1 Introducing Basic Network Concepts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Security and Management of Computer Network Database In
The Security and Management of Computer Network Database in Coal Quality Detection Jianhua SHI1, a, Jinhong SUN2 1Guizhou Agency of Quality Supervision and Inspection of Coal Product,Liupanshui city 553001,China [email protected] Keywords: Computer Network Database; Database Security; Coal Quality Detection Abstract. This paper research the results of quality management information system at home and abroad, through the analysis of the domestic coal enterprises coal quality management links and management information system development present situation and existing problems, combining with related theory and system development method of management information system, and according to the coal mining enterprises of computer network security and management, analysis and design of database, and the implementation steps and the implementation of the coal quality management information system of the problem are given their own countermeasure and the suggestion, try to solve demand for management information system of coal enterprise management level, thus improve the coal quality management level and economic benefit of coal enterprise. Introduction With the improvement of China's coal mining mechanization degree and the increase of mining depth, coal quality is on the decline as a whole. At the same time, the user of coal product utilization way more and more widely, use more and more diversified, more and higher to the requirement of coal quality. In coal quality issue, therefore, countless contradictions increasingly acute, the gap of -
Basic Electronics.COM -- Internet Guide to Electronics
BASIC ELECTRONICS.CD INFO Best Viewed at 800X600 Last Updated: January 10, 2003 Previously Internet Guide to Electronics Site. Welcome! This website allows you to NEW & NEWS: browse the subject of ELECTRONICS. If you are just starting the learning journey, I hope Your Projects you'll make use of the simple nature and graphical content of this site. Feel free to look Basic Electronics around. Don't worry -- there are no tests at the FAQ end of the day. If you would like to contact me regarding this site, email me at [email protected] John Adams - Author ( Place mouse over symbol to see selection in LCD screen then view explanation in the Email Me browser's status window. Non-Javascript browsers, scroll down for link explanations.) THEORY|APPLY IT!|COMPONENTS|MESSAGE BOARD|REF/DATA/TOOLS BOOKS/MAGs|LECTRIC LINKS|BASIC ELECTRONICS.CD INFO ABOUT|EMAIL|WHATS NEW! THEORY Gain the basic understanding of electronic principles that you will be making use of later. This includes Ohm's Law, Circuit Theory, etc. APPLY IT! Putting the theory to work. This includes sections on how to solder, multimeters, and of course, PROJECTS! COMPONENTS Learn about various electronics components. MESSAGE BOARD Post your basic electronics related questions here for others to answer and read. REFERENCE, DATA AND COOL TOOLS! Resistor color code info, plenty of calculators, chart, electronics data and other cool tools! VERY POPULAR PAGE BOOKS/MAGs A list of books and magazines relating to the subject of electronics. Includes direct links to amazon.com for ordering online. LECTRIC LINKS A list of top-rated Electronics-related sites on the Web. -
Emerging Cyber Threats to the United States Hearing
EMERGING CYBER THREATS TO THE UNITED STATES HEARING BEFORE THE SUBCOMMITTEE ON CYBERSECURITY, INFRASTRUCTURE PROTECTION, AND SECURITY TECHNOLOGIES OF THE COMMITTEE ON HOMELAND SECURITY HOUSE OF REPRESENTATIVES ONE HUNDRED FOURTEENTH CONGRESS SECOND SESSION FEBRUARY 25, 2016 Serial No. 114–55 Printed for the use of the Committee on Homeland Security Available via the World Wide Web: http://www.gpo.gov/fdsys/ U.S. GOVERNMENT PUBLISHING OFFICE 21–527 PDF WASHINGTON : 2016 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON HOMELAND SECURITY MICHAEL T. MCCAUL, Texas, Chairman LAMAR SMITH, Texas BENNIE G. THOMPSON, Mississippi PETER T. KING, New York LORETTA SANCHEZ, California MIKE ROGERS, Alabama SHEILA JACKSON LEE, Texas CANDICE S. MILLER, Michigan, Vice Chair JAMES R. LANGEVIN, Rhode Island JEFF DUNCAN, South Carolina BRIAN HIGGINS, New York TOM MARINO, Pennsylvania CEDRIC L. RICHMOND, Louisiana LOU BARLETTA, Pennsylvania WILLIAM R. KEATING, Massachusetts SCOTT PERRY, Pennsylvania DONALD M. PAYNE, JR., New Jersey CURT CLAWSON, Florida FILEMON VELA, Texas JOHN KATKO, New York BONNIE WATSON COLEMAN, New Jersey WILL HURD, Texas KATHLEEN M. RICE, New York EARL L. ‘‘BUDDY’’ CARTER, Georgia NORMA J. TORRES, California MARK WALKER, North Carolina BARRY LOUDERMILK, Georgia MARTHA MCSALLY, Arizona JOHN RATCLIFFE, Texas DANIEL M. DONOVAN, JR., New York BRENDAN P. SHIELDS, Staff Director JOAN V. O’HARA, General Counsel MICHAEL S. TWINCHEK, Chief Clerk I. LANIER AVANT, Minority Staff Director SUBCOMMITTEE ON CYBERSECURITY, INFRASTRUCTURE PROTECTION, AND SECURITY TECHNOLOGIES JOHN RATCLIFFE, Texas, Chairman PETER T. -
