Impacts of Non-Native Rainbow Trout on Stream Food Webs in the Cape Floristic Region, South Africa: Integrating Evidence from Surveys and Experiments

Total Page:16

File Type:pdf, Size:1020Kb

Impacts of Non-Native Rainbow Trout on Stream Food Webs in the Cape Floristic Region, South Africa: Integrating Evidence from Surveys and Experiments Impacts of non-native rainbow trout on stream food webs in the Cape Floristic Region, South Africa: integrating evidence from surveys and experiments by Jeremy Mark Shelton Town Cape of University Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Biological Sciences Faculty of Science UNIVERSITY OF CAPE TOWN July 2013 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Declaration This thesis reports original research carried out in the Department of Zoology, University of Cape Town, between 2009 and 2013. It has not been submitted in whole or in part for a degree at any other university. All data presented are original. Any assistance received is fully acknowledged. Jeremy Mark Shelton Town Cape Date of University Town This thesis is dedicated to my mother, LynetteCape Hampton – your love, friendship and support have inspired me beyond words of University Acknowledgements Acknowledgements This project would not have been possible without the financial support I received from the CIB (DST-NRF Centre of excellence for Invasion Biology), DAAD (German Academic Exchange Service), UCT (University of Cape Town) and the Cape Tercentenary Foundation. Thanks first and foremost to my supervisors Jenny Day and Michael Samways. Jenny, your encouragement and enthusiasm have inspired in me a deep passion for freshwater conservation biology. Michael, your unquestioning belief in my abilities and rational, thoughtful approach to research have contributed greatly to my growth as a scientist. Without constructive and creative discussions with Jackie King, Jenny Day, Dean Impson, Sean Marr and Steve Lowe in the developmental stages, thisTown project would never have gotten off the ground. Sean – although not an official supervisor, your creative insights and extensive knowledge of aquatic systems that you have shared with me over the years have been invaluable. Cape Long, challenging hours in the field were ofrequired to collect the data presented in this thesis. For assistance with the field experiments, my thanks go to Kirsten Retief, Klaus Menck, Darragh Woodford, Matthew Bird and Kirsten Tilanus. For clambering up into countless isolated kloofs while carrying backpacks bulging with heavy sampling equipment, my sincerest thanks go to Matthew Bird and Kirsten Tilanus. Bird’o – you have a unique way of blending fun and Universityefficiency in the field, and thanks for the insightful and inspiring chats around the evening braai. Kirsten – your dedication, good attitude and companionship in the field was pivotal in collecting the data required for this project, and thank you for believing in me when times were tough. For hours and hours of committed laboratory work I am very grateful to Liesl Phigeland, Kristen Barnes, Sean Marr and Kirsten Tilanus. Thanks also to Denise Schael, Michael Samways, Mike Picker, Matthew Bird and Vere Ross-Gillespie for lending a hand when my invertebrate identification skills were inadequate. i Acknowledgements Coleen Moloney, Henning Winker, Colin Attwood, Deena Pillay and Sean Marr – I feel privileged to have received analytical advice from a group of such generous, logical and patient scientists. The writing presented in this thesis was much improved by constructive comments and criticisms provided by Sean Marr, Ian Hampton, Jenny Day and Michael Samways. To the members of the Freshwater Research Unit – Sean Marr, Alistair Fyfe, Heather Malan, Justine Ewart-Smith, Matthew Bird, Helen Dallas, Dean Ollis, Cecile Reed, Vere Ross- Gillespie and Carla-Louise Ramjukadh - I could not have hoped for a more interesting and friendly group with which to share a lab. Thank you for the cricket matches, and also for the thoughtful chats concerning topics ranging from freshwater biology to film reviews. I have thoroughly enjoyed each and every aspect of my PhD research, and I am certain that without the love and support of my friends and family that thisTown would not have been the case. Last, but certainly not least, Jordan-Laine – the love and inspiration you have breathed into my life over the past year has brought out the best in me and made the final stages of my PhD a thoroughly enjoyable and exciting experience.Cape Thanks also for the magnificent sketches on the first and last pages of this thesis.of University ii Table of contents Table of contents Acknowledgements i Abstract iv Chapter 1 - General introduction 1 Chapter 2 - Predatory impact of non-native rainbow trout on native fish 20 populations in headwater streams of the upper Breede River catchment, South Africa Town Chapter 3 - Influence of non-native rainbow trout on benthic community 67 structure in headwater streams of the upper Breede River catchment, South Africa Cape of Chapter 4 - Characterising and contrasting the trophic niches of native Breede 120 River redfin and non-native rainbow trout in headwater streams of the upper Breede River catchment, South Africa Chapter 5 - Relative top-down effect of native benthic-feeding redfin vs. 181 non-native drift-feedingUniversity trout on benthic community structure in a Cape Floristic Region headwater stream Chapter 6 - General discussion 240 References 261 Appendices 289 iii Abstract Abstract Impacts of invasive predators may be influenced by whether or not native predators which function in the same way as the invasive predator exist in the recipient system. Impacts are expected to be strong in isolated systems lacking functionally similar predators because native species will be naïve to the foraging behaviour of the introduced predator, and because the invasion is likely to change the role which the native predator assemblage performs. In this thesis I studied how the introduction of a functionally novel predatory fish, rainbow trout Oncorhynchus mykiss, has affected native fish, and how changes in the functioning of the predator assemblage have influenced lower trophic levels, in headwater streams in a catchment area within the Cape Floristic Region, South Africa. Fish populations, benthic invertebrate assemblages, benthic algaeTown and particulate organic matter were surveyed in each of 24 minimally-disturbed headwater streams in the upper Breede River catchment, and relevant environmental variables in each stream measured, over one summer. Twelve of the streams containedCape trout and 12 did not. It was hypothesized that native predatory fish wouldof be vulnerable to predation by trout because they evolved in the absence of a functionally similar predator. The mean density and biomass of the native fish Breede River redfin Pseudobarbus sp., Cape kurper Sandelia capensis and Cape galaxias Galaxias zebratus, was 5-40 times higher in streams without trout than in streams with them, and although present at all 12 sites without trout, native fish were only recordedUniversity at five of the 12 sites with trout present. Multivariate analysis of variance revealed no consistent difference in environmental conditions between sites with and without trout, and distance-based linear models identified trout density as the best predictor of Breede river redfin and Cape kurper density. Cape galaxias density, on the other hand, was best predicted by other environmental variables including mean substrate size, site slope and riparian vegetation cover, but analyses for this species may have been compromised by the low frequency of Cape galaxias occurrence. A predation experiment conducted in mesocosms in one of the survey streams revealed that large trout selectively consumed small Breede River redfin (the dominant member of the native fish assemblage), iv Abstract indicating that size-specific predation by trout reduces native fish abundance, and is also likely to change the size structure of native fish populations. The taxonomic and functional composition of the invertebrate assemblage, as well as the biomass of benthic algae, in streams with trout differed consistently from that in streams without trout, implying that trout impacts extend beyond native fish to lower trophic levels. Herbivorous invertebrates were more abundant, and algal biomass lower, in streams with trout than in streams without them. Distance-based linear models identified trout presence as the best predictor of these patterns. It was concluded that by reducing native fish abundance, trout indirectly reduce the predation pressure on herbivorous invertebrates, resulting in increased grazing pressure on benthic algae. These results indicate that trout do not functionally compensate for the native fish that they have replaced, being weaker regulators of herbivorous invertebrates than are native fish. Town Differences in the functional role performed by trout and redfin were examined by characterizing and contrasting their trophic niches in a subset of the survey streams (trout: n = 3, redfin: n = 3). Behavioural observations showedCape that while redfin fed mostly from the stream bed, trout fed primarily from the drift. Gut contents and stable isotope analysis revealed that herbivorous aquatic invertebratesof contributed more to the diet of redfin than to that of trout, and that trout augment their diet of aquatic invertebrate prey by consuming terrestrial prey more than do redfin. Collectively
Recommended publications
  • Critical Habitat for Canterbury Freshwater Fish, Kōura/Kēkēwai and Kākahi
    CRITICAL HABITAT FOR CANTERBURY FRESHWATER FISH, KŌURA/KĒKĒWAI AND KĀKAHI REPORT PREPARED FOR CANTERBURY REGIONAL COUNCIL BY RICHARD ALLIBONE WATERWAYS CONSULTING REPORT NUMBER: 55-2018 AND DUNCAN GRAY CANTERBURY REGIONAL COUNCIL DATE: DECEMBER 2018 EXECUTIVE SUMMARY Aquatic habitat in Canterbury supports a range of native freshwater fish and the mega macroinvertebrates kōura/kēkēwai (crayfish) and kākahi (mussel). Loss of habitat, barriers to fish passage, water quality and water quantity issues present management challenges when we seek to protect this freshwater fauna while providing for human use. Water plans in Canterbury are intended to set rules for the use of water, the quality of water in aquatic systems and activities that occur within and adjacent to aquatic areas. To inform the planning and resource consent processes, information on the distribution of species and their critical habitat requirements can be used to provide for their protection. This report assesses the conservation status and distributions of indigenous freshwater fish, kēkēwai and kākahi in the Canterbury region. The report identifies the geographic distribution of these species and provides information on the critical habitat requirements of these species and/or populations. Water Ways Consulting Ltd Critical habitats for Canterbury aquatic fauna Table of Contents 1 Introduction ......................................................................................................................................... 1 2 Methods ..............................................................................................................................................
