Botanist Interior 43.1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potential Impact of an Exotic Plant Invasion on Both Plant and Arthropod Communities in a Semi-Natural Grassland on Sugadaira Montane in Japan
Journal of Developments in Sustainable Agriculture 12: 52-64 (2017) Potential Impact of an Exotic Plant Invasion on Both Plant and Arthropod Communities in a Semi-natural Grassland on Sugadaira Montane in Japan Yukie Sato1*, Yuta Mashimo1,2, Ryo O. Suzuki1, Akira S. Hirao1, Etsuro Takagi1,3, Ryuji Kanai1, Daisuke Masaki1, Miyuki Sato1 and Ryuichiro Machida1 1 Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen 1278-294, Ueda, Nagano 386-2204, Japan 2 Graduate School of Symbiotic Systems Science and Technology, Fukushima University, Kanayagawa 1, Fukushima, Fukushima 960-1296, Japan 3 Department of Tourism Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan Plant and arthropod communities interact closely with one another, therefore, invasive plants can alter not only plant communities, but may also have direct and indirect effects on arthropod communities. Here, we focus on the exotic giant ragweed, which is a serious invasive weed in Japan. Recently, the exotic plant invaded and has dominated part of a semi-natural grassland in Sugadaira Montane Research Center (Nagano Prefecture, Japan). We attempted to evaluate the potential impact of the invasive plant on both plant and arthropod communities by comparing the com- munity composition, abundance, species richness and diversity indices of plants and arthropods between areas where the exotic giant ragweed had and had not invaded, referred to as the invaded and reference areas respectively. We found significant differences in plant and arthropod community compositions between the areas. Plant species richness was lower in the invaded area as predicted. However, the abundance of arthropods including herbivores was higher in the invaded area compared to the reference area in contrast to the expectation that plant invasions reduce arthropod abundance and diversity. -
Leafy and Crown Gall
Is it Crown Gall or Leafy Gall? Melodie L. Putnam and Marilyn Miller Humphrey Gifford, an early English poet said, “I cannot say the crow is white, But needs must call a spade a spade.” To call a thing by its simplest and best understood name is what is meant by calling a spade a spade. We have found confusion around the plant disease typified by leafy galls and shoot proliferation, and we want to call a spade a spade. The bacterium Rhodococcus fascians causes fasciation, leafy galls and shoot proliferation on plants. These symptoms have been attributed variously to crown gall bacteria (Agrobacterium tumefaciens), virus infection, herbicide damage, or eriophyid mite infestation. There is also confusion about what to call the Figure 1. Fasciation (flattened growth) of a pumpkin symptoms caused by R. fascians. Shoot stem, which may be due to disease, a genetic proliferation and leafy galls are sometimes condition, or injury. called “fasciation,” a term also used to refer to tissues that grow into a flattened ribbon- like manner (Figure 1). The root for the word fasciation come from the Latin, fascia, to fuse, and refers to a joining of tissues. We will reserve the term fasciation for the ribbon like growth of stems and other organs. The terms “leafy gall” and “shoot proliferation” are unfamiliar to many people, but are a good description of what is seen on affected plants. A leafy gall is a mass of buds or short shoots tightly packed together and fused at the base. These may appear beneath the soil or near the soil line at the base of the stem (Figure 2). -
Supporting Analysis
APPENDIX A Supporting Analysis Table of Contents A.1 PARK SETTING ................................................................................................................................................ 2 A.2 DEMOGRAPHICS ............................................................................................................................................ 4 A.3 HISTORY OF THE LUDINGTON AREA ........................................................................................................... 6 A.4 HISTORY OF LUDINGTON STATE PARK ....................................................................................................... 7 A.5 LAND OWNERSHIP AND ACQUISITIONS ................................................................................................... 