Personal Computing
Recent History of Computers: Machines for Mass Communication Waseda University, SILS, Science, Technology and Society (LE202) The communication revolution ‚ In the first period of the history of computers, we see that almost all development is driven by the needs and the financial backing of large organizations: government, military, space R&D, large corporations. ‚ In the second period, we will notice that the focus is now shifting to small companies, individual programers, hobbyists and mass consumers. ‚ The focus in the first period was on computation and control. In the second period, it is on usability and communication. ‚ A mass market for computers was created, through the development of a user-friendly personal computer. Four generations of computers 1st 2nd 3rd 4th 5th Period 1940s–1955 1956–1963 1964–1967 1971–present ? Tech- vacuum transistors integrated micro- ? nology tubes circuits processors Size full room large desk sized desk-top, ? (huge) machine hand-held Software machine assembly operating GUI ? language language systems interface The microprocessor ‚ In 1968, the “traitorous seven” left Fairchild Semiconductor to found Intel. ‚ In 1969, Busicom, a Japanese firm, commissioned Intel to make a microprocessor for a handheld calculator. ‚ This lead to the Intel 4004. Intel bought the rights to sell the chip to other companies. ‚ Intel immediately began the process of designing more and more powerful microchips. Schematic: The Intel 4004 ‚ This has lead to computers small enough to fit in our hands. Consumer electronics ‚ The microprocessor made it possible to create more affordable consumer electronics. ‚ The Walkman came out in 1979. Through the 1980s video players, recorders and stereos were marketed. -
Do-It-Yourself Devices: Personal Fabrication of Custom Electronic Products
Do-It-Yourself Devices Personal Fabrication of Custom Electronic Products David Adley Mellis SB Mathematics Massachusetts Institute of Technology, June 2003 MA Interaction Design Interaction Design Institute Ivrea, June 2006 SM Media Arts and Sciences Massachusetts Institute of Technology, September 2011 Submitted to the Program in Media Arts and Sciences School of Architecture and Planning in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Media Arts and Sciences at the Massachusetts Institute of Technology September 2015 © 2015 Massachusetts Institute of Technology. All right reserved. Author: David A. Mellis Program in Media Arts and Sciences August 7, 2015 Certified by: Mitchel Resnick LEGO Papert Professor of Learning Research Program in Media Arts and Sciences Accepted by: Pattie Maes Academic Head Program in Media Arts and Sciences Do-It-Yourself Devices Personal Fabrication of Custom Electronic Products David Adley Mellis Submitted to the Program in Media Arts and Sciences School of Architecture and Planning on August 7, 2015 in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Media Arts and Sciences at the Massachusetts Institute of Technology Abstract Many domains of DIY (do-it-yourself) activity, like knitting and woodworking, offer two kinds of value: the making process itself and using the resulting products in one’s life. With electronics, the sophistication of modern devices makes it difficult to combine these values. Instead, when people make electronics today, they generally use toolkits and other prototyping processes that aren’t well suited to extended use. This dissertation investigates digital fabrication (of both electronic circuit boards and enclosures) as an alternative approach to DIY electronics, one that can support individuals in both making devices and using them in their daily lives. -
LAB MANUAL for Computer Network