    [Show full text]
  • The Revolution in Insect Neuropeptides Illustrated By
    Invited Trends Article The Revolution in Insect Neuropeptides Illustrated by the Adipokinetic Hormone/Red Pigment-Concentrating Hormone Family of Peptides Gerd Gäde Zoology Department, University of Cape Town. Rondebosch 7700, Republic of South Africa Z. Naturforsch. 51c, 607-617 (1996) received April 8/July 2, 1996 Insect Neuropeptides, RP-HPLC, Edman Degradation, Mass Spectrometry, Bioassays The last decade has seen a surge in the knowledge on primary structures of insect neuro­ peptides. Particularly successful were isolations and sequence determinations of more than 30 members of the adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides. This brief overview describes the techniques used to obtain data on purifi­ cation and structure such as high performance liquid chromatography, Edman sequencing and mass spectrometry. Moreover, a short account on the precursors and on the multiple functions of the peptides of the AKH/RPCH family in various crustacean and insect species is given. Introduction Most of these peptides are stored in neurohae- Peptidergic neurosecretion plays a major role in mal organs in very small quantities (a few pmoles cellular communication in almost all animals and per insect). Therefore, the primary structure of the many neuropeptides have been structurally eluci­ first insect peptide, the pentapeptide proctolin, was only published about 10 years after the first dated. Therefore, it is not surprising that the ex­ pression “peptide revolution” was coined (see isolation studies were undertaken (Starratt and Reichlin, 1980). In insects, too, many physiologi­ Brown, 1975) after the compound was isolated cal, developmental and behavioural processes are from 125 kg of whole cockroaches. In 1976, the affected by peptides produced in neurosecretory adipokinetic hormone Lom-AKH-I from locusts cells.
    [Show full text]
  • Evidence of Interactive Segregation Between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile
    Transactions of the American Fisheries Society 138:839–845, 2009 [Note] Ó Copyright by the American Fisheries Society 2009 DOI: 10.1577/T08-134.1 Evidence of Interactive Segregation between Introduced Trout and Native Fishes in Northern Patagonian Rivers, Chile BROOKE E. PENALUNA* Department of Fisheries and Wildlife, Oregon State University, 3200 Jefferson Way, Corvallis, Oregon 97331, USA IVAN ARISMENDI Nu´cleo Milenio FORECOS, and Escuela de Graduados, Facultad de Ciencias Forestales, Universidad Austral de Chile, Casilla #567, Valdivia, Chile DORIS SOTO Nu´cleo Milenio FORECOS, Universidad Austral de Chile, Casilla #567, Valdivia, Chile; and Food and Agriculture Organization of the United Nations, Fisheries Department, Inland Water Resources and Aquaculture Service, Viale delle Terme di Caracalla, 00100 Rome, Italy Abstract.—Introduced rainbow trout Oncorhynchus mykiss recreational fishing and early practices of aquaculture and brown trout Salmo trutta fario are the most abundant (Basulto 2003). It was thought that these areas in the fishes in the northern Chilean Patagonia, and their effect on Southern Hemisphere were suitable for and would benefit native fishes is not well known. We tested for interactive from the addition of trout (Campos 1970; Basulto 2003). segregation between trout and native fishes by using a before– Since their introduction, trout have formed naturalized after, control–impact design in which we deliberately reduced the density of trout and observed the response of the native populations and have become the most abundant fish fishes in their mesohabitat use (pool, run, riffle). Three native species, accounting for over 95% of the total biomass in fish species, Brachygalaxias bullocki, Galaxias maculatus rivers of the Chilean Patagonia (Soto et al.
