Monochamus Spp.: Insect Vectors of Bursaphelenchus Xylophilus

Total Page:16

File Type:pdf, Size:1020Kb

Monochamus Spp.: Insect Vectors of Bursaphelenchus Xylophilus November 2015 Monochamus spp.: insect vectors of Bursaphelenchus xylophilus Longhorned beetles of the genus Monochamus spp. are vectors of the pinewood nematode Bursaphelenchus xylophilus (PWN) that may cause the death of pine trees. In the EPPO region, PWN has established in continental Portugal, where the main vector is Monochamus galloprovincialis. Beetles of Monochamus emerging from PWN-infested trees/wood are able to carry PWN and transmit it to non-infested trees during maturation feeding. Theoretically, hitchhiking beetles could present a risk of introducing PWN to new areas/countries but information on hitchhiking Monochamus is missing. Information is missing on the vectors of the genus Monochamus, in particular data on flight distances and total dispersal over the lifetime of the adult beetle but also about the best methods for monitoring. In case of introduction of pinewood nematode in a new country, this information is indispensable for risk assessment and emergency measures. The project will gather and process available information for best prediction of damage risk of Monochamus spp. Five countries and seven institutions participate in this project: Portugal, Slovenia, Belgium, The Nertherlands and Denmark. These countries are different in status with respect to both the presence of Monochamus spp. and of pinewood nematode. The project’s main results include: . Best monitoring strategies for Monochamus spp. Mapping of PWN and occurrence of native Monochamus species across Europe . Phenology studies of Monochamus spp., prevalence of nematodes in longhorned beetles and dispersal studies of M. galloprovincialis . Identification of factors that lead to variations in expression of disease due to Bursaphelencus spp. in different regions of Europe . Forest management practices and their impact on Monochamus spp. Molecular detection methods for Monochamus spp. Project ID: Monochamus spp.: insect vectors of Bursaphelenchus xylophilus (MONOCHAMUS) .
Recommended publications
  • Pine Wilt Rapid Wilting and Death of Pine
    Pine Wilt Rapid wilting and death of pine Pathogen—The pine wood nematode, Bursaphelenchus xylophilus, causes pine wilt disease. Nematodes are “roundworms” in the phylum Nematoda, which has over 80,000 described species. This disease can be a problem wher- ever non-native pines are planted but is most common in Kansas, Nebraska, and South Dakota. Vectors—The pine sawyer beetles, Monochamus spp., transmit the nematode. Please see the Roundheaded Wood Borers (Longhorned Beetles) entry in this guide for more information. Hosts—Scots, Austrian, and other non-native pines are often killed by this disease. Eastern white pine, a native pine, is also affected and may be killed by pine wilt disease. The nematode commonly infects other native pines and some native conifer species. However, most native species are resistant to the disease (e.g., native conifers may be infected and express little or no disease Figure 1. Symptoms of pine wilt disease symptoms). on Austrian pine branch. Photo: North Cen- tral Research Station Archive, USDA Forest Signs and Symptoms—As with many wilts, signs are microscopic. The Service, Bugwood.org. pine wood nematode is relatively large compared with other nema- todes, but it cannot be seen with a hand-lens in infected wood. Laboratory tests are required to confirm its presence. Pine wilt disease causes rapid wilting and death on non-native pines. Symptoms are often first expressed in early summer but can occur throughout the growing season. Symptoms may first appear on one or a few branches but often develop quickly throughout the crown, and trees may die only 1 or 2 months after symptoms appear.
