Rede De Alimentação De Invertebrados Das Águas Pretas Do Sistema Rio Negro

Total Page:16

File Type:pdf, Size:1020Kb

Rede De Alimentação De Invertebrados Das Águas Pretas Do Sistema Rio Negro Rede de alimentação de invertebrados das águas pretas do sistema rio Negro 1. Observações sobre a predação de uma Ameba do tipo Dmeba discoides. Jlse Walker (*) Resumo A pobreza da produção primária sugere que estas cadeias alimentares dependem prin· Observação de pequenos ecossistemas estabele­ cipalrnente da decomposição da matéria orgâ· cidos quase naturalmente no laboratório a partir de material coletado em "habitats" específicos do nica florestal que cai na água, especialmente rio, permitiu construir uma rede alimentar da da decomposição do folhiço submerso. Assim, Amoeba (discoides), um predador voraz provenien­ estas cadeias alimentares seriam, em grande te da fauna encontrada entre capins submersos nas parte, cadeias de decomposição específicas, margens de lagos e rios. O comportamento preda­ um aspecto bastante importante na ecologia dor é bastante variado; as presas preferidas são ci­ dos ciclos alimentares. Descuidar-se deste liados, e, além de vários outros protozoários, a ame­ aspecto teria conseqüências graves com res­ ba ataca anelideos (Aeolosoma. sp.) . Observou-se a caça cooperativa a espécies presas que chegam a peito ao desmatamento das margens dos rios fugir se atacadas por amebas solitárias. Coopera­ dé águas pretas. ção é definida em termos de aumento de alimento Também, há necessidade de desenvolver obtido. Todos os organismos predadores na rede mostravam-se específicos na escolha da presa, no­ uma instrução biológica para todos os níveis tando-se também preferências por algumas espécies do sistema educac-ional, que seria baseada no de presas aceitáveis. O gráfico da rede alimentar entendimento do ambiente local, do qual a eco- apresentado na figura 7, permite uma comparação -logia aquática constitui uma parte integrante quantitativa de diversas redes equivalentes. na Amazônia . Por todas essas razões, o conhecimento da INTRODUÇÃO ecologia dos invertebrados das águas pretas torna-se indispensável. Além disso, informa· Diversas razões justificam o interesse na ção pormenorizada sobre a rede de alimentação rede alimentar dos invertebrados das águas dos invertebrados aquáticos é deficiente mes· pretas. Algumas são relacionadas à química mo nas outras partes do mundo; portanto, este peculiar do sistema do rio Negro, o qual é ca­ tipo de pesquisa não deveria incitar os Inte­ racterizado pela pobreza de cátions e presença resses somente da região Amazônica. de ácidos húmicos resultando em valores de Temos a intenção de apresentar, numa sé­ pH excessivamente baixos e na densa cor ne­ rie de publicações, os resultados sobre a rede gra da superfície da água. alimentar dos protozoários até às larvas de peixes. Essencialmente, analisaremos dois ti· Parece que isto resulta em níveis baixos pos de dados : da produção primária nestas águas e, conse­ qüentemente, na pobreza do estoque de pei­ 1 . dados coletados no laboratório, pertinentes xes . Por esse motivo o INPA vem explorando a ecossistemas, os quais se estabelecem qua­ a possibilidade de estabelecer viveiros de pei­ se naturalmente de material coletado nos rios; xes nativos da região. Uma informação minu­ 2. dados obtidos no campo sobre o consumo ciosa sobre a rede alimentar dos invertebrados de iscas naturais colocadas em "habitats" es­ permitiria escolher o "input" mais econômico pecíficos; tais dados devertam confirmar ou para a sustentação dos viveiros. não os resultados do laboratório. ( • ) - Instituto Nacional de Pesquisas da Amazônia, Manaus ACTA AMAZONICA 8(3): 423-438. 1978 - 423 Os resultados dessa comunicação sobre a meadas culturas iniciais (IC) e a numeração Amoeba discoides referem-se unicamente a sis­ (IC) I, (IC) 11, (IC) 111 ... etc, designa sim­ temas estabelecidos no laboratório. plesmente a cronologia das coleções durante todo o período deste projeto. A parte menor O maior problema desse tipo de trabalho é deste material é colocada em caixas de a identificação dos organismos. É claro que, 250-SOOml para observação direta sob estereos- a respeito dc..s protozoários, a determina­ cópio. A designação dessa cultura é IA1 ..... ção da espécie e, em alguns casos mesmo do IA2. liA,. IIA2. etc. No caso de se­ gênero, é impossível. A sistemática contem­ rem tomadas subculturas cronológicas das cul­ porânea necessita da análise macromolecular turas iniciais (I C) I, (I C) 11 ... etc., estas serão das organelas (Lynn, 1976; Bardele, 1977) e chamadas IA, IB, IC, ... liA, IIB ... etc. O núme­ tais projetos estão bem fora dos objetivos de ro romano sempre indica a respectiva cultura nosso tarbalho. Entretanto, todos os organis­ inicial (te). Tais subculturas servem à obser­ mos apresentados na rede alimentar foram vação de processos de sucessão nas culturas criados e observados por várias semanas e iniciais . Para a caracterização quantitativa da mesmo por meses, o que permite reconhecer fauna de um "habitat", a coleta inicial é feita e distinguir, com quase certeza, as espécies em várias pequenas amostras simultâneas que na forma tradicional e inexata, ao menos aque­ são designadas (IC) 1,, (IC) h (IC) b ... (IC) Ih, las com diâmetros ultrapassando cerca de 30 (!C) I b. etc. Contudo, essa primeira comu­ 14m. Organismos de tamanho menor, não per­ nicação não inclui séries de sucessão ou amos­ mitindo discriminação com bastante confiança, tragens quantitativas. são chamados globalmente "micro-ciliados", "micro-flagelados", etc. Em geral, as identifi­ Para chegar a densidade de organismos cações foram baseadas nos I ivros de Kudo observáveis, bem como observação de seus (1966), Hyman (1951). Grassé (1952) e comportamentos alimentares, pequenos peda­ especialmente, nos trabalhos de Marcus ços de matéria alimentícia são colocados nas (1943-1947). As chaves de Pennak (1953) culturas, geralmente um animal morto de uma também foram utilizadas para chegar às famí• das espécies que vivem nessa cultura, ou um lias ou mesmo aos gêneros. Em casos de iden­ pedacinho de peixe cozido; um grão de fer­ tificação duvidosa, o nome da espécie, ou do mento seco (Saccharomyces) também serve gênero, é posto entre parênteses. à manutenção de cadeias alimentares que de­ pendem de bactérias como primeiro estágio. Entretanto, algumas espécies comem direta­ MÉTODOS E MATERIAL mente o fermento, uma condição artificial que, todavia, é prática e fácil para criar certas es­ coLEÇÃo - O material é coletado em. "ha­ pécies em rotina no laboratório. bitats" característicos dos rios, especialmente Observações das culturas IA,, IA2... IIA1, nas zonas de folhiço submerso e nas zonas IIA2. .. dá a impressão de que certas culturas cobertas de capim, gramíneas gigantescas co­ formam grupos característicos durante a mi­ brindo as margens dos rios e igapós, as quais cro-sucessão, desenvolvendo-se nas vizinhan­ são freqüentes somente em águas brancas, ças de um alimento específico. Tais grupos mas encontram-se ocasionalmente em águas são transferidos para vidros de 100 ml, ou para pretas. A coleção inclui vegetação viva com placas de Petri, onde eles são mantidos por raízes e vegetação morta, lama do fundo, ma­ período tão longo quanto possível com o mes­ terial coletado com redes de diferentes malhas mo tipo de alimento. Essas culturas são cha­ entre a vegetação e na água livre, e bastante madas ta1, la2, ... lb,, lb2 ... lia,, lla2 ... se de­ água da região para estabelecer as culturas no rivadas das culturas IA, IB, e liA, respectiva­ laboratório. mente, e são mantidas em 2-3 duplicatas para CULTURA - No laboratório, grande parte evitar extinção por acidentes de qualquer ori­ do material proveniente de um "habitat" espe­ gem. cífico é colocado em recipientes de vidro com A observação das culturas sob o estéreo­ capacidade de 5 litros. Essas culturas são no· microscópio (aumento de 10-40x) realizam-se 424- WaJker em intervalos de 1-3 dias e anotam-se as se­ Vorticellidae, espécie 1, Peritricha, Ciliata guintes condições: aparecimento e extinção Paramecium sp. Hymenostomatida, Ciliata Dileptus (anser), Gymnostomatída, Ciliata das espécies; espécies presas e predadoras. Micro-Hypotrichida, espécie 1, Ciliata período até chegarem certas espécies na vizi­ Stenostomum sp. Rhabdocoela, Platyhelmínthes nhança de uma isca fresca, e os notáveis com­ Nematoda, espécie não identificada portamentos dos organismos. Philodinidae, 1 espécie, Bdelloidea, Rotifera Com a finalidade de observar o comporta­ (Euchlanidae) 1 espécie, Pseudotl·ocha, Rotífera mento predatório dos organismos em aumen­ Gastrotricha, 1 espécie Aeolosoma espécie 1 (pigmento vermelho), Aeoloso- tos maiores (160x, 640x), colocamo-los em matidae, Annelida. uma câmara de Neubauer com uma rede qua­ Pristina. sp. Naididae, Annelida drática de 0,05 X 0,05 mm permitindo estimar Cladocera, 2 espécies, Crustácea o tamanho dos organismos em desenhos à mão Ostracoda, 1 espécie, Crustácea livre durante o período inicial do projeto, quan­ Copepoda, 1 espécie, Cyclopidae, Crustacea do ainda não havia disponibilidade de câmara• clara. Posteriormente, todos os desenhos fo­ ANEXO: Espécies provenientes de folhiço sub­ merso: ram feitos com ajuda da câmara-clara, e as fases características durante o processo de (Vablkampfía limax) Amoebidae, Rhizopoda predação foram medidas com cronômetro. Anisonema sp. Anisonemidae, Flagellata Spirostomus (teres), Spirotricha, Ciliata MATERIAL - A Amoeba (disooides) apa­ Stentor (coeruleus), Spirotricha, Ciliata receu no capim da cultura inicial (I C) I, coleta­ Vorticella espécie 2, Peritricha, Ciliata da em 28 de dezembro de 1976 em Samaúma, Micro-Hypotrichida espécie 2, Ciliata perto da ilha Anavilhana situada
Recommended publications
  • Rotifers: Excellent Subjects for the Study of Macro- and Microevolutionary Change
    Hydrobiologia (2011) 662:11–18 DOI 10.1007/s10750-010-0515-1 ROTIFERA XII Rotifers: excellent subjects for the study of macro- and microevolutionary change Gregor F. Fussmann Published online: 1 November 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Rotifers, both as individuals and as a nature. These features make them excellent eukaryotic phylogenetic group, are particularly worthwhile sub- model systems for the study of eco-evolutionary jects for the study of evolution. Over the past decade dynamics. molecular and experimental work on rotifers has facilitated major progress in three lines of evolution- Keywords Rotifer phylogeny Á Asexuality Á ary research. First, we continue to reveal the phy- Eco-evolutionary dynamics logentic relationships within the taxon Rotifera and its placement within the tree of life. Second, we have gained a better understanding of how macroevolu- Introduction tionary transitions occur and how evolutionary strat- egies can be maintained over millions of years. In the Rotifers are microscopic invertebrates that occur in case of rotifers, we are challenged to explain the freshwater, brackish water, in moss habitats, and in soil evolution of obligate asexuality (in the bdelloids) as (Wallace et al., 2006). Rotifers are particularly fasci- mode of reproduction and how speciation occurs in nating and suitable objects for the study of evolution the absence of sex. Recent research with bdelloid roti- and, over the past decade, featured prominently in fers has identified novel mechanisms such as horizon- research on both macro- and microevolutionary tal gene transfer and resistance to radiation as factors change. I, here, review the recent developments in potentially affecting macroevolutionary change.
    [Show full text]
  • Ryan Christopher Mckellar
    University of Alberta Paleobiology of Canadian Cretaceous amber: an exceptional record of Late Cretaceous Hymenoptera, with contributions to additional taxa and the study of amber by Ryan Christopher McKellar A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth and Atmospheric Sciences ©Ryan Christopher McKellar Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-81255-6 Our file Notre reference ISBN: 978-0-494-81255-6 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license
    [Show full text]
  • A Modern Approach to Rotiferan Phylogeny: Combining Morphological and Molecular Data
    Molecular Phylogenetics and Evolution 40 (2006) 585–608 www.elsevier.com/locate/ympev A modern approach to rotiferan phylogeny: Combining morphological and molecular data Martin V. Sørensen ¤, Gonzalo Giribet Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA Received 30 November 2005; revised 6 March 2006; accepted 3 April 2006 Available online 6 April 2006 Abstract The phylogeny of selected members of the phylum Rotifera is examined based on analyses under parsimony direct optimization and Bayesian inference of phylogeny. Species of the higher metazoan lineages Acanthocephala, Micrognathozoa, Cycliophora, and potential outgroups are included to test rotiferan monophyly. The data include 74 morphological characters combined with DNA sequence data from four molecular loci, including the nuclear 18S rRNA, 28S rRNA, histone H3, and the mitochondrial cytochrome c oxidase subunit I. The combined molecular and total evidence analyses support the inclusion of Acanthocephala as a rotiferan ingroup, but do not sup- port the inclusion of Micrognathozoa and Cycliophora. Within Rotifera, the monophyletic Monogononta is sister group to a clade con- sisting of Acanthocephala, Seisonidea, and Bdelloidea—for which we propose the name Hemirotifera. We also formally propose the inclusion of Acanthocephala within Rotifera, but maintaining the name Rotifera for the new expanded phylum. Within Monogononta, Gnesiotrocha and Ploima are also supported by the data. The relationships within Ploima remain unstable to parameter variation or to the method of phylogeny reconstruction and poorly supported, and the analyses showed that monophyly was questionable for the fami- lies Dicranophoridae, Notommatidae, and Brachionidae, and for the genus Proales.
    [Show full text]
  • Sexual Reproduction in Bdelloid Rotifers
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.06.239590; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Sexual Reproduction in Bdelloid Rotifers Veronika N. Lainea, Timothy Sacktonb and Matthew Meselsonc aCurrent address, Department of Animal Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; bInformatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138; cDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138. Corresponding author: Email: [email protected] ABSTRACT Nearly all eukaryotes reproduce sexually, either constitutively or facultatively, and nearly all that are thought to be entirely asexual diverged recently from sexuals, implying that loss of sex leads to early extinction and therefore that sexual reproduction is essential for evolutionary success. Nevertheless, there are several groups that have been thought to have evolved asexually for millions of years. Of these, the most extensively studied are the rotifers of Class Bdelloidea. Yet the evidence for their asexuality is entirely negative -- the failure to establish the existence of males or hermaphrodites. Opposed to this is a growing body of evidence that bdelloids do reproduce sexually, albeit rarely, retaining meiosis-associated genes and, in a limited study of allele sharing among individuals of the bdelloid Macrotrachela quadricornifera, displaying a pattern of genetic exchange indicating recent sexual reproduction. Here we present a much larger study of allele sharing among these individuals clearly showing the occurrence of sexual reproduction, thereby removing what had appeared to be a serious challenge to hypotheses for the evolutionary advantage of sex and confirming that sexual reproduction is essential for long term evolutionary success in eukaryotes.
    [Show full text]
  • Evolution of Sexual Reproduction
    Evolution of sexual reproduction The evolution of sexual reproduction describes how sexually reproducing animals, plants, fungi and protists could have evolved from a common ancestor that was a single celled eukaryotic species.[1][2][3] There are a few species which have secondarily lost the ability to reproduce sexually, such as Bdelloidea, and some plants and animals that routinely reproduce asexually (by apomixis and parthenogenesis) without entirely losing sex. The evolution of sex contains two related, yet distinct, themes: its origin and its maintenance. The origin of sexual reproduction in prokaryotes is around 2 billion years ago Ladybirds mating (Gya) when bacteria started exchanging genes via the processes of conjugation, transformation, and transduction.[4] In eukaryotes, it is thought to have arisen in the Last Common Eukaryotic Ancestor (LECA), possibly via several processes of varying success, and then to have persisted.[5] Since hypotheses for the origins of sex are difficult to verify experimentally (outside of evolutionary computation), most current work has focused on the maintenance of sexual reproduction. The maintenance of sexual reproduction - specifically, of its dioecious form - in a highly competitive world had long been one of the major mysteries of biology, as both other known mechanisms of reproduction - asexual reproduction and hermaphroditism - possess apparent Pollen production is an essential step advantages over it. Asexual reproduction can proceed by budding, fission, or in sexual reproduction of seed plants. spore formation not involving union of gametes, which results in a much faster rate compared to sexual reproduction, where 50% of offspring are males, unable to produce offspring themselves. In hermaphoditic reproduction each of the two parent organisms required for the formation of a zygote can provide either the male or the female gamete, which leads to advantages in both size and genetic variance of a population.
    [Show full text]
  • Divergent Gene Copies in the Asexual Class Bdelloidea (Rotifera) Separated Before the Bdelloid Radiation Or Within Bdelloid Families
    Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families David B. Mark Welch†‡, Michael P. Cummings†§, David M. Hillis¶, and Matthew Meselson†ʈ †Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biology Laboratory, Woods Hole, MA 02543; ¶Section of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712; and ʈDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 Contributed by Matthew Meselson, October 15, 2003 Rotifers of the asexual class Bdelloidea are unusual in possessing can produce a more robust phylogeny, we conducted new two or more divergent copies of every gene that has been exam- analyses (initiated by D.M.H.). We find that phylogenetic anal- ined. Phylogenetic analysis of the heat-shock gene hsp82 and the ysis of the available data cannot discriminate between gene trees TATA-box-binding protein gene tbp in multiple bdelloid species that differ in the placement of the root of hsp82 and of tbp suggested that for each gene, each copy belonged to one of two bdelloid gene divergence, thereby leaving it unclear whether the lineages that began to diverge before the bdelloid radiation. Such most divergent gene copies separated before the bdelloid radi- gene trees are consistent with the two lineages having descended ation or within bdelloid families. from former alleles that began to diverge after meiotic segregation ceased or from subgenomes of an alloploid ancestor of the bdel- Materials and Methods loids. However, the original analyses of bdelloid gene-copy diver- Sequences Examined.
