Analysis of Spiral Model in Software Projects for the Software Houses of Pakistan

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Spiral Model in Software Projects for the Software Houses of Pakistan International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 1486 ISSN 2229-5518 Analysis of Spiral Model in Software Projects for the Software Houses of Pakistan Muhammad Saleem1 [email protected] Department of Computer Science University of Agriculture Faisalabad Abstract— The Primary goal of this research was to identify and explore the particular risks at each phase of software development, and it also describes the activities performed during software development processes of preferred model and mitigation plan to minimize the risk factors. In every phase of Software development risk is involved. On the later stages of software development the influence of these risks are shown, sometimes causes of schedule slip, or bad management or sometimes direct effect on the cost of the project. Risk analysis is categorized into two stages. One is qualitative analysis and second is quantitative analysis. A lot of research and study is being conducted in risk analysis, and it is still in development process. The objective of the research is to explore or identify the different risks that are involved in different phases of Developed Model. A risk development model is introduced in this research study. The model to be implemented and for testing purpose of spiral model was used and then a model Risk Covered Spiral Model is introduce (RCSM),in which different steps for different types of risks are proposed that affect the cost, time and performance of software model. This research concluded that The Earlier software development model has some deficiencies like exploring risk was not properly handled in their phases, so the developers and users don’t have suitable outcome from previous Spiral model. Index Terms— Risk Mitigation, Risk Analysis, COTS, DDP, SPLE, Quality Assurance, Flexibility and Scalability —————————— u —————————— 1 INTRODUCTION HE Information Technology covers a variety of hard- Projects success ratio depend upon risk analysis phase and Tware and software solutions that permit the organiza- do not work well for small projects. SRE is a process in tions to meet, arrange, and evaluate data that will helps to which different plans are identify and develop for risk in a achieve the goals. With growingIJSER applications of IT software software intensive system in its development phase. These industry has grown quickly. Something “macho” in rela- risks and uncertainties should be overcome to keep our tion to activity high hazard projects “not including the net” project successful [2]. and this recognized risk administration is actually assign The researcher said that systematic risk management was associated with weakness. Failure and ambiguity are two one of the most important management. It has great im- basic attributes involves with risk [1]. portance in the interest of the enterprise which is increasing Different software development process models are used in day by day. With the time of fast development enterprise software houses i.e. Waterfall, V-Shaped, Incremental, Rap- were faced more and more challenges and hard type of id prototyping spiral etc. In waterfall model some difficul- risks. Although for enterprise system it is necessary and ties are high amount of risk and also uncertainty. It is just a essential to have a good and latest system of risk manage- poor type for complicated and item oriented projects. In V- ment. In the discussed study we have an analysis of the risk shaped type some negative factors are less versatility and management with the respect of enterprise. This analysis modifying scope is usually difficult as well as expensive. was based in the methodologies and theories of spiral There are no earlier prototypes produced in it. In Incremen- model and waterfall model. This analysis also proposed tal model some iteration is rigid and problems may arise that spiral model can also improve and make better the risk pertaining to system architecture. In spiral model high lev- management in the field of enterprise [3]. el expertise is required for risk analysis. The proposed model will be developed for better risk anal- ysis and to describe the impact of risk on the different ———————————————— phases or different steps and after it several mitigation · Muhammad Saleem, Research Scholar, Department of Com- steps were identified. For implementation and testing puter Science, University of Agriculture, Faisalabad, Pakistan. purpose spiral model was used and then new Risk handler E-mail: [email protected] spiral model is introduced. The new proposed model will IJSER © 2016 http://www.ijser.org International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016 1487 ISSN 2229-5518 be recovered the all types of risks involved in different The researcher explained that to reduce the risk is an phases. Each phase of this model will define the objectives important part of your project if you want to complete your and deliverables, the completion from the phase is actual- project on selected schedule. So the project management is ly marked by the completion associated with assigned an important part. So in project management we manage deliverables. Risks are concerned in each Stage of Software our all factors which can affect by the risk. To solve any Application development. The impacts of such risks are problem we need some resources which support the showed on the later phases of software development. These problem solving issues. The discussed model proposes a risks can affect parameters like budget, and schedule. In new method which uses these given and upcoming Several cases it can also cause the failure of the project. In resources to solve a problem. It also manages and estimates this research the activities during different phase of soft- these reserves of new project in modern age in the field of ware development of some model will be defined. After IT [6]. definition of risks in each phase will be defined and then The researcher stated that there were two main steps control the risks by defining the some mitigation steps. of customizable risk driven model; from the work distribu- tion its analysis with respect to project risk suggests as set task allocation which based on site-specific characteristics 2 RELATED WORK and project. A model of risk driven is proposed which sup- The researcher described that there are different main port the decisions of work allocation in software projects. points of an organization management. Risk Management Study and research analyze the current practices of distrib- is one of them. Risk target are always profitable in all as- uted software development, mostly practices defines risks sortment. Risk is always transported for the accomplish- and problems of related work to overcome these problems ment of the different activities. In the organization it refer- [7]. ences to the all activities. To find a risk and its solution is The researcher described risk management can be the main benefit of risk management. The organization defined as an action that it helps a software team to man- value can be maximizing by the good management of the age and uncertainty. It also partially means reducing or risk. This good management can also improve the success avoiding uncertainty. A Risk is a potential problem it ration then its failure, when the risk is access. A new might happen or it might not; but it’s a really good idea to strategic risk reduction technique was introduced for identify the risk, Regardless of outcomes, estimate its reducing the income which is expected by giving the impact and asses its probability of occurrence. In the permission of per step measureIJSER to per risk. Another meth- software development projects everyone is involved i.e. od in the form of tools called DDP (defect detection and Software managers, engineers and other stakeholders in prevention), for selecting the different risk. These risks risk analysis and management must participate. But as long have a deep impact and requirements [4]. as the software industry has been growing software risks The researcher quantified that the Line Engineering of have been increasing [8]. the software product was a special case in software devel- The researcher explained that risk management was opment process. This case qualifies that the development of one of the activities which recognize the risk and then new products and news applications is very important. The make solutions to solve it. Risk assessment and other strat- aim of less impression of the problems that usually occur egies also involves in it. Different developing strategies are during the development is to be affianced. Basically the used to manage it. Risk mitigation is also done. In other SPLE is demanding the outspoken investments to deliver permissible causes some of the old and cultural risk the best quality and best assurance benefits that the user management is discussed as natural problems are fire, can take. It also includes a managed process that is not death or accidents. A few are focused on risks stemming much costly and a sequence program. This program leads from actual or authorized causes. On other hand the man- us to need and scope of risk management. Risk manager is agement of the risk is focused by financial management of the basic and appropriate role when the success of a project the risk. These risks can be solving by using merchandized is discussed. The execution if a process has many chances. instruments of finance. In the discussed model different If we have a problem as we want to avoid solve or ignore phases of process of risk management are described. At the the problem the execution of a project has more chances. last different tools of management of risk is given and The execution is also important for the schedule which is suggested [9]. achieved by the results. The results should be positive [5].
Recommended publications
  • The Timeboxing Process Model for Iterative Software Development
    The Timeboxing Process Model for Iterative Software Development Pankaj Jalote Department of Computer Science and Engineering Indian Institute of Technology Kanpur – 208016; India Aveejeet Palit, Priya Kurien Infosys Technologies Limited Electronics City Bangalore – 561 229; India Contact: [email protected] ABSTRACT In today’s business where speed is of essence, an iterative development approach that allows the functionality to be delivered in parts has become a necessity and an effective way to manage risks. In an iterative process, the development of a software system is done in increments, each increment forming of an iteration and resulting in a working system. A common iterative approach is to decide what should be developed in an iteration and then plan the iteration accordingly. A somewhat different iterative is approach is to time box different iterations. In this approach, the length of an iteration is fixed and what should be developed in an iteration is adjusted to fit the time box. Generally, the time boxed iterations are executed in sequence, with some overlap where feasible. In this paper we propose the timeboxing process model that takes the concept of time boxed iterations further by adding pipelining concepts to it for permitting overlapped execution of different iterations. In the timeboxing process model, each time boxed iteration is divided into equal length stages, each stage having a defined function and resulting in a clear work product that is handed over to the next stage. With this division into stages, pipelining concepts are employed to have multiple time boxes executing concurrently, leading to a reduction in the delivery time for product releases.