LAB MANUAL for Computer Network CSE-310 F Computer Network Lab L T P - - 3 Class Work : 25 Marks Exam : 25 MARKS Total : 50 Marks This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e,g, RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the tool and perform simulations that will help them evaluate their design approaches and expected network performance. S.No Experiment 1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 2 Study of Network Devices in Detail. 3 Study of network IP. 4 Connect the computers in Local Area Network. 5 Study of basic network command and Network configuration commands. 6 Configure a Network topology using packet tracer software. 7 Configure a Network topology using packet tracer software. 8 Configure a Network using Distance Vector Routing protocol. 9 Configure Network using Link State Vector Routing protocol. Hardware and Software Requirement Hardware Requirement RJ-45 connector, Climping Tool, Twisted pair Cable Software Requirement Command Prompt And Packet Tracer. EXPERIMENT-1 Aim: Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. -
Uni International 300 N
INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. -
Applied Combinatorics 2017 Edition
Keller Trotter Applied Combinatorics 2017 Edition 2017 Edition Mitchel T. Keller William T. Trotter Applied Combinatorics Applied Combinatorics Mitchel T. Keller Washington and Lee University Lexington, Virginia William T. Trotter Georgia Institute of Technology Atlanta, Georgia 2017 Edition Edition: 2017 Edition Website: http://rellek.net/appcomb/ © 2006–2017 Mitchel T. Keller, William T. Trotter This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna- tional License. To view a copy of this license, visit http://creativecommons.org/licenses/ by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Summary of Contents About the Authors ix Acknowledgements xi Preface xiii Preface to 2017 Edition xv Preface to 2016 Edition xvii Prologue 1 1 An Introduction to Combinatorics 3 2 Strings, Sets, and Binomial Coefficients 17 3 Induction 39 4 Combinatorial Basics 59 5 Graph Theory 69 6 Partially Ordered Sets 113 7 Inclusion-Exclusion 141 8 Generating Functions 157 9 Recurrence Equations 183 10 Probability 213 11 Applying Probability to Combinatorics 229 12 Graph Algorithms 239 vii SUMMARY OF CONTENTS 13 Network Flows 259 14 Combinatorial Applications of Network Flows 279 15 Pólya’s Enumeration Theorem 291 16 The Many Faces of Combinatorics 315 A Epilogue 331 B Background Material for Combinatorics 333 C List of Notation 361 Index 363 viii About the Authors About William T. Trotter William T. Trotter is a Professor in the School of Mathematics at Georgia Tech. He was first exposed to combinatorial mathematics through the 1971 Bowdoin Combi- natorics Conference which featured an array of superstars of that era, including Gian Carlo Rota, Paul Erdős, Marshall Hall, Herb Ryzer, Herb Wilf, William Tutte, Ron Gra- ham, Daniel Kleitman and Ray Fulkerson. -
Steps Toward a National Research Telecommunications Network
Steps Toward a National Research Telecommunications Network Gordon Bell Introduction Modern science depends on rapid communica- In response to provisions in Public Law tions and information exchange. Today, many major 99-383, which was passed 21 June 1986 by national and international networks exist using the 99th Congress, an inter-agency group some form of packet switching to interconnect under the auspices of the Federal Coordin- host computers. State and regional networks are ating Council for Science, Engineering, and proliferating. NSFNET, an "internet" designed initially Technology (FCCSET) for Computer Research to improve access to supercomputer centers, has and Applications was formed to study the in the space of two years, forged links among 17 following issues: the networking needs of state, regional, and federal agency networks. the nation's academic and federal research In the early 1980s, the lack of access to super- computer programs, including supercomputer computing power by the research community caused programs, over the next 15 years, addressing the formation of the NSF Office of Advanced Sci- requirements in terms of volume of data, entific Computing, which funded five centers for reliability of transmission, software supercomputers. Given the highly distributed loca- compatibility, graphics capabilities, and tion of users, the need for a national wide area transmission security; the benefits and network for computer access and for the inter- opportunities that an improved computer change of associated scientific information (such network would offer for electronic mail, as mail, files, databases) became clear. file transfer, and remote access and com- Further, it immediately became obvious that munications; and the networking options existing agency networks both lacked the inherent available for linking academic and research capacity and were overloaded. -