    [Show full text]
  • EST Based Phylogenomics of Syndermata Questions Monophyly
    BMC Evolutionary Biology BioMed Central Research article Open Access EST based phylogenomics of Syndermata questions monophyly of Eurotatoria Alexander Witek†1, Holger Herlyn†2, Achim Meyer3, Louis Boell4, Gregor Bucher4 and Thomas Hankeln*1 Address: 1Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, J. J.-Becherweg 32, D-55099 Mainz, Germany, 2Institute of Anthropology, Johannes Gutenberg-University Mainz, Colonel-Kleinmann-Weg 2, D-55099 Mainz, Germany, 3Institute of Zoology, Johannes Gutenberg-University Mainz, Müllerweg 6, D-55099 Mainz, Germany and 4Johann Friedrich Blumenbach Institute of Anthropology and Zoology, Georg-August-University Göttingen, J. v. Liebig-Weg 11, D-37077 Göttingen, Germany Email: Alexander Witek - [email protected]; Holger Herlyn - [email protected]; Achim Meyer - [email protected]; Louis Boell - [email protected]; Gregor Bucher - [email protected]; Thomas Hankeln* - [email protected] * Corresponding author †Equal contributors Published: 29 December 2008 Received: 16 June 2008 Accepted: 29 December 2008 BMC Evolutionary Biology 2008, 8:345 doi:10.1186/1471-2148-8-345 This article is available from: http://www.biomedcentral.com/1471-2148/8/345 © 2008 Witek et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The metazoan taxon Syndermata comprising Rotifera (in the classical sense of Monogononta+Bdelloidea+Seisonidea) and Acanthocephala has raised several hypotheses connected to the phylogeny of these animal groups and the included subtaxa.
    [Show full text]
  • Rotifera, Syn. Syndermata) Reveal Strain Formation and Gradual Gene Loss with Growing Ties to the Host Katharina M
    Mauer et al. BMC Genomics (2021) 22:604 https://doi.org/10.1186/s12864-021-07857-y RESEARCH Open Access Genomics and transcriptomics of epizoic Seisonidea (Rotifera, syn. Syndermata) reveal strain formation and gradual gene loss with growing ties to the host Katharina M. Mauer1*, Hanno Schmidt1, Marco Dittrich1, Andreas C. Fröbius2, Sören Lukas Hellmann3, Hans Zischler1, Thomas Hankeln3 and Holger Herlyn1* Abstract Background: Seisonidea (also Seisonacea or Seisonidae) is a group of small animals living on marine crustaceans (Nebalia spec.) with only four species described so far. Its monophyletic origin with mostly free-living wheel animals (Monogononta, Bdelloidea) and endoparasitic thorny-headed worms (Acanthocephala) is widely accepted. However, the phylogenetic relationships inside the Rotifera-Acanthocephala clade (Rotifera sensu lato or Syndermata) are subject to ongoing debate, with consequences for our understanding of how genomes and lifestyles might have evolved. To gain new insights, we analyzed first drafts of the genome and transcriptome of the key taxon Seisonidea. Results: Analyses of gDNA-Seq and mRNA-Seq data uncovered two genetically distinct lineages in Seison nebaliae Grube, 1861 off the French Channel coast. Their mitochondrial haplotypes shared only 82% sequence identity despite identical gene order. In the nuclear genome, distinct linages were reflected in different gene compactness, GC content and codon usage. The haploid nuclear genome spans ca. 46 Mb, of which 96% were reconstructed. According to ~ 23,000 SuperTranscripts, gene number in S. nebaliae should be within the range published for other members of Rotifera-Acanthocephala. Consistent with this, numbers of metazoan core orthologues and ANTP-type transcriptional regulatory genes in the S.