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Dragonflies and Damselflies of the Western Cape
    BIODIVERSITY OBSERVATIONS RESEARCH PAPER (CITIZEN SCIENCE) Dragonflies and damselflies of the Western Cape - OdonataMAP report, August 2018 Author(s): Journal editor: Underhill LG, Loftie-Eaton M and Pete Laver Navarro R Manuscript editor: Pete Laver Received: August 30, 2018; Accepted: September 6, 2018; Published: September 06, 2018 Citation: Underhill LG, Loftie-Eaton M and Navarro R. 2018. Dragonflies and damselflies of the Western Cape - OdonataMAP report, August 2018. Biodiversity Observations 9.7:1-21 Journal: https://journals.uct.ac.za/index.php/BO/ Manuscript: https://journals.uct.ac.za/index.php/BO/article/view/643 PDF: https://journals.uct.ac.za/index.php/BO/article/view/643/554 HTML: http://thebdi.org/blog/2018/09/06/odonata-of-the-western-cape Biodiversity Observations is an open access electronic journal published by the Animal Demography Unit at the University of Cape Town, available at https://journals.uct.ac.za/index.php/BO/ The scope of Biodiversity Observations includes papers describing observations about biodiversity in general, including animals, plants, algae and fungi. This includes observations of behaviour, breeding and flowering patterns, distributions and range extensions, foraging, food, movement, measurements, habitat and colouration/plumage variations. Biotic interactions such as pollination, fruit dispersal, herbivory and predation fall within the scope, as well as the use of indigenous and exotic species by humans. Observations of naturalised plants and animals will also be considered. Biodiversity Observations will also publish a variety of other interesting or relevant biodiversity material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, book reviews and any other appropriate material.
    [Show full text]
  • BEFORE the COMMISSIONERS on BEHALF of the OTAGO REGIONAL COUNCIL Consent No. RM16.093.01 BETWEEN CRIFFEL WATER LIMITED Applic
    BEFORE THE COMMISSIONERS ON BEHALF OF THE OTAGO REGIONAL COUNCIL Consent No. RM16.093.01 BETWEEN CRIFFEL WATER LIMITED Applicant AND OTAGO REGIONAL COUNCIL Consent Authority EVIDENCE OF RICHARD MARK ALLIBONE ____________________________________________________________ GALLAWAY COOK ALLAN LAWYERS DUNEDIN Solicitor to contact: Bridget Irving P O Box 143, Dunedin 9054 Ph: (03) 477 7312 Fax: (03) 477 5564 Email: [email protected] BI-308132-1-352-V4 1 EVIDENCE OF RICHARD MARK ALLIBONE Introduction 1. My name is Richard Mark Allibone. 2. I am the Director and Principal Ecologist of Water Ways Consulting Limited. I hold the following tertiary qualifications; a BSc (Zoology and Geology), an MSc (Zoology) and PhD (Zoology), all from the University of Otago. My research has centred on New Zealand’s native fish with a focus on the New Zealand galaxiids, their taxonomy, life history and threats to these species. 3. I specialise in freshwater ecological research and management for native freshwater fish. I have been a researching native fish for over thirty years. Initially my research between 1990 and 2001 was conducted as a post-graduate student and then as a freshwater fisheries specialist for the Department of Conservation, a Post Doctoral Fellow and fisheries scientist at NIWA, and a Species Protection Officer in the Department of Conservation’s Biodiversity Recovery Unit. During 2002-2004 I was the National Services Manager at the QEII National Trust. Since 2004 I have worked as a consultant; firstly for Kingett Mitchell Limited, then Golder Associates (NZ) Ltd. In November 2014 I formed the company Water Ways Consulting Limited where I am a director and the principal ecologist.