Machine-To-Machine Communication in Rural Conditions: Realizing Kasadakanet
Machine-to-machine communication in rural conditions: Realizing KasadakaNet Fahad Ali VU Amsterdam [email protected] Supervised by Victor de Boer ABSTRACT the explored concepts is using Semantic Web technologies Contextual constraints play an important role in ICT for De- to facilitate knowledge sharing in rural areas (Gu´eret et al., velopment (ICT4D) projects. These ICT4D projects include 2011). those whose goal is to enable information and knowledge sharing in rural areas while keeping constraints such as lack One of the resulting products that came out of this research of electricity and technological infrastructure or (technical) is the Kasadaka2, a low-resource Raspberry Pi-based device illiteracy of end-users in mind. The Kasadaka project offers that provides an infrastructure on which voice-based appli- a solution for locals in rural areas in Sub-Saharan Africa to cations can be built and deployed locally. These applica- share knowledge. Due to a lack of technological infrastruc- tions for the Kasadaka are usually custom-built for specific ture, networks and internet connections are often not avail- needs and use cases. New applications can also be created able. Therefore, many ICT implementations in those areas fairly easily, making the platform ideal for rapid prototyping are not able to share data among each other. This paper (Baart, 2016). Essentially, these Kasadaka's are deployed on explores the possibilities of a machine to machine communi- a one-per-village basis, giving each village access to its own cation method to enable information sharing between geo- little piece of technology that facilitates local information graphically distributed devices. -
Components of a Computer Network
CS 536 Park Introduction What is a computer network? Components of a computer network: • hosts (PCs, laptops, handhelds) • routers & switches (IP router, Ethernet switch) • links (wired, wireless) • protocols (IP, TCP, CSMA/CD, CSMA/CA) • applications (network services) • humans and service agents Hosts, routers & links form the hardware side. Protocols & applications form the software side. Protocols can be viewed as the “glue” that binds every- thing else together. CS 536 Park A physical network: CS 536 Park Protocol example: low to high • NIC (network interface card): hardware → e.g., Ethernet card, WLAN card • device driver: part of OS • ARP, RARP: OS • IP: OS • TCP, UDP: OS • OSPF, BGP, HTTP: application • web browser, ssh: application −→ multi-layered glue What is the role of protocols? −→ facilitate communication or networking CS 536 Park Simplest instance of networking problem: Given two hosts A, B interconnected by some net- work N, facilitate communication of information between A & B. A N B Information abstraction • representation as objects (e.g., files) • bytes & bits → digital form • signals over physical media (e.g., electromagnetic waves) → analog form CS 536 Park Minimal functionality required of A, B • encoding of information • decoding of information −→ data representation & a form of translation Additional functionalities may be required depending on properties of network N • information corruption → 10−9 for fiber optic cable → 10−3 or higher for wireless • information loss: packet drop • information delay: like toll -
Introduction to Bioinformatics (Elective) – SBB1609
SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY Unit 1 – Introduction to Bioinformatics (Elective) – SBB1609 1 I HISTORY OF BIOINFORMATICS Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biologicaldata. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data. Bioinformatics has been used for in silico analyses of biological queries using mathematical and statistical techniques. Bioinformatics derives knowledge from computer analysis of biological data. These can consist of the information stored in the genetic code, but also experimental results from various sources, patient statistics, and scientific literature. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical applications in different areas of biology and medicine. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. "Classical" bioinformatics: "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.” The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline.