Notes on Propositional Calculus

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Propositional Calculus Notes on Propositional Calculus Learning goals 1. Distinguish between inductive and deductive inference. Provides examples to illustrate each one. 2. Provide definitions for Propositional Calculus (PC) terminology. See list below. 3. Translate propositions from English into PC. 4. Check consistency of axioms. 5. Check validity of arguments using truth tables (for simple cases). 6. Check validity of arguments using rules of inference listed on Table 4. Supplementary readings There are several files posted on the course web site that are worth reading. Wikipedia also has several useful pages that address various aspects of propositional calculus. These include page entitled Argument, Atomic sentence, Axiomatic system, Boolean logic, Consistency, List of logic symbols, Logic, Truth table, Deductive reasoning, Rule of inference. Definitions for common PC terminology Proposition A proposition is a well-formed grammatical statement that can be either true or false. It can be either an atomic proposition or a set of atomic propositions combined using unary and binary operators. Atomic proposition An atomic proposition is a proposition that cannot be written in terms of the output of operators acting on more basic propositions. These are represented by single letters. Operator An operator is a kind of function that take a proposition(s) as input and returns a proposition as output. Unary operator A unary operator is an operator that takes one proposition and returns a new proposition (e.g., :). [[In general, an operator can be written in function notation (e.g., U(p) where U is the operator, p is a proposition) but, in practice, they are usually written in a way that reflects the manner in which they are spoken. For example, negation can be written as N(p) (returning the proposition \p is false" which is true precisely when p is false) but it is usually written as :p which is read as \not p".]] Binary operator A binary operator is an operator that takes two proposition and returns a new composite proposition (e.g., )).[[As with a unary operator, a binary operator can be represented in function notation as B(p; q). In practice, we write them as, for example, p _ q. Table 2 gives a truth table and explanations for all binary operators of PC.]] Tautology A tautology is a proposition that is true no matter what truth values are given to its constituent parts. (e.g., p _:p). Contradiction A contradiction is a proposition that is false no matter what truth values are given to its constituent parts (e.g., p ^ :p). 1 Truth table A truth table provides a method for presenting all possible instances of truth values for a set of propositions. [[For example, suppose we are dealing with two atomic proposition, p and q, and two composite proposition, p ) q and p _ q. Each atomic proposition has two possible truth values, so a set of n atomic propositions have 2n possible distinct sets of truth values. In this case, n = 2 so the table has 4 rows.]] p q p ) q p _ q TTTT TFFT FTTT FFTF Contingent proposition A contingent proposition is a proposition that is neither a tautology nor a contradiction (e.g., p ) q). That is, its truth value is not certain until the truth values of the atomic propositions are ascertained. Axiom An axiom is proposition that we assume to be true and from which we intend to derive conclusions using rules of inference. Theorem A theorem must be defined in the context of a particular set of axioms. It is a proposition that is true whenever the atomic propositions involved are given truth values that make all the axioms true. [[For example, an axiom is always a theorem. Any proposition that follows from the axioms by a valid argument is also a theorem.]] Argument An argument consists of a set of axioms and an alleged theorem. Valid argument A valid argument is an argument in which the alleged theorem is actually a theorem. Theory A theory is a set of axioms along with all the theorems that follow from those axioms. Consistency of axioms A set of axioms is consistent provided there is at least on set of truth values for the underlying atomic propositions that render all axioms true. If the axioms are not true for any set of atomic truth values, the set of axioms is said to be inconsistent. Consistent theory A consistent theory is one which is based on a consistent set of axioms. [[A contradiction cannot be a theorem in a consistent theory. Interest- ingly, a contradiction can be (and always is) a theorem in an inconsistent theory. The fact that human thought is capable of housing contradic- tions (usually inadvertently) has interesting implications for the nature of human thought if interpreted as in terms of formal theories.]] Rule of inference A rule of inference is a tool for the valid derivation of new theorems from previously established theorems and axioms. [[It is expressed in the form fp1; p2; :::; pN ` T g which we read as \If p1; p2; ::: and pN have all been established as theorems then T is also a theorem. A rule of inference can be verified by constructing a truth table and checking that whenever p1; p2; :::; pN are all true, T is also true.]] Examples 1. Problem: Show that the propositions (A1) p ) (q _ r), (A2) r ):q, and (A3) p form a consistent set of axioms. 