    [Show full text]
  • Agile Playbook V2.1—What’S New?
    AGILE P L AY B O OK TABLE OF CONTENTS INTRODUCTION ..........................................................................................................4 Who should use this playbook? ................................................................................6 How should you use this playbook? .........................................................................6 Agile Playbook v2.1—What’s new? ...........................................................................6 How and where can you contribute to this playbook?.............................................7 MEET YOUR GUIDES ...................................................................................................8 AN AGILE DELIVERY MODEL ....................................................................................10 GETTING STARTED.....................................................................................................12 THE PLAYS ...................................................................................................................14 Delivery ......................................................................................................................15 Play: Start with Scrum ...........................................................................................15 Play: Seeing success but need more fexibility? Move on to Scrumban ............17 Play: If you are ready to kick of the training wheels, try Kanban .......................18 Value ......................................................................................................................19
    [Show full text]
  • Descriptive Approach to Software Development Life Cycle Models
    7797 Shaveta Gupta et al./ Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Available online at www.elixirpublishers.com (Elixir International Journal) Computer Science and Engineering Elixir Comp. Sci. & Engg. 45 (2012) 7797-7800 Descriptive approach to software development life cycle models Shaveta Gupta and Sanjana Taya Department of Computer Science and Applications, Seth Jai Parkash Mukand Lal Institute of Engineering & Technology, Radaur, Distt. Yamunanagar (135001), Haryana, India. ARTICLE INFO ABSTRACT Article history: The concept of system lifecycle models came into existence that emphasized on the need to Received: 24 January 2012; follow some structured approach towards building new or improved system. Many models Received in revised form: were suggested like waterfall, prototype, rapid application development, V-shaped, top & 17 March 2012; Bottom model etc. In this paper, we approach towards the traditional as well as recent Accepted: 6 April 2012; software development life cycle models. © 2012 Elixir All rights reserved. Keywords Software Development Life Cycle, Phases and Software Development, Life Cycle Models, Traditional Models, Recent Models. Introduction Software Development Life Cycle Models The Software Development Life Cycle (SDLC) is the entire Software Development Life Cycle Model is an abstract process of formal, logical steps taken to develop a software representation of a development process. SDLC models can be product. Within the broader context of Application Lifecycle categorized as: Management (ALM), the SDLC
    [Show full text]
  • Ovum Decision Matrix: Selecting an Application Lifecycle Management and Devops Solution, 2019–20
    Ovum Decision Matrix: Selecting an Application Lifecycle Management and DevOps Solution, 2019–20 Publication Date: 27 Jun 2019 | Product code: INT003-000374 Michael Azoff Ovum Decision Matrix: Selecting an Application Lifecycle Management and DevOps Solution, 2019–20 Summary Catalyst Software lifecycle management (SLM) is the management of software development by taking a lifecycle approach from concept through the management of requirements, testing, coding, deployment, upgrades, maintenance, and final retirement. The market provides tools to support this lifecycle in the form of application lifecycle management (ALM) tools and, with the rise of DevOps, tools that provide DevOps-style release management, orchestration, and automation. This Ovum Decision Matrix (ODM) examines ALM tools that cross over into DevOps to support the full arc of the lifecycle from application/product concept to deployment into production. Ovum view ALM origins and trends The need for taking an SLM approach is best thought of as good practice in the relatively young art of software development. The ALM tools market has evolved to support SLM through the years; at its core is the development methodology or work process, and this has evolved over time, starting with waterfall or linear stage-gate processes and incorporating various innovations such as Tom Gilb's evolutionary delivery, Barry Boehm's spiral model, and Rational's unified process, before Agile and lean swept the board with examples such as Scrum, extreme programming, and Kanban boards post- 2001 (when the Agile Manifesto was created). The integrated ALM suite tools market really took off around 2003 but supported waterfall because Agile was still under the radar.
