Artificial Intelligence Platform Screens for Acute Neurological Illnesses at Mount Sinai
Total Page:16
File Type:pdf, Size:1020Kb
Artificial intelligence platform screens for acute neurological illnesses at Mount Sinai eurekalert.org/pub_releases/2018-08/tmsh-aip080718.php Public Release: 13-Aug-2018 The study's findings lay the framework for applying deep learning and computer vision techniques to radiological imaging The Mount Sinai Hospital / Mount Sinai School of Medicine (New York - August 13, 2018) An artificial intelligence platform designed to identify a broad range of acute neurological illnesses, such as stroke, hemorrhage, and hydrocephalus, was shown to identify disease in CT scans in 1.2 seconds, faster than human diagnosis, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published today in the journal Nature Medicine. "With a total processing and interpretation time of 1.2 seconds, such a triage system can alert physicians to a critical finding that may otherwise remain in a queue for minutes to hours," says senior author Eric Oermann, MD, Instructor in the Department of Neurosurgery at the Icahn School of Medicine at Mount Sinai. "We're executing on the vision to develop artificial intelligence in medicine that will solve clinical problems and improve patient care." This is the first study to utilize artificial intelligence for detecting a wide range of acute neurologic events and to demonstrate a direct clinical application. Researchers used 37,236 head CT scans to train a deep neural network to identify whether an image contained critical or non-critical findings. The platform was then tested in a blinded, randomized controlled trial in a simulated clinical environment where it triaged head CT scans based on severity. The computer software was tested for how quickly it could recognize and provide notification versus the time it took a radiologist to notice a disease. The average time for the computer algorithm to preprocess an image, run its inference method, and, if necessary, raise an alarm was 150 times shorter than for physicians to read the image. This study used "weakly supervised learning approaches," which built on the research team's expertise in natural language processing and the Mount Sinai Health System's large clinical datasets. Dr. Oermann says the next phase of this research will entail enhanced computer labeling of CT scans and a shift to "strongly supervised learning approaches" and novel techniques for increasing data efficiency. Researchers estimate the goal of re-engineering the system with these changes will be accomplished within the next two years. "The expression 'time is brain' signifies that rapid response is critical in the treatment of acute neurological illnesses, so any tools that decrease time to diagnosis may lead to improved patient outcomes," says study co-author Joshua Bederson, MD, Professor and System Chair for the Department of Neurosurgery at Mount Sinai Health System and Clinical Director of the Neurosurgery Simulation Core. "The application of deep learning and computer vision techniques to radiological imaging is a clear imperative for 21st century medical care," says study author Burton Drayer, MD, the Charles M. and Marilyn Newman Professor and System Chair of the Department of Radiology for the Mount Sinai Health System, CEO of the Mount Sinai Doctors Faculty Practice, and Dean for Clinical Affairs of the Icahn School of Medicine. ### This study was performed by the Mount Sinai AI Consortium, known as "AISINAI"--a group of scientists, physicians, and researchers dedicated to developing artificial intelligence in medicine that will improve patient care and help doctors accurately diagnose disease. AISINAI's current research builds on their paper published earlier this year in the journal Radiology, where they presented their work on natural language processing algorithms for identifying clinical concepts in radiology reports for CT scans. About the Mount Sinai Health System The Mount Sinai Health System is New York City's largest integrated delivery system encompassing seven hospital campuses, a leading medical school, and a vast network of ambulatory practices throughout the greater New York region. Mount Sinai's vision is to produce the safest care, the highest quality, the highest satisfaction, the best access and the best value of any health system in the nation. The System includes approximately 6,600 primary and specialty care physicians; 10 joint- venture ambulatory surgery centers; more than 140 ambulatory practices throughout the five boroughs of New York City, Westchester, Long Island, and Florida; and 31 affiliated community health centers. The Icahn School of Medicine is one of three medical schools that have earned distinction by multiple indicators: ranked in the top 20 by U.S. News & World Report's "Best Medical Schools", aligned with a U.S. News & World Report's "Honor Roll" Hospital, No. 13 in the nation for National Institutes of Health funding, and among the top 10 most innovative research institutions as ranked by the journal Nature in its Nature Innovation Index. This reflects a special level of excellence in education, clinical practice, and research. The Mount Sinai Hospital is ranked No. 18 on U.S. News & World Report's "Honor Roll" of top U.S. hospitals; it is one of the nation's top 20 hospitals in Cardiology/Heart Surgery, Diabetes/Endocrinology, Gastroenterology/GI Surgery, Geriatrics, Nephrology, and Neurology/Neurosurgery, and in the top 50 in four other specialties in the 2017-2018 "Best Hospitals" issue. Mount Sinai's Kravis Children's Hospital also is ranked nationally in five out of ten pediatric specialties by U.S. News & World Report. The New York Eye and Ear Infirmary of Mount Sinai is ranked 12th nationally for Ophthalmology and 50th for Ear, Nose, and Throat, while Mount Sinai Beth Israel, Mount Sinai St. Luke's and Mount Sinai West are ranked regionally. For more information, visit http://www.mountsinai.org/, or find Mount Sinai on Facebook, Twitter and YouTube. Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system. .