2 Solution: To show consistency, we must find truth values for p, q and r for which all three axioms are simultaneously true. To do this, we present the truth table: p q r q _ r p ) (q _ r) :q r ):q p TTT T T F F T TTF T T F T T TFT T T T T T TFF F F T T T FTT T T F F F FTF T T F T F FFT T T T T F FFF F T T T F [[Note: Columns 1, 2 and 3 give truth values for the atomic propositions. Eight rows allow for all possible combinations. Columns 4 and 6 allow explicit calculation of parts of the axioms and columns 5, 7 and 8 show the resulting truth values for the axioms themselves.]] Notice that in row 2 and 3, all three axioms are true. This means these axioms are consistent. 2. Problem: Using the same propositions A1, A2 and A3 as in problem 1, show that fA1, A2, A3 ` q ,:rg is a valid argument. Solution: [[There are two ways to show that an argument is valid, either construct a truth table and check that the conclusion is always true whenever the axioms are all true or use the Rules of Inference to infer the conclusion from the axioms. I'll show both here.]] Using a truth table. From the previous problem, we know that the axioms are all true in only two circumstances, either p is true, q is true and r is false or p is true, q is false and r is true. So we need only construct a truth table with these two rows. p q r :r q ):r :r ) q q ,:r TTF T T T T TFT F T T T This demonstrates that the conclusion is true whenever all the axioms are true and so the argument is valid. Using Rules of Inference. Theorem Rule of Inference & number Proposition Theorems used Axioms used 1. p ) (q _ r) Ax 1 2. r ):q Ax 2 3. p Ax 3 4. q _ r MP 1,3 1,3 5. :q ) r MI 4 1,3 6. :r ) q T 5 1,3 7. q ):r T 2 2 8. q ,:r ME 5,7 1,2,3 3. Problem: Determine whether the following set of axioms are consistent or not. (A1) p ):q, (A2) r ):q, (A3) (p ^ r) ) q. 3 Solution: [[Not knowing whether the axioms are consistent or not, we can either build the truth table, \guess" at a set of truth value for p; q and r that make the axioms all true or try to derive a contradiction. The truth table approach would determine consistency immediately but can get tedious when large numbers of atomic propositions are involved (the size of a truth table is 2n where n is the number of atomic propositions). If you suspect the axioms are inconsistent, it is often more efficient to derive a contradiction using Rules of Inference. If you suspect consistency, try choosing combinations of truth values for the atomic propositions, changing one at a time until you find a combination that make all axioms true. Looking at the axioms, I suspect they are consistent so I'll show the truth table and explain how you might arrive at a set of truth values without using a table.]] Using a truth table. p q r p ):q r ):q p ^ r (p ^ r) ) q TTT F F T T TTF F T F T TFT T T T F TFF T T F T FTT T F F T FTF T T F T FFT T T F T FFF T T F T The 4th, 6th, 7th and 8th rows demonstrate truth values for the atomic propositions that make all the axioms true. Thus the axioms are consistent. [[To do this problem without making a truth table, I would start with all atomic propositions true (TTT) and test the axioms. The first one comes out false but that can be fixed by making p false so I test FTT.
Recommended publications
  • Chapter 2 Introduction to Classical Propositional
    CHAPTER 2 INTRODUCTION TO CLASSICAL PROPOSITIONAL LOGIC 1 Motivation and History The origins of the classical propositional logic, classical propositional calculus, as it was, and still often is called, go back to antiquity and are due to Stoic school of philosophy (3rd century B.C.), whose most eminent representative was Chryssipus. But the real development of this calculus began only in the mid-19th century and was initiated by the research done by the English math- ematician G. Boole, who is sometimes regarded as the founder of mathematical logic. The classical propositional calculus was ¯rst formulated as a formal ax- iomatic system by the eminent German logician G. Frege in 1879. The assumption underlying the formalization of classical propositional calculus are the following. Logical sentences We deal only with sentences that can always be evaluated as true or false. Such sentences are called logical sentences or proposi- tions. Hence the name propositional logic. A statement: 2 + 2 = 4 is a proposition as we assume that it is a well known and agreed upon truth. A statement: 2 + 2 = 5 is also a proposition (false. A statement:] I am pretty is modeled, if needed as a logical sentence (proposi- tion). We assume that it is false, or true. A statement: 2 + n = 5 is not a proposition; it might be true for some n, for example n=3, false for other n, for example n= 2, and moreover, we don't know what n is. Sentences of this kind are called propositional functions. We model propositional functions within propositional logic by treating propositional functions as propositions.