    [Show full text]
  • The Dragonfly Larvae of Namibia.Pdf
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260831026 The dragonfly larvae of Namibia (Odonata) Article · January 2014 CITATIONS READS 11 723 3 authors: Frank Suhling Ole Müller Technische Universität Braunschweig Carl-Friedrich-Gauß-Gymnasium 99 PUBLICATIONS 1,817 CITATIONS 45 PUBLICATIONS 186 CITATIONS SEE PROFILE SEE PROFILE Andreas Martens Pädagogische Hochschule Karlsruhe 161 PUBLICATIONS 893 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Feeding ecology of owls View project The Quagga mussel Dreissena rostriformis (Deshayes, 1838) in Lake Schwielochsee and the adjoining River Spree in East Brandenburg (Germany) (Bivalvia: Dreissenidae) View project All content following this page was uploaded by Frank Suhling on 25 April 2018. The user has requested enhancement of the downloaded file. LIBELLULA Libellula 28 (1/2) LIBELLULALIBELLULA Libellula 28 (1/2) LIBELLULA Libellula Supplement 13 Libellula Supplement Zeitschrift derder GesellschaftGesellschaft deutschsprachiger deutschsprachiger Odonatologen Odonatologen (GdO) (GdO) e.V. e.V. ZeitschriftZeitschrift der derder GesellschaftGesellschaft Gesellschaft deutschsprachigerdeutschsprachiger deutschsprachiger OdonatologenOdonatologen Odonatologen (GdO)(GdO) (GdO) e.V.e.V. e.V. Zeitschrift der Gesellschaft deutschsprachiger Odonatologen (GdO) e.V. ISSN 07230723 - -6514 6514 20092014 ISSNISSN 072307230723 - - -6514 65146514 200920092014 ISSN 0723 - 6514 2009 2014 2009
    [Show full text]
  • The Thermal Tolerance and Preference Of
    The thermal tolerances and preferences of native fish in the Cape Floristic Region: towards understanding the effect of climate change on native fish species by Jody-Lee Reizenberg Town Thesis presented for the Degree of Master of Science Cape in the Department of Biological Sciences University of Cape Town March 2017 Supervisors: Dr Helen Dallas, Dr Jeremy Shelton, and Dr Cecile Reed University The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town DECLARATION I hereby declare that the work on which this thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I authorise the University to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. This thesis reports original research carried out under the Department of Biological Sciences, Faculty of Science, University of Cape Town, between 2015 and 2016 for the M.Sc. study purpose. The data presented here are my own. I have fully acknowledged any assistance received. I know the meaning of plagiarism and declare that all of the work in the dissertation, save for that which is properly acknowledged, is my own.
    [Show full text]
  • Download Download
    Biodiversity Observations http://bo.adu.org.za An electronic journal published by the Animal Demography Unit at the University of Cape Town The scope of Biodiversity Observations consists of papers describing observations about biodiversity in general, including animals, plants, algae and fungi. This includes observations of behaviour, breeding and flowering patterns, distributions and range extensions, foraging, food, movement, measurements, habitat and colouration/plumage variations. Biotic interactions such as pollination, fruit dispersal, herbivory and predation fall within the scope, as well as the use of indigenous and exotic species by humans. Observations of naturalised plants and animals will also be considered. Biodiversity Observations will also publish a variety of other interesting or relevant biodiversity material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, book reviews and any other appropriate material. Further details and guidelines to authors are on this website. Lead Editor: Arnold van der Westhuizen – Guest Editor: K-D B Dijkstra SHOOT THE DRAGONS WEEK, ROUND 1: ODONATAMAP GROWS BY 1,200 RECORDS Les G Underhill, Alan D Manson, Jacobus P Labuschagne and Ryan M Tippett Recommended citation format: Underhill LG, Manson AD, Labuschagne JP, Tippett RM 2016. Shoot the Dragons Week, Round 1: OdonataMAP grows by 1,200 records. Biodiversity Observations 7.100: 1–14. URL: http://bo.adu.org.za/content.php?id=293 Published online: 27 December 2016 – ISSN 2219-0341
    [Show full text]
  • Western Cape Biodiversity Spatial Plan Handbook 2017
    WESTERN CAPE BIODIVERSITY SPATIAL PLAN HANDBOOK Drafted by: CapeNature Scientific Services Land Use Team Jonkershoek, Stellenbosch 2017 Editor: Ruida Pool-Stanvliet Contributing Authors: Alana Duffell-Canham, Genevieve Pence, Rhett Smart i Western Cape Biodiversity Spatial Plan Handbook 2017 Citation: Pool-Stanvliet, R., Duffell-Canham, A., Pence, G. & Smart, R. 2017. The Western Cape Biodiversity Spatial Plan Handbook. Stellenbosch: CapeNature. ACKNOWLEDGEMENTS The compilation of the Biodiversity Spatial Plan and Handbook has been a collective effort of the Scientific Services Section of CapeNature. We acknowledge the assistance of Benjamin Walton, Colin Fordham, Jeanne Gouws, Antoinette Veldtman, Martine Jordaan, Andrew Turner, Coral Birss, Alexis Olds, Kevin Shaw and Garth Mortimer. CapeNature’s Conservation Planning Scientist, Genevieve Pence, is thanked for conducting the spatial analyses and compiling the Biodiversity Spatial Plan Map datasets, with assistance from Scientific Service’s GIS Team members: Therese Forsyth, Cher-Lynn Petersen, Riki de Villiers, and Sheila Henning. Invaluable assistance was also provided by Jason Pretorius at the Department of Environmental Affairs and Development Planning, and Andrew Skowno and Leslie Powrie at the South African National Biodiversity Institute. Patricia Holmes and Amalia Pugnalin at the City of Cape Town are thanked for advice regarding the inclusion of the BioNet. We are very grateful to the South African National Biodiversity Institute for providing funding support through the GEF5 Programme towards layout and printing costs of the Handbook. We would like to acknowledge the Mpumalanga Biodiversity Sector Plan Steering Committee, specifically Mervyn Lotter, for granting permission to use the Mpumalanga Biodiversity Sector Plan Handbook as a blueprint for the Western Cape Biodiversity Spatial Plan Handbook.
