Cell Biology Should Be Taught As Science Is Practised
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WMIC 2015 Plenary Speaker Zena Werb, Ph.D., Professor University Of
WMIC 2015 Plenary Speaker Zena Werb, Ph.D., Professor University of California, San Francisco San Francisco, California, USA, Focus of WMIC 2015 Plenary Talk: Intravital Imaging Reveals Properties of Cancer Progression, Mestastasis and Response to Therapy Zena Werb, Ph.D. Dr. Zena Werb received her B.Sc. in Biochemistry from the University of Toronto, and her Ph.D. in Cell Biology from Rockefeller University, New York. After postdoctoral studies at the Strangeways Research Laboratory in Cambridge England, she was recruited to the faculty of the University of California, San Francisco, where she is currently Professor and Vice‐Chair of Anatomy. Her honors include the Charlotte Friend Award of the American Association for Cancer Research, the Alexander von Humboldt Research Award and the Colin Thomson Memorial Medal from the Association for International Cancer Research. Dr. Werb has been elected to the National Academy of Sciences, the Institute of Medicine, and the American Academy of Arts and Sciences. She has published more than 400 papers. Dr. Werb is recognized internationally for her fundamental discoveries about the molecular and cellular bases of extracellular matrix proteolysis by matrix metalloproteinases and their roles in the normal functioning and pathogenesis of tissues. Her studies have led to new paradigms about the role of the cellular microenvironment and intercellular communication in breast development and breast cancer. Her current research uses mouse models of breast cancer and patient‐derived breast cancer xenografts to study normal mammary development and its perturbation during tumor progression and metastasis. . -
An Interview with Zena Werb
Disease Models & Mechanisms 3, 513-516 (2010) doi:10.1242/dmm.006338 © 2010. Published by The Company of Biologists Ltd A MODEL FOR LIFE The extracellular matrix and disease: an interview with Zena Werb Zena Werb’s pioneering efforts brought recognition to the idea that the extracellular matrix has a profound influence in determining cell fate. Here, she discusses how a ‘rocky’ start in geophysics led her to a career that is changing the way we think about cancer. I started college. Ironically, earthquakes veryone is influenced by what became an important part of my life as a goes on around them, and cells resident of San Francisco, but I didn’t realise are much the same. The signalling this would be the case then. Back in college, Emolecules and support structures I wanted to go on a summer geology field of the extracellular matrix (ECM) course to the Rockies. I was one of the top direct many aspects of normal cell two students in my class, but they wouldn’t behaviour, including shape, migration and let me go because I was female – they said survival. However, the ECM can also play that there were not the proper facilities on a role in the development and progression the site for women. Instead, I found a DMM of disease. For example, a cell does not summer job in the field and actually got become cancerous on its own – together paid for the experience I gained, which with intrinsic changes, oncogenesis is would not have happened if I’d been encouraged by cues from the surrounding allowed into the course. -
New Editor on Journal of Cell Science Michael Way (Editor-In-Chief)
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs229740. doi:10.1242/jcs.229740 EDITORIAL New Editor on Journal of Cell Science Michael Way (Editor-in-Chief) As someone who has worked on things related to the actin cytoskeleton my whole research career, the nucleus was not something I paid much attention to. Yes, there were scattered historical reports of actin in the nucleus long before I started my PhD, but no one believed actin was really there of course – it was all an artefact of fixation, you know. Nuclear actin was taboo and no one talked about it at the meetings I went to as a student and postdoc. How wrong we were – today nuclear actin is alive and kicking, although there are definitely more questions than answers concerning what it is actually doing there. We now appreciate that the nucleus contains a wide assortment of proteins associated with the cytoplasmic actin cytoskeleton including myosin motors and actin nucleators such as the Arp2/3 complex. In addition, it should not be forgotten that many chromatin-associated complexes including SWI/SNF and INO80/ SWR also contain multiple actin-related proteins, as well as actin itself. It strikes me that maybe we should all be paying more attention to the nucleus and not just because it contains my favourite proteins! Maybe that’s why, in recent years, we’ve been seeing more submissions to JCS that are focused on different aspects of the nucleus and that traditionally appeared in journals with ‘molecular’ in their titles. -
Theory of Cytoskeletal Reorganization During Crosslinker-Mediated Mitotic Spindle Assembly
bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Theory of cytoskeletal reorganization during crosslinker-mediated mitotic spindle assembly A. R. Lamson, C. J. Edelmaier, M. A. Glaser, and M. D. Betterton Abstract Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which micro- tubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mech- anisms of this process include regulated filament polymerization, crosslinking, and motor-protein activity. Remarkably, using passive crosslinkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization due to dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive crosslink- ers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include crosslinker-binding kinetics and other stochastic effects. Our results show that rapid crosslinker reorganization to microtubule overlaps facilitates crosslinker-driven spindle assembly, a testable prediction for future experiments. Combin- ing these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization. 1 bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. -
Journal of Cell Science & Therapy
Journal of Cell Science & Therapy 2021 Conference Announcement Mark on Your Calendar, Stem Cell 2021 is coming soon!! Ahmed Hegazi Pursued by the Successful Completion of the Stem Cell discuss the latest developments in the field of Stem Cell and Conference, we are facilitating its next version “International Regenerative Medicine as well. Current studies of Stem cell Conference on Stem Cell” in Osaka, Japan on March 16-17, are examining how undifferentiated organisms might be 2021. utilized to anticipate or fix sicknesses and wounds, for The theme attracts for the Stem Cell 2021 is “Frontiers in example, Parkinson's illness, type 1 diabetes, coronary illness, Stem Cells & Turning Ideas into Reality”. spinal string damage, strong dystrophy, Alzheimer's malady, Welcoming all of you for our Stem Cell 2021 involves strokes, osteoarthritis, vision and hearing misfortune. extraordinary delight, warmth and passion. We anticipate all Immature microorganisms could likewise be utilized to of you sharing your knowledge and information, look into supplant or repair tissue harmed by ailment or damage. thoughts and to make a sprinkle with new upgrades at this 2- days occasion. This time we have introduced some contemporary and recently updated and advanced highlights of Life sciences in Stem Cell 2021. Stem Cell 2021 wish to bring all the medicinal science, chemical engineering & tissue regeneration professionals and scientists under material science fields for our Smart Materials Meeting to collaborate and share their insight and their most Cancer Stem Cells, Bio-Makers Of Cancer Stem Cells, Stem current research to the whole Material Science Community. Cell Biology & Advances, Advanced In Tissue Regeneration, Also this time, Our International Conference on Stem Cell Embryonic Stem Cell, Reprogramming In Stem Cell & will be aims to haven for Multinational organizations, Transplantation, Treatment Of Diseases By Stem Cell entrepreneurs across the globe, the researchers and Therapeutics, Stem Cell Banking, Novel Stem Cell Therapy, academicians. -
Extracellular Matrix Degradation and Remodeling in Development and Disease
Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Extracellular Matrix Degradation and Remodeling in Development and Disease Pengfei Lu1,2, Ken Takai2, Valerie M. Weaver3, and Zena Werb2 1Breakthrough Breast Cancer Research Unit, Paterson Institute for Cancer Research and Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M20 4BX, United Kingdom 2Department of Anatomy and Program in Developmental Biology, University of California, San Francisco, California 94143-0452 3Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, California 94143 Correspondence: [email protected] The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branch- ing morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnor- mal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic inter- ventions for diseases and novel strategies for tissue engineering and regenerative medicine. he extracellular matrix (ECM) forms a milieu versatile and performs many functions in addi- Tsurrounding cells that reciprocally influ- tion to its structural role. -
New Doors to Open…And So Many! | Journal of Cell Science
