Environmental Engineering Stanford University Damage Diagnosis Algorithms using Statistical Pattern Recognition for Civil Structures Subjected to Earthquakes By Hae Young Noh and Anne S. Kiremidjian Report No. 180 June 2013 The John A. Blume Earthquake Engineering Center was established to promote research and education in earthquake engineering. Through its activities our understanding of earthquakes and their effects on mankind’s facilities and structures is improving. The Center conducts research, provides instruction, publishes reports and articles, conducts seminar and conferences, and provides financial support for students. The Center is named for Dr. John A. Blume, a well-known consulting engineer and Stanford alumnus. Address: The John A. Blume Earthquake Engineering Center Department of Civil and Environmental Engineering Stanford University Stanford CA 94305-4020 (650) 723-4150 (650) 725-9755 (fax) [email protected] http://blume.stanford.edu ©2013 The John A. Blume Earthquake Engineering Center Abstract In order to prevent catastrophic failure and reduce maintenance costs, the demands for the automated monitoring of the performance and safety of civil structures have increased significantly in the past few decades. In particular, there has been extensive research in the development of wireless structural health monitoring systems, which enable dense installation of sensors on structural systems with low installation and maintenance costs. The main challenge of these wireless sensing units is to reduce the amount of data that need to be transmitted wirelessly because the wireless data transmission is the major source of power consumption. This dissertation introduces various damage diagnosis algorithms that use statistical pattern recognition methods at sensor level.
    [Show full text]
  • Primer on Bridge Load Testing TRANSPORTATION RESEARCH BOARD 2019 EXECUTIVE COMMITTEE OFFICERS
    TRANSPORTATION RESEARCH Number E-C257 November 2019 Primer on Bridge Load Testing TRANSPORTATION RESEARCH BOARD 2019 EXECUTIVE COMMITTEE OFFICERS Chair: Victoria A. Arroyo, Executive Director, Georgetown Climate Center; Assistant Dean, Centers and Institutes; and Professor and Director, Environmental Law Program, Georgetown University Law Center, Washington, D.C. Vice Chair: Leslie S. Richards, Secretary, Pennsylvania Department of Transportation, Harrisburg Division Chair for NRC Oversight: Chris Hendrickson, Hamerschlag University Professor Emeritus, Carnegie Mellon University Executive Director: Neil J. Pedersen, Transportation Research Board TRANSPORTATION RESEARCH BOARD 2018–2019 TECHNICAL ACTIVITIES COUNCIL Chair: Hyun-A C. Park, President, Spy Pond Partners, LLC, Arlington, Massachusetts Technical Activities Director: Ann M. Brach, Transportation Research Board David Ballard, Senior Economist, Gellman Research Associates, Inc., Jenkintown, Pennsylvania, Aviation Group Chair Coco A. Briseno, Deputy Director, Planning and Modal Programs, California Department of Transportation (CALTRANS), State DOT Representative Michael Griffith, Director, Office of Safety Technologies, Federal Highway Administration, Safety and System Users Group Chair George Grimes, CEO Advisor, Patriot Rail Company, Denver, Colorado, Rail Group Chair Brendon Hemily, Principal, Hemily and Associates, Public Transportation Group Chair Nikola Ivanov, Deputy Director, Center for Advanced Transportation Technology Laboratory, University of Maryland, College Park,
    [Show full text]