    [Show full text]
  • Indigenous Fish Fact Sheet
    FACT SHEET What a landowner should know about the INDIGENOUS FISH of the Cape Floristic Region: DIVERSITY, THREATS AND MANAGEMENT INTERVENTIONS The majority of the freshwater The Cape Floristic Region, mainly within the Western Cape Province, fish of the Cape Floristic is one of the six plant kingdoms of the world. This area, however, is Region are listed as either not only home to a remarkable number of plant species but also has a Endangered or Critically Endangered and face a very number of unique indigenous freshwater fish species. real risk of extinction! INDIGENOUS FISH are a critical component of healthy aquatic ecosystems as they form an important part of the aquatic food web and fulfill several important ecological functions. These fish need suitable habitat and good quality water, free of sediment and agrichemicals, in order to survive. The presence of indigenous fish is one of the signs of a healthy riverine Cape kurper ecosystem, making indigenous fish good bio-indicators of healthy rivers. There are four main river systems in the Western Cape, namely the Berg, Breede, Gourits and Olifants, and each system has unique fish species which only occur in ecologically healthy parts of these rivers. A good example is Burchell’s redfin in the Breede and neighbouring river systems. Genetic research on this species indicates that there could be three distinct species in the Cape galaxias Breede system. The Olifants River system is however recognised as the hotspot for indig- enous fish diversity as this system has the highest number of unique indigenous species. Research is ongoing and further genetic diversity is being uncovered for other species such as the Cape kurper and the Cape galaxias.
    [Show full text]
  • Berg River Baseline Monitoring Programme
    BERG RIVER BASELINE MONITORING PROGRAMME FINAL REPORT - VOLUME 5: Synthesis DWAF Report No. P WMA 19/G10/00/2107 Edited by: BARRY CLARK and GEORDIE RACTLIFFE October 2007 The Freshwater Consulting Group E N V I R O N M E N T A L BERG RIVER BASELINE MONITORING PROGRAMME FINAL REPORT - VOLUME 5: Synthesis DWAF Report No. P WMA 19/G10/00/2107 Edited by: BARRY CLARK AND GEORDIE RACTLIFFE October 2007 The Freshwater Consulting Group E N V I R O N M E N T A L Department of Zoology University of Cape Town Rondebosch 7701 University of Cape Town, South Africa PO Box 34035, Rhodes Gift 7707 Cell: 082 463 0222 www.uct.ac.za/depts/zoology/anchor Tel: +27 (21) 650 4767 Tel/Fax +27 21 685 3400 Fax: +27 (21) 650 3301 [email protected] Email: [email protected] Berg River Baseline Monitoring Programme Final Report: Volume5, September 2007 Index TABLE OF CONTENTS CHAPTER 1 - INTRODUCTION 1 1.1 BACKGROUND ...........................................................................................................2 1.2 OVERVIEW OF THE BERG RIVER CATCHMENT, HYDROLOGY AND GROUNDWATER ASSESSMENT ...............................................................................2 1.3 DESCRIPTION OF THE ABIOTIC AND BIOTIC CHARACTERISTICS OF THE BERG RIVER..........................................................................................................................2 1.4 ESTUARINE ASSESSMENT .......................................................................................2 1.5 SOCIAL AND RECREATIONAL ACTIVITIES ASSESSMENT......................................3
    [Show full text]