    [Show full text]
  • Red Ring Disease of Coconut Palms Is Caused by the Red Ring Nematode (Bursaphelenchus Cocophilus), Though This Nematode May Also Be Known As the Coconut Palm Nematode
    1 Red ring disease of coconut palms is caused by the red ring nematode (Bursaphelenchus cocophilus), though this nematode may also be known as the coconut palm nematode. This disease was first described on coconut palms in 1905 in Trinidad and the association between the disease and the nematode was reported in 1919. The vector of the nematode is the South American palm weevil (Rhynchophorus palmarum), both adults and larvae. The nematode parasitizes the weevil which then transmits the nematode as it moves from tree to tree. Though the weevil may visit many different tree species, the nematode only infects members of the Palmae family. The nematode and South American palm weevil have not yet been observed in Florida. 2 Information Sources: Brammer, A.S. and Crow, W.T. 2001. Red Ring Nematode, Bursaphelenchus cocophilus (Cobb) Baujard (Nematoda: Secernentea: Tylenchida: Aphelenchina: Aphelenchoidea: Bursaphelechina) formerly Rhadinaphelenchus cocophilus. University of Florida, IFAS Extension. EENY236. Accessed 11-27-13 http://edis.ifas.ufl.edu/in392 Griffith, R. 1987. “Red Ring Disease of Coconut Palm”. The American Pathological Society Plant Disease, Volume 71, February, 193-196. accessed 12/5/2013- http://www.apsnet.org/publications/plantdisease/ba ckissues/Documents/1987Articles/PlantDisease71n02_193.PDF Griffith, R., R. M. Giblin-Davis, P. K. Koshy, and V. K. Sosamma. 2005. Nematode parasites of coconut and other palms. M. Luc, R. A. Sikora, and J. Bridges (eds.) In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. C.A.B. International, Oxon, UK. Pp. 493-527. 2 The host trees susceptible to the red ring nematode are usually found in the family Palmae.
    [Show full text]
  • Pine Sawyer Beetle, Monochamus Galloprovincialis (Coleoptera: Cerambycidae) Géraldine Roux, Julien Haran, Alain Roques, Christelle Robinet
    Pine sawyer beetle, Monochamus galloprovincialis (Coleoptera: Cerambycidae) Géraldine Roux, Julien Haran, Alain Roques, Christelle Robinet To cite this version: Géraldine Roux, Julien Haran, Alain Roques, Christelle Robinet. Pine sawyer beetle, Monochamus galloprovincialis (Coleoptera: Cerambycidae). ICE 2016; XXV International Congress of Entomology, Sep 2016, Orlando, United States. 10.1603/ICE.2016.92731. hal-01603686 HAL Id: hal-01603686 https://hal.archives-ouvertes.fr/hal-01603686 Submitted on 5 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License 0501: Pine sawyer beetle, Monochamus galloprovincialis (Coleoptera: Cerambycidae) Monday, September 26, 2016 03:45 PM - 04:00 PM Convention Center - Room W224 A Species in the worldwide genus Monochamus have drawn particular attention since they vector the pine wood nematode (Bursaphelencus xylophilus, PWN), responsible for pine wilt disease. Although a secondary pest in its native North America, PWN has devastated conifer forests in invaded regions of eastern Asia, and more recently of southwestern Europe, incurring huge management costs to attempt eradication which remains unsuccessful. So far, only one native European species, M. galloprovincialis, has been proven to have developed a novel association with the invasive PWN.
    [Show full text]
  • Red Ring Nematode, Bursaphelenchus Cocophilus (Cobb
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-236 Red Ring Nematode, Bursaphelenchus cocophilus (Cobb) Baujard (Nematoda: Secernentea: Tylenchida: Aphelenchina: Aphelenchoidea: Bursaphelechina) formerly Rhadinaphelenchus cocophilus1 A. S. Brammer and W. T. Crow2 Introduction In some areas, mainly from Mexico to South America and in the lower Antilles, B. cocophilus is Bursaphelenchus cocophilus causes red ring co-distributed with its primary vector, R. palmarum. disease of palms. Symptoms of red ring disease were The red ring nematode has not yet been reported from first described on Trinidad coconut palms in 1905. the continental U.S., Hawaii, Puerto Rico or the Red ring disease can appear in several species of Virgin Islands (as of 2000). R. palmarum has been tropical palms, including date, Canary Island date and found in Central and South America and east from Cuban royal, but is most common in oil and coconut some of the West Indies to Cuba. palms. The red ring nematode parasitizes the palm weevil Rhynchophorus palmarum L., which is Economic Importance attracted to fresh trunk wounds and acts as a vector for B. cocophilus to uninfected trees. In Trinidad, red ring disease kills 35 percent of young coconut trees. In nearby Tobago, one Distribution plantation lost 80 percent of its coconut trees. Over a 10-year period in Venezuela, 35 percent of oil palms Red ring nematode is found in areas of Central died from red ring disease. In Grenada, 22.3 percent America, South America and many Caribbean of coconut palms was found to be infected.