    [Show full text]
  • Logic: Representation and Automated Reasoning
    Logic Knowledge Representation & Reasoning Mechanisms Logic ● Logic as KR ■ Propositional Logic ■ Predicate Logic (predicate Calculus) ● Automated Reasoning ■ Logical inferences ■ Resolution and Theorem-proving Logic ● Logic as KR ■ Propositional Logic ■ Predicate Logic (predicate Calculus) ● Automated Reasoning ■ Logical inferences ■ Resolution and Theorem-proving Propositional Logic ● Symbols: ■ truth symbols: true, false ■ propositions: a statement that is “true” or “false” but not both E.g., P = “Two plus two equals four” Q = “It rained yesterday.” ■ connectives: ~, →, ∧, ∨, ≡ • Sentences - propositions or truth symbols • Well formed formulas (expressions) - sentences that are legally well-formed with connectives E.g., P ∧ R → and P ~ are not wff but P ∧ R → ~ Q is Examples P Q AI is hard but it is interesting P ∧ Q AI is neither hard nor interesting ~P ∧ ~ Q P Q If you don’t do assignments then you will fail P → Q ≡ Do assignments or fail (Prove by truth table) ~ P ∨ Q None or both of P and Q is true (~ P ∧ ~ Q) ∨ (P ∧ Q) ≡ T Exactly one of P and Q is true (~ P ∧ Q) ∨ (P ∧ ~ Q) ≡ T Predicate Logic ● Symbols: • truth symbols • constants: represents objects in the world • variables: represents ranging objects } Terms • functions: represent properties • Predicates: functions of terms with true/false values e.g., bill_residence_city (vancouver) or lives (bill, vancouver) ● Atomic sentences: true, false, or predicates ● Quantifiers: ∀, ∃ ● Sentences (expressions): sequences of legal applications of connectives and quantifiers to atomic
    [Show full text]
  • 7.1 Rules of Implication I
    Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms) to derive either a conclusion or a series of intermediate conclusions that link the premises of an argument with the stated conclusion. The First Four Rules of Inference: ◦ Modus Ponens (MP): p q p q ◦ Modus Tollens (MT): p q ~q ~p ◦ Pure Hypothetical Syllogism (HS): p q q r p r ◦ Disjunctive Syllogism (DS): p v q ~p q Common strategies for constructing a proof involving the first four rules: ◦ Always begin by attempting to find the conclusion in the premises. If the conclusion is not present in its entirely in the premises, look at the main operator of the conclusion. This will provide a clue as to how the conclusion should be derived. ◦ If the conclusion contains a letter that appears in the consequent of a conditional statement in the premises, consider obtaining that letter via modus ponens. ◦ If the conclusion contains a negated letter and that letter appears in the antecedent of a conditional statement in the premises, consider obtaining the negated letter via modus tollens. ◦ If the conclusion is a conditional statement, consider obtaining it via pure hypothetical syllogism. ◦ If the conclusion contains a letter that appears in a disjunctive statement in the premises, consider obtaining that letter via disjunctive syllogism. Four Additional Rules of Inference: ◦ Constructive Dilemma (CD): (p q) • (r s) p v r q v s ◦ Simplification (Simp): p • q p ◦ Conjunction (Conj): p q p • q ◦ Addition (Add): p p v q Common Misapplications Common strategies involving the additional rules of inference: ◦ If the conclusion contains a letter that appears in a conjunctive statement in the premises, consider obtaining that letter via simplification.
    [Show full text]
  • Useful Argumentative Essay Words and Phrases
    Useful Argumentative Essay Words and Phrases Examples of Argumentative Language Below are examples of signposts that are used in argumentative essays. Signposts enable the reader to follow our arguments easily. When pointing out opposing arguments (Cons): Opponents of this idea claim/maintain that… Those who disagree/ are against these ideas may say/ assert that… Some people may disagree with this idea, Some people may say that…however… When stating specifically why they think like that: They claim that…since… Reaching the turning point: However, But On the other hand, When refuting the opposing idea, we may use the following strategies: compromise but prove their argument is not powerful enough: - They have a point in thinking like that. - To a certain extent they are right. completely disagree: - After seeing this evidence, there is no way we can agree with this idea. say that their argument is irrelevant to the topic: - Their argument is irrelevant to the topic. Signposting sentences What are signposting sentences? Signposting sentences explain the logic of your argument. They tell the reader what you are going to do at key points in your assignment. They are most useful when used in the following places: In the introduction At the beginning of a paragraph which develops a new idea At the beginning of a paragraph which expands on a previous idea At the beginning of a paragraph which offers a contrasting viewpoint At the end of a paragraph to sum up an idea In the conclusion A table of signposting stems: These should be used as a guide and as a way to get you thinking about how you present the thread of your argument.
    [Show full text]
  • The “Ambiguity” Fallacy
    \\jciprod01\productn\G\GWN\88-5\GWN502.txt unknown Seq: 1 2-SEP-20 11:10 The “Ambiguity” Fallacy Ryan D. Doerfler* ABSTRACT This Essay considers a popular, deceptively simple argument against the lawfulness of Chevron. As it explains, the argument appears to trade on an ambiguity in the term “ambiguity”—and does so in a way that reveals a mis- match between Chevron criticism and the larger jurisprudence of Chevron critics. TABLE OF CONTENTS INTRODUCTION ................................................. 1110 R I. THE ARGUMENT ........................................ 1111 R II. THE AMBIGUITY OF “AMBIGUITY” ..................... 1112 R III. “AMBIGUITY” IN CHEVRON ............................. 1114 R IV. RESOLVING “AMBIGUITY” .............................. 1114 R V. JUDGES AS UMPIRES .................................... 1117 R CONCLUSION ................................................... 1120 R INTRODUCTION Along with other, more complicated arguments, Chevron1 critics offer a simple inference. It starts with the premise, drawn from Mar- bury,2 that courts must interpret statutes independently. To this, critics add, channeling James Madison, that interpreting statutes inevitably requires courts to resolve statutory ambiguity. And from these two seemingly uncontroversial premises, Chevron critics then infer that deferring to an agency’s resolution of some statutory ambiguity would involve an abdication of the judicial role—after all, resolving statutory ambiguity independently is what judges are supposed to do, and defer- ence (as contrasted with respect3) is the opposite of independence. As this Essay explains, this simple inference appears fallacious upon inspection. The reason is that a key term in the inference, “ambi- guity,” is critically ambiguous, and critics seem to slide between one sense of “ambiguity” in the second premise of the argument and an- * Professor of Law, Herbert and Marjorie Fried Research Scholar, The University of Chi- cago Law School.
    [Show full text]
  • 4 Quantifiers and Quantified Arguments 4.1 Quantifiers
    4 Quantifiers and Quantified Arguments 4.1 Quantifiers Recall from Chapter 3 the definition of a predicate as an assertion con- taining one or more variables such that, if the variables are replaced by objects from a given Universal set U then we obtain a proposition. Let p(x) be a predicate with one variable. Definition If for all x ∈ U, p(x) is true, we write ∀x : p(x). ∀ is called the universal quantifier. Definition If there exists x ∈ U such that p(x) is true, we write ∃x : p(x). ∃ is called the existential quantifier. Note (1) ∀x : p(x) and ∃x : p(x) are propositions and so, in any given example, we will be able to assign truth-values. (2) The definitions can be applied to predicates with two or more vari- ables. So if p(x, y) has two variables we have, for instance, ∀x, ∃y : p(x, y) if “for all x there exists y for which p(x, y) is holds”. (3) Let A and B be two sets in a Universal set U. Recall the definition of A ⊆ B as “every element of A is in B.” This is a “for all” statement so we should be able to symbolize it. We do so by first rewriting the definition as “for all x ∈ U, if x is in A then x is in B, ” which in symbols is ∀x ∈ U : if (x ∈ A) then (x ∈ B) , or ∀x :(x ∈ A) → (x ∈ B) . 1 (4*) Recall that a variable x in a propositional form p(x) is said to be free.