    [Show full text]
  • A Comparison Between Five Models of Software Engineering
    IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 94 ISSN (Online): 1694-0814 www.IJCSI.org A Comparison Between Five Models Of Software Engineering Nabil Mohammed Ali Munassar1 and A. Govardhan2 1Ph.D Student of Computer Science & Engineering Jawahrlal Nehru Technological University Kuktapally, Hyderabad- 500 085, Andhra Pradesh, India 2Professor of Computer Science & Engineering Principal JNTUH of Engineering College, Jagityal, Karimnagar (Dt), A.P., India Abstract increased recently which results in the difficulty of This research deals with a vital and important issue in computer enumerating such companies. During the previous four world. It is concerned with the software management processes decades, software has been developed from a tool used for that examine the area of software development through the analyzing information or solving a problem to a product in development models, which are known as software development itself. However, the early programming stages have life cycle. It represents five of the development models namely, created a number of problems turning software an waterfall, Iteration, V-shaped, spiral and Extreme programming. These models have advantages and disadvantages as well. obstacle to software development particularly those Therefore, the main objective of this research is to represent relying on computers. Software consists of documents and different models of software development and make a programs that contain a collection that has been comparison between them to show the features and defects of established to be a part of software engineering each model. procedures. Moreover, the aim of software engineering is Keywords: Software Management Processes, Software to create a suitable work that construct programs of high Development, Development Models, Software Development Life quality.
    [Show full text]
  • Software Development a Practical Approach!
    Software Development A Practical Approach! Hans-Petter Halvorsen https://www.halvorsen.blog https://halvorsen.blog Software Development A Practical Approach! Hans-Petter Halvorsen Software Development A Practical Approach! Hans-Petter Halvorsen Copyright © 2020 ISBN: 978-82-691106-0-9 Publisher Identifier: 978-82-691106 https://halvorsen.blog ii Preface The main goal with this document: • To give you an overview of what software engineering is • To take you beyond programming to engineering software What is Software Development? It is a complex process to develop modern and professional software today. This document tries to give a brief overview of Software Development. This document tries to focus on a practical approach regarding Software Development. So why do we need System Engineering? Here are some key factors: • Understand Customer Requirements o What does the customer needs (because they may not know it!) o Transform Customer requirements into working software • Planning o How do we reach our goals? o Will we finish within deadline? o Resources o What can go wrong? • Implementation o What kind of platforms and architecture should be used? o Split your work into manageable pieces iii • Quality and Performance o Make sure the software fulfills the customers’ needs We will learn how to build good (i.e. high quality) software, which includes: • Requirements Specification • Technical Design • Good User Experience (UX) • Improved Code Quality and Implementation • Testing • System Documentation • User Documentation • etc. You will find additional resources on this web page: http://www.halvorsen.blog/documents/programming/software_engineering/ iv Information about the author: Hans-Petter Halvorsen The author currently works at the University of South-Eastern Norway.
    [Show full text]
  • Software Maintenance Lifecycle Modeling
    Home Software Maintenance Lifecycle Modeling D Vijay Rao, VVS Sarma and NK Srinivasan Department of Computer Science & Automation Indian Institute of Science Bangalore 560 012, India. Abstract Maintenance of legacy systems, representing a massive, long-term business investment, is an important but relatively new research area. A generic, unified lifecycle model (ULM) integrating the product, process and project views of software development and maintenance based on re- entrant lines is proposed. The proposed re-entrant line model represents the software maintenance process in a software organisation. The existing model for software development predicts project metrics such as the development time, cost and product quality for any new project to be taken up by the organization. The routing matrix of the artifacts in the ULM can be modified to derive different types of lifecycle models such as Waterfall, Prototyping, Spiral and Hybrid models. The ULM is modified to depict the complex set of activities associated with software maintenance. Quantitative metrics such as release time of versions, cost, time and effort for maintenance are estimated using this model. 1. Introduction The area of software maintenance has not received adequate attention in the literature because it was considered as a fairly routine activity with no challenge for creative people. Today, when salaries of programmers have become a major part of the data processing budget, the difficulties in software maintenance are slowly becoming apparent. A large proportion of the software products in operation are the so-called ‘legacy systems’ [TrTi95, LLFG97, BMW96, BM97]. Such systems, that typically are the backbone of an organization’s information flow and business, represent a massive, long-term business investment.
    [Show full text]
  • Iterative & Evolutionary
    iterative.fm Page 9 Sunday, July 20, 2003 1:16 PM Chapter 2 ITERATIVE & EVOLUTIONARY Experience is that marvelous thing that enables you to recognize a mistake when you make it again. —F. P. Jones OVERVIEW ❑ Basic practices of iterative and evolutionary methods, including timeboxing and adaptive planning. ❑ A common mistake adopting iterative methods. ❑ Specific iterative and evolutionary methods, including Evo and UP. Iterative and evolutionary development is a foundation not only of history p. 79 modern software methods, but—as the history section of the “Evi- dence” chapter shows—of methods used as far back as the 1960s. Agile methods are a subset of iterative and evolutionary methods. This chapter summarizes key practices: iterative development evolutionary development risk-driven and client-driven evolutionary requirements timeboxing adaptive planning ITERATIVE DEVELOPMENT Iterative development is an approach to building software (or iterative planning tips anything) in which the overall lifecycle is composed of several iter- start on p. 248 ations in sequence. Each iteration is a self-contained mini-project 9 iterative.fm Page 10 Sunday, July 20, 2003 1:16 PM 2 — Iterative & Evolutionary composed of activities such as requirements analysis, design, pro- gramming, and test. The goal for the end of an iteration is an iter- ation release, a stable, integrated and tested partially complete system. To be clear: All the software across all the teams is inte- grated into a release each iteration. Most iteration releases are internal, a baseline primarily for the benefit of the development team—they are not released externally. The final iteration release is the complete product, released to the market or clients.
    [Show full text]
  • SOFTWARE DEVELOPMENT MODELS and THEIR REAL ASPECTS Divya Tanwar Sbs , Vivekananda Institute of Professional Studies, GGSIPU, Delhi
    SOFTWARE DEVELOPMENT MODELS AND THEIR REAL ASPECTS Divya Tanwar Sbs , Vivekananda Institute of Professional Studies, GGSIPU, Delhi ABSTRACT Software development life cycle models are the most integral part when it comes to software development which can fully justify today’s digitally environments with increasing mobile, web, and desktop applications. This research deals with a vital and important issue in information technology with respect to various models used in development. It is concerned with the software management processes that examine the area of software development through the development models, which are known as software development life cycle. It represents five of the development models namely, waterfall, Iteration, prototype and spiral and their real time examples which we can relate in our day to day life. These models are complex and difficult to identify related to real time scenario. Therefore, the main objective of this research is to represent different models of software development and make a comparison between them to show the features and defects of each model. This paper demystifies these concepts so that the SDLC is correctly understood with their real time. Keywords: Iterative Prototyping SDLC, Software development life cycle, Spiral model, Real aspects, Waterfall model I. INTRODUCTION Software development life cycle models are the important part of the Software Engineering which is a discipline whose aim to develop quality software, which is on time, with minimum cost and can satisfy the organization needs. There are basically four main models in SDLC with different characteristics and drawbacks [2] .The most difficult task is to identify the model which suits the organization structure, for this every organization need to know the model and its real time application so the user can relate, understand and find out how its actually working.
    [Show full text]
  • Strengths and Weakness of Traditional and Agile Processes  a Systematic Review
    Journal of Software Strengths and Weakness of Traditional and Agile Processes A Systematic Review Mahrukh Sameen Mirza, Soma Datta* University of Houston-Clear Lake, Houston, Texas, USA. * Corresponding author. Tel.: 12182833838 email: [email protected], [email protected] Manuscript submitted February 25, 2019; accepted April 10, 2019. doi: 10.17706/jsw.14.5.209-219 Abstract: In the software industry, there are several processes and methodologies that exist. The traditional processes and Agile methodologies have their own strengths and weaknesses. Agile methodologies overcome some of the weaknesses of traditional processes. Although in the recent years Agile methodologies have been used by software development companies, there is still a high ratio of software failures when compared with core engineering processes. The adoption of these processes in software development could alleviate software failures. This systematic study reviews the strengths and weaknesses of both traditional processes and Agile processes. The search strategy resulted in 91 papers, of which 25 primary studies are investigated between 2012 and 2019. The detailed search strategy has been presented in this study along with future directions. Key words: Agile, core engineering processes, extreme programming, feature driven development, Kanban, lean, scrum, systematic review, test driven development, traditional. 1. Introduction Before 2001[1]-[13], the software industry used traditional software development processes (i.e., Classical waterfall model, iterative waterfall model, spiral model, RAD model). While these traditional models are known to be cost saving for bigger, off-shore projects, there is criticism that exists [13]-[25]. Due to these criticisms and the high ratio of software failures that used traditional models, it led to a change in software process development in 1999.
    [Show full text]
  • A Spiral Model of Software Development and Enhancement
    A Spiral Model of Software Development and Enhancement Barry W. Boehm, TRW Defense Systems Group “Stop the life cycle-I want to get off!’’ criteria for the current stage plus choice “Life-cycle Concept Considered criteria and entrance criteria for the next Harmful. ” stage. Thus, a process model addresses the “The waterfall model is dead.” This evolving- risk- following software project questions: “No, it isn’t, but it should be.” (1) What shall we do next? driven approach (2) How long shall we continue to do it? hese statements exemplify the provides a new Consequently, a process model differs current debate about software from a software method (often called a Iife-cycle process models. The framework for guiding T methodology) in that a method’s primary topic has recently received a great deal of the software process. focus is on how to navigate through each attention. phase (determining data, control, or The Defense Science Board Task Force ‘‘uses” hierarchies; partitioning functions; Report on Military Software‘ issued in allocating requirements) and how to rep- 1987 highlighted the concern that tradi- resent phase products (structure charts; tional software process models were dis- stimulus-response threads; state transition couraging more effective approaches to diagrams). software development such as prototyping Why are software process models and software reuse. The Computer Soci- spiral model; illustrate the application of the spiral model to a software project, important? Primarily because they pro- ety has sponsored tutorials and workshops vide guidance on the order (phases, incre- on software process models that have using the TRW Software Productivity Project as an example; summarize the pri- ments, prototypes, validation tasks, etc.) helped clarify many of the issues and in which a project should carry out its stimulated advances in the field (see “Fur- mary advantages and implications involved in using the spiral model and the major tasks.
    [Show full text]
  • Spiral Model: Advantages and Disadvantages
    SPIRAL MODEL: ADVANTAGES AND DISADVANTAGES What is the Spiral Model? The Spiral Life Cycle Model is a type of iterative software development model which is generally implemented in high risk projects. It was first proposed by Boehm. In this system development method, we combine the features of both, waterfall model and prototype model. In Spiral model we can arrange all the activities in the form of a spiral. Each loop in a spiral represents a development phase (and we can have any number of loops according to the project). Each loop has four sections or quadrants : 1. To determine the objectives, alternatives and constraints. We try to understand the product objectives, alternatives in design and constraints imposed because of cost, technology, schedule, etc. 2. Risk analysis and evaluation of alternatives. Here we try to find which other approaches can be implemented in order to fulfill the identified constraints. Operational and technical issues are addressed here. Risk mitigation is in focus in this phase. And evaluation of all these factors determines future action. 3. Execution of that phase of development. In this phase we develop the planned product. Testing is also done. In order to do development, waterfall or incremental approach can be implemented. 4. Planning the next phase. Here we review the progress and judge it considering all parameters. Issues which need to be resolved are identified in this phase and necessary steps are taken. Subsequent loops of spiral model involve similar phases. Analysis and engineering efforts are applied in this model. Large, expensive or complicated projects use this type of life cycle.
    [Show full text]