10 A.6 RELATIONSHIP TO OTHER RECREATION RESOURCES ............................................................................. 13 A.7 LEGAL MANDATES ........................................................................................................................................ 19 A.8 NATURAL SYSTEMS AND NATURAL RESOURCES ..................................................................................... 23 A.9 CULTURAL RESOURCES ............................................................................................................................... 27 A.10 EDUCATION AND INTERPRETATION ......................................................................................................... 30 A.11 RECREATION RESOURCES ......................................................................................................................... -
Mutations, Disease, Bugs, and Chemicals Can All Amplify Fireweed Flowering by Ed Berg
Refuge Notebook • Vol. 8, No. 37 • September 29, 2006 Mutations, disease, bugs, and chemicals can all amplify fireweed flowering by Ed Berg Diane Owen and her husband Charlie operate the unspecialized, dividing cells. Thus the stem grows up- Russian River ferry in the summer and return to their ward and taller. home in Mississippi in the winter. Diane loves flow- Occasionally, however, normal cell division in the ers and gardening, and was curious about an unusual meristem gets derailed, and several competing zones fireweed plant she spotted growing near the Russian of cell division occur within the meristem, as if the River this summer. She sent pictures of the flowers, plant was trying to create several stems simultane- and later the dried plant, to Refuge headquarters after ously side-by-side. This produces a widening of the it had gone to seed. stem, since the stem is now composed of several sub- The profusion of flowers and leaves strikes the eye stems, each with it own would-be meristem at the top. in the photos, but when you see the plant in the flesh, The apical meristem in a plant controls the num- you immediately notice the greatly flattened stem. The ber of leaves and flowers on the stem. It normally does stem was round coming out of the ground, but higher this by releasing an anti-branching hormone which up it broadens to about an inch wide and an eighth of severely limits the number of lateral shoots that a stem an inch thick, like a fat ribbon. can produce. -
Fasciation. Lumina C
346 The Ohio Naturalist. [Vol. III, No. 3, FASCIATION. LUMINA C. RIDDLE. The phenomena of fasciation are sufficiently striking to attract the attention of the most casual observer, and the malformation occurs so frequently that nearly every person has seen one or more cases of it. It manifests itself usually by a remarkable broadening and flattening of the stem, crowded phyllotaxy and often spiral twisting and splitting of this broadened axis, although the portion of the plant affected and the exact character of the growth varies with the nature of the plant. Those having the rosette habit throughout their entire life, as the common dande- lion, show fasciation in the peduncle of the inflorescence. In the thistle (Fig. 2,) which has the rosette habit during the first year Fig. 1. a. Ailanthus glandulosus. b. Ranunculus abortivus, and is stemmed during the second year, it has only been observed in the second year's growth and affected the entire stalk. In the herbaceous hollow-stemmed plant of Ranunculus abortivus, {Fig. 1, b,) the entire stem was found fasciated and inside was found a reversed cylinder having the delicate epidermal layer within and a well developed ring of fibro-vascular tissue surround- ing it. In Erigeron philadelphicus the leaves were so closely Jan., 1903.] Fasciation. 347 compacted that the stem was entirely concealed while the top of the stalk was twisted down. In woody plants fasciated stems are nearly always split or twisted, often both, as shown in Ailanthus glandidosus {Fig. i, a.) Fasciation is found frequently occurring in man}- cultivated plants; the flowers, hyacinths, gladioli, narcissus, violets, gerani- u m s , nasturtiums ( Tropoeolum); the garden vegetables, cabbage or Brassica oleracea, and beets, Beta vulgaris ; and trees, Pinus, Thuya, Taxus, Salix, Alnus,Ulmus, Prunus and Populus. -
Milk Thistle
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
Recovery Strategy for Pitcher's Thistle (Cirsium Pitcheri) in Canada