    [Show full text]
  • Some Common Fallacies of Argument Evading the Issue: You Avoid the Central Point of an Argument, Instead Drawing Attention to a Minor (Or Side) Issue
    Some Common Fallacies of Argument Evading the Issue: You avoid the central point of an argument, instead drawing attention to a minor (or side) issue. ex. You've put through a proposal that will cut overall loan benefits for students and drastically raise interest rates, but then you focus on how the system will be set up to process loan applications for students more quickly. Ad hominem: Here you attack a person's character, physical appearance, or personal habits instead of addressing the central issues of an argument. You focus on the person's personality, rather than on his/her ideas, evidence, or arguments. This type of attack sometimes comes in the form of character assassination (especially in politics). You must be sure that character is, in fact, a relevant issue. ex. How can we elect John Smith as the new CEO of our department store when he has been through 4 messy divorces due to his infidelity? Ad populum: This type of argument uses illegitimate emotional appeal, drawing on people's emotions, prejudices, and stereotypes. The emotion evoked here is not supported by sufficient, reliable, and trustworthy sources. Ex. We shouldn't develop our shopping mall here in East Vancouver because there is a rather large immigrant population in the area. There will be too much loitering, shoplifting, crime, and drug use. Complex or Loaded Question: Offers only two options to answer a question that may require a more complex answer. Such questions are worded so that any answer will implicate an opponent. Ex. At what point did you stop cheating on your wife? Setting up a Straw Person: Here you address the weakest point of an opponent's argument, instead of focusing on a main issue.
    [Show full text]
  • Is 'Argument' Subject to the Product/Process Ambiguity?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Richmond University of Richmond UR Scholarship Repository Philosophy Faculty Publications Philosophy 2011 Is ‘argument’ subject to the product/process ambiguity? G. C. Goddu University of Richmond, [email protected] Follow this and additional works at: http://scholarship.richmond.edu/philosophy-faculty- publications Part of the Philosophy Commons Recommended Citation Goddu, G. C. "Is ‘argument’ Subject to the Product/process Ambiguity?" Informal Logic 31, no. 2 (2011): 75-88. This Article is brought to you for free and open access by the Philosophy at UR Scholarship Repository. It has been accepted for inclusion in Philosophy Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. Is ‘argument’ subject to the product/process ambiguity? G.C. GODDU Department of Philosophy University of Richmond Richmond, VA 23173 U.S.A. [email protected] Abstract: The product/process dis- Resumé: La distinction proces- tinction with regards to “argument” sus/produit appliquée aux arguments has a longstanding history and foun- joue un rôle de fondement de la dational role in argumentation the- théorie de l’argumentation depuis ory. I shall argue that, regardless of longtemps. Quelle que soit one’s chosen ontology of arguments, l’ontologie des arguments qu’on arguments are not the product of adopte, je soutiens que les argu- some process of arguing. Hence, ments ne sont pas le produit d’un appeal to the distinction is distorting processus d’argumentation. Donc the very organizational foundations l’usage de cette distinction déforme of argumentation theory and should le fondement organisationnel de la be abandoned.
    [Show full text]
  • First-Order Logic
    First-Order Logic Chapter 8 1 Outline • Why FOL? • Syntax and semantics of FOL • Using FOL • Wumpus world in FOL • Knowledge engineering in FOL 2 Pros and cons of propositional logic ☺ Propositional logic is declarative ☺ Propositional logic allows partial/disjunctive/negated information – (unlike most data structures and databases) ☺ Propositional logic is compositional: – meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2 ☺ Meaning in propositional logic is context-independent – (unlike natural language, where meaning depends on context) Propositional logic has very limited expressive power – (unlike natural language) – E.g., cannot say "pits cause breezes in adjacent squares“ • except by writing one sentence for each square 3 First-order logic • Whereas propositional logic assumes the world contains facts, • first-order logic (like natural language) assumes the world contains – Objects: people, houses, numbers, colors, baseball games, wars, … – Relations: red, round, prime, brother of, bigger than, part of, comes between, … – Functions: father of, best friend, one more than, plus, … 4 Syntax of FOL: Basic elements • Constants KingJohn, 2, NUS,... • Predicates Brother, >,... • Functions Sqrt, LeftLegOf,... • Variables x, y, a, b,... • Connectives ¬, ⇒, ∧, ∨, ⇔ • Equality = • Quantifiers ∀, ∃ 5 Atomic sentences Atomic sentence = predicate (term1 ,...,termn) or term = term 1 2 Term = function (term1,..., termn) or constant or variable • E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
    [Show full text]
  • Chapter 10: Symbolic Trails and Formal Proofs of Validity, Part 2
    Essential Logic Ronald C. Pine CHAPTER 10: SYMBOLIC TRAILS AND FORMAL PROOFS OF VALIDITY, PART 2 Introduction In the previous chapter there were many frustrating signs that something was wrong with our formal proof method that relied on only nine elementary rules of validity. Very simple, intuitive valid arguments could not be shown to be valid. For instance, the following intuitively valid arguments cannot be shown to be valid using only the nine rules. Somalia and Iran are both foreign policy risks. Therefore, Iran is a foreign policy risk. S I / I Either Obama or McCain was President of the United States in 2009.1 McCain was not President in 2010. So, Obama was President of the United States in 2010. (O v C) ~(O C) ~C / O If the computer networking system works, then Johnson and Kaneshiro will both be connected to the home office. Therefore, if the networking system works, Johnson will be connected to the home office. N (J K) / N J Either the Start II treaty is ratified or this landmark treaty will not be worth the paper it is written on. Therefore, if the Start II treaty is not ratified, this landmark treaty will not be worth the paper it is written on. R v ~W / ~R ~W 1 This or statement is obviously exclusive, so note the translation. 427 If the light is on, then the light switch must be on. So, if the light switch in not on, then the light is not on. L S / ~S ~L Thus, the nine elementary rules of validity covered in the previous chapter must be only part of a complete system for constructing formal proofs of validity.