New doors to open…and so many! | Journal of Cell Science Advertisement California Institute of Technology Log in Advanced search Home Articles About us For authors Journal info Contacts EDITORIAL New doors to open…and so many! Previous Article Next Article D.M. Glover Journal of Cell Science 2000 113: 359-360; This Issue Article Info & metrics Email Summary Share The pursuit of science is a wonderful journey of Citation Tools discovery along which there are a myriad of avenues to Alerts be explored. There have always been so many objects of fascination, so many questions to ask along the way, © Request Permissions We use cookies to help us improve this website. Learn more so many possibilities to understand new principles, that making the decision about which problem to address Article navigation and then having the self-discipline to explore it in depth Top challenge all who practice the art. How then are we, as Article cell biologists, to cope with the mountain of information Info & metrics that is accumulating as we enter the twenty-first https://jcs.biologists.org/content/113/3/359.long[8/10/2020 3:19:01 PM] New doors to open…and so many! | Journal of Cell Science century? We now have the potential to decipher the primary sequences of every single cellular protein for Related articles several model organisms. Just how are we to put this Web of Science PubMed information into an intelligible framework for Google Scholar understanding cell physiology? The turn of a century is a time at which we can permit ourselves the luxury of Cited by.. -
New Editor on Journal of Cell Science Sharon A
© 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 303 doi:10.1242/jcs.200345 EDITORIAL New Editor on Journal of Cell Science Sharon A. Ahmad (Executive Editor) and Michael Way (Editor-in-Chief) We are delighted to announce the appointment of Guangshuo Ou as an Editor on Journal of Cell Science. Guangshuo obtained his PhD in cell and developmental biology from the University of California, Davis. His thesis work, conducted under the guidance of Dr Jon Scholey, focused on ciliogenesis in Caenorhabditis elegans neurons and elucidated how microtubule-based motor proteins are used to build neuronal cilia. Guangshuo received his postdoctoral training with Dr Ron Vale at the University of California, San Francisco, where he developed imaging techniques to study neuroblast migration and division in C. elegans larvae and discovered a new myosin-based mechanism underlying neuroblast asymmetric division. In 2011 he was recruited by the Chinese government with the Junior One Thousand Talent Plan Award as an investigator at the Institute of Biophysics Chinese Academy of Sciences. In 2013 his group relocated to the School of Life Sciences at Tsinghua University in Beijing, and he became a principal investigator of the Joint Center for Life Sciences at Tsinghua and Peking Universities. He continues to study neuroblast development using C. elegans as a model organism. Guangshuo has had a long-standing interest in understanding the molecular and cellular mechanisms of cell division and cell migration in developmental systems. Guangshuo has developed imaging methods to follow neuroblast development in a living nematode larva, and his laboratory devised the somatic CRISPR– Cas9 technique to generate conditional knockouts in order to dissect the underlying molecular regulation. -
Testimony of Paul Berg, Ph.D. Chair, Public Policy Committee The
THE AMERICAN SOCIETY FOR OFFICERS SUZANNE PFEFFER CELL President BIOLOGY HARVEY LODISH President-Elect GARY BORISY NATIONAT. OFFICE: 8120 Woodmont Avenue, Suite 750 Bethesda, Maryland 20814-2762 Past-President TEL: 301/347-9300 FAX: 301/347-9310 E-MAIL: [email protected] www.ascb.org LAWRENCE S. B. GOLDSTEIN Secretary GARY WARD Treasurer ELIZABETH MARINCOLA Testimony of Executive Director COUNCIL HELEN BLAU Paul Berg, Ph.D. ANTHONY BRETSCHER KEVIN P. CAMPBELL Chair, Public Policy Committee PIETRO DE CAMILLI ALAN RICK HORWITZ The American Society KATHRYN E, HOWELL for Cell Biology SANDRA L. SCHMID JEAN SCHWARZBAUER W. SUE SHAFER JANET SHAW to the JULIE THERIOT PETER WALTER COMMITTEE CHAIRS Senate Judiciary Committee DON CLEVELAND Constitution & By-Laws KENNETH R. MILLER Education United States Senate GARY WARD Finance ENRIQUE RODRIGUEZ-BOULAN International Affairs MATTHEW WELCH Local Arrangements LAWRENCE S. B. GOLDSTEIN March 19, 2003 Mentbership DONELLA J. WILSON Minorities Affairs RICHARD HYNES Nominating KATHERINE L. WILSON Public Information PAUL BERG Public Policy VIVEK MALHOTRA Scientific Meetings ZENA WERB Women in Cell Biology CELL BIOLOGY EDUCATION A, MALCOLM CAMPBELL Co-Editor-in-Chief SARAH C. R. ELGIN Co-Editor-in-Chief MOLECULAR BIOLOGY OF THE CELL KEITH R. YAMAMOTO Editor-in-Chief Statement of Paul Berg Robert and Vivian Cahill Professor, Emeritus of Cancer Research and Biochemistry Director, Emeritus of the Beckman Center for Molecular and Genetic Medicine, Stanford University Medical Center Chair, Public Policy Committee, The American Society for Cell Biology Mr. Chairman, Members of the Committee, thank you for inviting me to testify on this most important issue. I have followed the debate on the cloning questions we will address today and | welcome the opportunity to submit my own views on the matter. -
S. John Calise Department of Oral Biology [email protected] Graduate Program in Biomedical Sciences