Species at Risk Act Recovery Strategy for Pitcher’s Thistle (Cirsium pitcheri) in CanadaRECOVERY—June 2010 STRATEGY SERIES Recovery Strategy for Pitcher’s Thistle (Cirsium pitcheri) in Canada Pitcher’s Thistle 2011 i Recovery Strategy for Pitcher’s Thistle in Canada 2011 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003 and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets goals and objectives and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk. -
Chapter 4 Phytogeography of Northeast Asia
Chapter 4 Phytogeography of Northeast Asia Hong QIAN 1, Pavel KRESTOV 2, Pei-Yun FU 3, Qing-Li WANG 3, Jong-Suk SONG 4 and Christine CHOURMOUZIS 5 1 Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA, e-mail: [email protected]; 2 Institute of Biology and Soil Science, Russian Academy of Sciences, Vladivostok, 690022, Russia, e-mail: [email protected]; 3 Institute of Applied Ecology, Chinese Academy of Sciences, P.O. Box 417, Shenyang 110015, China; 4 Department of Biological Science, College of Natural Sciences, Andong National University, Andong 760-749, Korea, e-mail: [email protected]; 5 Department of Forest Sciences, University of British Columbia, 3041-2424 mail Mall, Vancouver, B.C., V6T 1Z4, Canada, e-mail: [email protected] Abstract: Northeast Asia as defined in this study includes the Russian Far East, Northeast China, the northern part of the Korean Peninsula, and Hokkaido Island (Japan). We determined the species richness of Northeast Asia at various spatial scales, analyzed the floristic relationships among geographic regions within Northeast Asia, and compared the flora of Northeast Asia with surrounding floras. The flora of Northeast Asia consists of 971 genera and 4953 species of native vascular plants. Based on their worldwide distributions, the 971 gen- era were grouped into fourteen phytogeographic elements. Over 900 species of vascular plants are endemic to Northeast Asia. Northeast Asia shares 39% of its species with eastern Siberia-Mongolia, 24% with Europe, 16.2% with western North America, and 12.4% with eastern North America. -
Symptomatology in Plant Pest Diagnosis
SYMPTOMATOLOGY IN PLANT PEST DIAGNOSIS Symptoms are the detectable expressions of a disease, pest, or environmental factor exhibited by the suscept or plant which is subject to a given pathogen or causal agent. These symptoms, usually the result of complex physiological disturbances, commonly combine to form a definite symptom-complex or syndrome. Symptom-complexes may develop in different organs of a suscept at different times. Symptoms may be either localized in a particular part of the plant, or systemic, that is, generalized in an organ or the plant. In addition, symptoms may be primary (direct and immediate changes in the tissues affected by a pathogen or other causal agent), or secondary (indirect and subsequent physiological effects on host tissue induced by action at a point distant from the initial infection). Usually, but not in all cases, localized symptoms are primary while generalized or systemic symptoms are secondary. Moreover, the sequence of symptom development frequently characterizes a particular disease. Symptomatology, the study of symptoms and associated signs that characterize a plant ailment, enables correct disease or pest diagnosis. It is very important to be aware that because symptoms are “host reactions” to an irritation, many agents or even abiotic factors can cause a particular symptom. For example, wilting of the entire plant can be caused by bacteria, fungus, root rot, inadequate soil moisture, and other agents. Signs are observable structure(s) of the agent which incites the disease or ailment. The commonest signs of disease agents are reproductive or vegetative parts of a pathogen such as fruiting structures, spore masses, mycelial mats, fans, rhizomorphs, etc. -
Pitcher's Thistle (Cirsium Pitcheri) Monitoring Activities in Michigan
Pitcher’s Thistle (Cirsium pitcheri) Monitoring Activities in Michigan Tameka Dandridge, U.S. Fish and Wildlife Service (USFWS), Patty O’Connell and Sarah Stephens, U.S. Forest Service (USFS) The Pitcher’s thistle became federally listed as threatened under the Endangered Species Act of 1973, as amended, in July 1988. It is endemic to the unforested dune systems of the western Great Lakes and requires active sand dune processes to maintain its early to mid-successional habitat. Shoreline development, recreation, dune stabilization, and invasive plants and insects are primary threats to the species. The Pitcher’s thistle was monitored at eight sites in 1993, 1996 and 2001 in the Manistee National Forest (MNF) and at P.J. Hoffmaster State Park (Hoffmaster) in 2004 and 2006. P.J. Hoffmaster State Park Manistee National Forest USFWS counted and USFS monitored Pitcher’s recorded each Pitcher’s thistle at 8 sites within the thistle plant according to an Cadillac-Manistee Ranger unofficial age class District of the Manistee (seedling, small juvenile, National Forest. Eight large juvenile, adult) permanent baseline transects designation within 9 sites at were established with the park. Further counts randomly placed transects at are required to determine Manistee Co. each site. Contiguous 5m x 5m any population changes. sampling plots were placed along the random transects to Muskegon Co. assess population trends, associated plant species and threats. Pitcher's Thistle Seedlings Total Pitcher's Thistle Plants By Year 400 5000 Total Pitcher's -
September 2019 President’S Message Volume 17, Issue 9
Of Leaf & Limb “ Promoting education in horticulture and the environment” September 2019 President’s Message Volume 17, Issue 9 Deep summer is when laziness finds President’s Message 1 respectability. - Sam Keen, author Continuing Education 2 Music in the Garden 3 I am a wimp when it comes to working in our Texas Hill Country Veggies 4 summer heat. I prefer to sit on the porch sipping UGRA EduScape 5 iced tea with a new book rather than working in my River Clean Up 6 garden. I guess you could call me a lazy gardener! Certificates to new MGs 7 Rachel Garrison That being said, I love plants so any plant that is Fasciation 8 fairly carefree in our heat is a winner in my book. President’s message cont’d 9 Although I’ve never been a lover of cacti or succulents, they are Propagation 10 certainly easy to grow and require very little attention. Minutes 11 Rest in Pesto 12 One of the presentations at the 2019 state conference was “Sizzling Succulents” by Brie Arthur. Educated in Landscape Design and HCMG will meet on Horticulture at Purdue University, Arthur’s presentation was delivered September 4, 2019 with humor and unbridled enthusiasm for succulents. She provided at photos and pertinent information on cultivating various succulents. She 1:00 - Business Meeting showed us pictures of unusual and interesting ways to showcase 2:00 - CEU Program succulents including succulent walls, wreaths, and tablescapes. There are many seasonal ways to display them, too. They can be potted in a Fall Vegetable Gardens pumpkin, used in a globe shaped terrarium, or fashioned into a By Allen Mace, Christmas ornament. -
Phylogenetic Relationships Within Lactuca L. (Asteraceae), Including African Species, Based on Chloroplast DNA Sequence Comparisons
Genet Resour Crop Evol DOI 10.1007/s10722-015-0332-5 RESEARCH ARTICLE Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons Zhen Wei . Shi-Xin Zhu . R. G. Van den Berg . Freek T. Bakker . M. Eric Schranz Received: 25 April 2015 / Accepted: 29 September 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Lettuce (Lactuca sativa L.) belongs to the maximum likelihood and Bayesian inference analyses. genus Lactuca L. and is an important vegetable world- Biogeographical, chromosomal and morphological wide. Over the past decades, there have been many character states were reconstructed over the Bayesian controversies about the phylogeny of Lactuca species tree topology. We conclude that Lactuca contains two due to their complex and diverse morphological distinct phylogenetic clades—the crop clade and the characters and insufficient molecular sampling. In this Pterocypsela clade. Other North American, Asian and study we provide the most extensive molecular widespread species either form smaller clades or mix phylogenetic reconstruction of Lactuca, including with the Melanoseris species. The newly sampled African wild species, using two chloroplast genes African endemic species probably should be treated as (ndhF and trnL-F). The sampling covers nearly 40 % a new genus. of the total endemic African Lactuca species and 34 % of the total Lactuca species. DNA sequences from all Keywords African Lactuca Á Lactuca phylogeny Á the subfamilies of Asteraceae in Genebank and those Lettuce Á ndhF Á Phylogenetic relationships Á trnL-F generated from Lactuca herbarium samples were used to establish the affiliation of Lactuca within Astera- caeae.