    [Show full text]
  • Atomic Sentences
    Symbolic Logic Study Guide: Class Notes 5 1.2. Notes for Chapter 2: Atomic Sentences 1.2.1. The Basic Structure of Atomic Sentences (2.1, 2.2, 2.3, and 2.5 of the Text) 1. Comparison between simple English sentences and atomic sentences Simple English Sentences Atomic sentences (FOL) (subject-predicate sentences) John is a freshman Freshman (John) John swims. Swim (John) John loves Jenny. Love (John, Jenny) John prefers Jenny to Amy. Prefer (John, Jenny, Amy) John’s mother loves Jenny. Love (mother (John), Jenny) The father of Jenny is angry. Angry (father (Jenny)) John is the brother of Jenny. John = brother (Jenny) [relational identity] 2. Names Definition: Names are individual constants that refer to some fixed individual objects or other. (1) The rule of naming (p. 10) • No empty name. • No multiple references (do not use one name to refer to different objects). • Multiple names: you can name one object by different names. (2) General terms / names: using a predicate, instead of a constant, to represent a general term. For example, John is a student Student (John) [correct] John = student [wrong!!!] 3. Predicates Definition: Predicates are symbols used to denote some property of objects or some relationship between objects. (1) Arity of predicates • Unary predicates--property • Binary predicates Relations • Ternary predicates (2) The predicates used in Tarski’s World: see p. 11. (3) Two rules of predicates: see p.12. 6 Symbolic Logic Study Guide: Class Notes 4. Functions Definition: A function is an individual constant determined by another constant. (1) Comparison with names: • Both refer to some fixed individual objects.
    [Show full text]
  • 1 Winnowing Wittgenstein: What's Worth Salvaging from the Wreck Of
    Winnowing Wittgenstein: What’s Worth Salvaging from the Wreck of the Tractatus Peter Simons Trinity College Dublin Abstract Wittgenstein’s Tractatus still harbours valuable lessons for contemporary philosophy, but which ones? Wittgenstein’s long list of things we cannot speak about is set aside, but his insistence that the logical constants do not represent is retained, as is the absolute distinction between names and sentences. We preserve his atomism of elementary sentences but discard the atomism of simple objects in states of affairs. The fundamental harmony between language and the world is rejected: it is the source of much that is wrong in the Tractatus. What remains is a clarified role for items in making elementary sentences true. 1 Introduction Kevin Mulligan has maintained throughout his philosophical career a keen and judicious appreciation of the chief figures of that great philosophical explosion centred on Austria in the 19th and early 20th century. Of these figures, the best-known and most widely influential is Ludwig Wittgenstein.1 Kevin has maintained, quite rightly, that it is impossible to appreciate the extent to which Wittgenstein’s contributions to philosophy are as original as his many admirers contend without a great deal more knowledge of the Central European milieu from which Wittgenstein emerged than the majority of these admirers care to or are prepared to investigate. In this respect the more diffuse and ample later philosophy presents a much greater challenge than the early work which culminated in the Logisch-philosophische Abhandlung.2 The modest extent of the Tractatus and its more limited period of genesis, as well as its relatively crisper form and content, render it a more manageable and ultimately less controversial work than the post-Tractarian writings, whose thrust is even today occasionally obscure, despite more than a half century of frenzied exegesis.
    [Show full text]