    [Show full text]
  • Rotifera Bdelloidea
    Rotifera Bdelloidea ROTIFERA BDELLOIDEA Diego Fontaneto Imperial College London, Division of Biology, Silwood Park Campus, Ascot Berkshire, SL57PY, United Kingdom [email protected] Abstract Bdelloid rotifers are microscopic aquatic animals, generally smaller than 1 mm. They can be found in any water body, but also in mosses, lichens and soil, due to their ability to survive desiccation entering dormancy. Dormant stages can also act as propagules for passive dispersal. These animals are very important in evolutionary biology, as they are the most diverse and old of the ‘ancient asexuals’. The following text is adapted from Fontaneto, D. & Ricci, C. (2004) Rotifera: Bdelloidea. In: Yule C.M. & Yong H.S. (eds.), Freshwater invertebrates of the Malaysian Region. Academy of Sciences Malaysia, Kuala Lumpur, Malaysia, pp. 121-126. Additional information on rotifers in general can be found in Wallace R.L., Snell T.W., Ricci C. & Nogrady T., 2006. Rotifera. Volume 1: Biology, Ecology and Systematics (2nd edition). In: Dumont H.J.F., Guides to the identification of the microinvertebrates of the world. Kenobi Productions and Backhuys Publishers. 299 pp. An online key for families and genera of monogonont rotifers, limited to the marine habitat is available from http://www.pfeil-verlag.de/04biol/pdf/mm16_03.pdf Summer School in Taxonomy, Valdieri, Italy page 1 of 11 Rotifera Bdelloidea 1. Introduction The Bdelloidea is a class of rotifers that reproduce through ameiotic parthenogenesis only, and that are very common in several aquatic habitats (Donner 1965; Gilbert 1983; Ricci 1992; Mark Welch and Meselson 2000), and they have been named “evolutionary scandals” by Maynard Smith (1986), as they survived and speciated in the absence of sex.
    [Show full text]
  • Temas De La Biodiversidad Del Litoral Fluvial Argentino
    1 HUCALEZNA C AT SEDIMENTOLOGY AND IOSTRATIGRAPHY B ISSN 1514-4275 ISSN ON-LINE 1668-3242 INSTITUTO SUPERIOR DE CORRELACIÓN GEOLOGICA ( INSUGEO ) Miscelánea 12 Temas de la Biodiversidad del Litoral Fluvial Argentino Florencio G. Aceñolaza Coordinador - Editor Consejo Nacional de Investigaciones Científicas y Técnicas Facultad de Ciencias Naturales e Instituto Miguel Lillo Universidad Nacional de Tucumán San Miguel de Tucumán 2004 CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS UNIVERSIDAD NACIONAL DE TUCUMÁN INSTITUTO DE CORRELACIÓN GEOLÓGICA (INSUGEO) Director: Dr. Florencio G. Aceñolaza Drirectores Alternos:: Dr. Alejandro Toselli y Dr. Alfredo Tineo Editor : Dr. Florencio G. Aceñolaza Propietario: Instituto Superior de Correlación Geológica (c) 2004 Publicación registrada en el Registro Nacional de la Propiedad Intelectual Consejo Editor: Dr Alejandro Toselli (INSUGEO), Dr Alfredo Tineo (INSUGEO), Dr. Rafael Herbst INSUGEO), Dra. Juana Rossi de Toselli (INSUGEO), Dr. Luis Buatois (INSUGEO), Dra. María Gabriela Mángano (INSUGEO), Dr. Guillermo Aceñolaza (INSUGEO), Dra. Susana Este- ban (INSUGEO) , Dr. Franco Tortello (UNLa Plata), Dr Carlos Cingolani (UN La Plata), Dr. Roberto Lech (CENPAT-Trelew), Dr. Ricardo Alonso (UN Salta); Dra. Beatriz Coira (UN Jujuy), Dr. Juan Carlos Gutiérrez-Marco (CSIC-España), Dra. Isabel Rábano (CSIC-España), Dr. Julio Saavedra Alonso (CSIC-España), Dr. Hübert Miller (U.München-Alemania), Dr. Alcides N. Sial (U.Pernambuco-Brasil), Dra Valderez Ferreira. (U.Pernambuco-Brasil), Dra. Renata Guimaraes Netto (UNISINOS, Brasil). Dirección: Instituto Superior de Correlación Geológica. Miguel Lillo 205. 4000 San Miguel de Tucumán. Argentina. E-mail: [email protected] MISCELÁNEA: Esta serie editada por el INSUGEO tiene por objeto dar a conocer información de interés geológico y medio ambiente siendo los trabajos allí publicados no necesariamente de carácter original.