Contact: University of Florida Health Science Center NSF Graduate Research Fellow P.O. Box 100424 Doctoral Candidate Gainesville, FL 32610-0424 Laboratory of Edward K.L. Chan, PhD 352-273-8851 (lab) S. John Calise Department of Oral Biology [email protected] Graduate Program in Biomedical Sciences EDUCATION University of Florida Ph.D. in Medical Sciences (in progress) Aug 2015 – present Gainesville, FL Graduate Program in Biomedical Sciences Concentration: Molecular Cell Biology Mentor: Edward K.L. Chan, PhD Awarded NSF Graduate Research Fellowship University of Florida B.S. in Business Administration Aug 2007 – May 2011 Gainesville, FL Major: Finance Graduated with Honors PREVIOUS RESEARCH POSITIONS University of Florida Laboratory Manager / Technician Sept 2011 – Aug 2015 Gainesville, FL Laboratory of Edward K.L. Chan, PhD Department of Oral Biology HONORS AND AWARDS (GRADUATE AND PROFESSIONAL) 2013, 1st Place, Dresden Prize for the Study of Autoantibodies, 11th Dresden Symposium on Autoantibodies 2014, 2nd Place, Oral & Poster Communication, 12th International Workshop on Autoantibodies and Autoimmunity 2015, University of Florida Graduate School Grinter Fellowship Award (stipend supplement for 3 years) 2015, American Society for Cell Biology Graduate Student Travel Award 2016, Pre-doctoral fellowship under Department of Oral Biology NIH/NIDCR Training Grant 2T90DE021990-06 2017, American Society for Cell Biology Early Career Meeting Grant 2017, Nominated for Associate Membership, Sigma Xi Scientific Research Honor Society 2017, National -
Metastasis and Invasion 3 – Metastasis Science Cancer
CANCER SCIENCE 3 Cancer Science 3 – Metastasis and Invasion 3 – Metastasis Science Cancer www.ipsen.com 2FI 0069 Metastasis and Invasion Tuscany, May 20-23, 2007 24, rue Erlanger – 75016 Paris – Tel.: 33(0)1 44 96 10 10 – Fax: 33(0)1 44 96 11 99 COLLOQUES MÉDECINE ET RECHERCHE Fondation Ipsen SCIENTIFIC REPORT BY APOORVA MANDAVILLI 2 Fondation Ipsen is placed under the auspices of Fondation de France MOLECULAR MARKERS 3 4 Foreword by Inder M. Verma 7 Part I: Molecular markers 9 J. Michael Bishop Senescence and metastasis in mouse models of breast cancer 15 Joan Massagué Metastasis genes and functions 21 Zena Werb Transcriptional regulation of the metastatic program 25 Inder M. Verma BRCA1 maintains constitutive heterochromatin formation: a unifying hypothesis of its function 29 Tak Wah Mak The role of RhoC in development and metastasis 35 Part II: Motility and invasiveness 37 Robert Weinberg Mechanisms of malignant progression 43 Daniel Louvard Fascin, a novel target of b-catenin-Tcf signaling, is expressed at the invasive front of human colon cancer 49 Gerhard Christofori Distinct mechanisms of tumor cell invasion and metastasis 55 Douglas Hanahan Multiple parameters influence acquisition by solid tumors CONTENTS of a capability for invasive growth 59 Part III : Mechanisms of metastasis 61 Richard Hynes Cellular mechanisms contributing to metastasis 67 Ann Chambers Novel imaging approaches for studying tumor metastasis 73 Jeffrey Pollard Macrophages are a cellular toolbox that tumors sequester to promote their progression to malignancy 79 Wolf-Hervé Fridman T effector/memory cells, the ultimate control of metastasis in humans 85 Kari Alitalo Inhibition of lymphangiogenesis and metastasis 91 Shahin Rafii Contribution of CXCR4+VEGFR1+ pro-angiogenic hematopoietic cells to tumor oncogenesis 97 Part IV : Cancer stem cells 99 Paolo Comoglio Invasive growth : a MET-driven genetic program for cancer and stem cells 105 Hans Clevers Wnt and Notch cooperate to maintain proliferative compartments in crypts and intestinal neoplasia 111 Owen N. -
Conference Program
Conference Program Note: All Scientific Sessions will be held in the Omni Hotel at 675 L Street. Poster Sessions will be held at the Hard Rock Hotel at the corner of 5th Avenue & L Street. Sunday, January 20 7:00 p.m.-7:10 p.m. Welcoming Remarks 7:10 p.m.-8:00 p.m. Keynote Address Omni Hotel San Diego, Grand Ballroom Metastasis and diversity in breast cancer Kornelia Polyak, Dana-Farber Cancer Institute, Boston, MA 8:00 p.m.-9:30 p.m. Opening Reception Monday, January 21 7:00 a.m.-8:00 a.m. Continental Breakfast Omni Hotel San Diego, Art Gallery 8:00 a.m.-10:00 a.m. Session 1: The Soil Session Chairperson: Zena Werb, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA Omni Hotel San Diego, Grand Ballroom Microenvironmental control of bone metastasis Sylvain Provot, INSERM, Paris, France The role of the microenvironment protein cathelicidin LL-37 in pancreatic ductal adenocarcinoma* Christopher Heeschen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain Normalizing tumor cell metabolism in breast cancer metastasis: A novel therapeutic approach Brunhilde Felding-Habermann, Scripps Research Institute, La Jolla, CA Identification of luminal breast cancers that establish a tumor supportive macroenvironment defined by proangiogenic platelets and bone marrow derived cells* Timothy Marsh, Brigham and Women’s Hospital, Boston, MA The extracellular matrix is fertile soil Richard Hynes, Massachusetts Institute of Technology, Cambridge, MA *Short talks from proffered papers Program and Proceedings • January 20-23, 2013 • San Diego, CA 7 Program 10:00 a.m.-10:30 a.m.