    [Show full text]
  • Bdelloid Rotifers (Rotifera, Bdelloidea) of China: Diversity and New Records
    A peer-reviewed open-access journal ZooKeys 941: 1–23Bdelloid (2020) rotifers (Rotifera, Bdelloidea) of China: diversity and new records 1 doi: 10.3897/zookeys.941.50465 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Bdelloid rotifers (Rotifera, Bdelloidea) of China: diversity and new records Yue Zeng1,2, Nan Wei3, Qing Wang1, Nataliia S. Iakovenko4,5, Ying Li1, Yufeng Yang1,2 1 Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Chi- na 2 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China 3 South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China 4 Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, CZ– 16521 Praha 6– Suchdol, Czech Republic 5 Schmalhausen Institute of Zoology NAS of Ukraine, Department of Fauna and Systematics, Bogdana Khmelnyts’kogo 15, 01601 Kyiv, Ukraine Corresponding author: Yufeng Yang ([email protected]) Academic editor: Yasen Mutafchiev | Received 26 January 2020 | Accepted 26 March 2020 | Published 16 June 2020 http://zoobank.org/FDDD1E54-33F9-4C3B-8CD3-9467D7E2CB79 Citation: Zeng Y, Wei N, Wang Q, Iakovenko NS, Li Y, Yang Y (2020) Bdelloid rotifers (Rotifera, Bdelloidea) of China: diversity and new records. ZooKeys 941: 1–23. https://doi.org/10.3897/zookeys.941.50465 Abstract Bdelloid rotifers are a group of microscopic invertebrates known for their obligate parthenogenesis and ex- ceptional resistance to extreme environments. Their diversity and distributions are poorly studied in Asia, especially in China. In order to better understand the species distribution and diversity of bdelloid rotifers in China, a scientific surveys of habitats was conducted with 61 samples (both terrestrial and aquatic habi- tats) from 11 provinces and regions of China, ranging from tropics to subtropics with a specific focus on poorly sampled areas (Oriental) during September 2017 to October 2018.
    [Show full text]
  • Rotifera, Bdelloidea) Grown in Laboratory
    Limnetica, 36 (1): 55-65 (2017). DOI: 10.23818/limn.36.05 Limnetica, 29 (2): x-xx (2011) c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 First data on secondary production of Philodina roseola (Rotifera, Bdelloidea) grown in laboratory Raquel Aparecida Moreira∗, Adrislaine da Silva Mansano and Odete Rocha Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP CEP 13565-905, Brazil. ∗ Corresponding author: [email protected] 2 Received: 20/04/16 Accepted: 08/02/17 ABSTRACT First data on secondary production of Philodina roseola (Rotifera, Bdelloidea) grown in laboratory The aim of this study was to quantify the secondary production of a benthic rotifer species, Philodina roseola grown in the laboratory. The variations in body size of this rotifer and its reproduction were individually determined for nine individual replicates. The measurements of linear dimensions (total length, width, and diameter) of the entire body or individual body parts were performed soon after birth and tracked throughout the individual life cycle. The biomass (µg DW/ind) was estimated by calculating body biovolume, which was determined by using the most suitable equations for the closest geometric shapes of different body parts. The individual production in body growth (Pg) and the reproductive production (Pr) were determined. The average length of the adult rotifer body (429.96 ± 28.12 µm) was about twice larger than the average size of neonates (198.77 ± 25.88 µm). The increase of biomass dry weight at different stages of development occurred at the same proportion; the biomass of an individual neonate (0.0104 ± 0.0014) was around half that of the juvenile (0.0254 ± 0.0029), and the biomass during adulthood (0.0508 ± 0.0071) was approximately twice that of the biomass juvenile.
    [Show full text]