    [Show full text]
  • "Structure, Function and Evolution of the Nematode Genome"
    Structure, Function and Advanced article Evolution of The Article Contents . Introduction Nematode Genome . Main Text Online posting date: 15th February 2013 Christian Ro¨delsperger, Max Planck Institute for Developmental Biology, Tuebingen, Germany Adrian Streit, Max Planck Institute for Developmental Biology, Tuebingen, Germany Ralf J Sommer, Max Planck Institute for Developmental Biology, Tuebingen, Germany In the past few years, an increasing number of draft gen- numerous variations. In some instances, multiple alter- ome sequences of multiple free-living and parasitic native forms for particular developmental stages exist, nematodes have been published. Although nematode most notably dauer juveniles, an alternative third juvenile genomes vary in size within an order of magnitude, com- stage capable of surviving long periods of starvation and other adverse conditions. Some or all stages can be para- pared with mammalian genomes, they are all very small. sitic (Anderson, 2000; Community; Eckert et al., 2005; Nevertheless, nematodes possess only marginally fewer Riddle et al., 1997). The minimal generation times and the genes than mammals do. Nematode genomes are very life expectancies vary greatly among nematodes and range compact and therefore form a highly attractive system for from a few days to several years. comparative studies of genome structure and evolution. Among the nematodes, numerous parasites of plants and Strikingly, approximately one-third of the genes in every animals, including man are of great medical and economic sequenced nematode genome has no recognisable importance (Lee, 2002). From phylogenetic analyses, it can homologues outside their genus. One observes high rates be concluded that parasitic life styles evolved at least seven of gene losses and gains, among them numerous examples times independently within the nematodes (four times with of gene acquisition by horizontal gene transfer.
    [Show full text]
  • Culturing Bursaphelenchus Cocophilus in Vitro and in Vivo Letícia Gonçalves Ferreiraa,C, Manuel Motab and Ricardo Moreira Souzaa*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório Científico da Universidade de Évora SCIENTIFIC NOTE Culturing Bursaphelenchus cocophilus in vitro and in vivo Letícia Gonçalves Ferreiraa,c, Manuel Motab and Ricardo Moreira Souzaa* a Grupo de Pesquisa em Nematologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes (RJ), Brasil b Laboratório de Nematologia (NemaLab), Departamento de Biologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal c Cooperativa Agropecuária de Paraopeba, Paraopeba (MG), Brasil *[email protected] HIGHLIGHTS • Culturing of the nematode in coconut seedlings was marginally successful. • Culturing of the nematode on several fungi endophytic to coconut was not successful. ABSTRACT: Red ring disease (RRD) is of particular importance in many African oil palms- and coconut-producing regions in Central and South America and the Caribbean. Its causal agent, the nematode Bursaphelenchus cocophilus (Cobb) Baujard, causes extensive damage to tissues in the plant trunk that typically leads to plant death within months. Nearly 100 years after its first report RRD remains understudied largely because the nematode cannot be cultured in vivo or in vitro, what hinders sustained research efforts on basic and applied aspects of the pathosystem. To overcome this problem we attempted in vivo culturing in coconut seedlings, paying attention to aspects that had been overlooked in previous trials. We also attempted in vitro culturing on several fungi endophytic to healthy and RRD-affected coconut trees. In the two in vivo assays performed we were able to recover hundreds of nematodes from the seedlings up to 60 days after inoculation, but the nematodes seemed unable to sustain parasitism in most seedlings.
    [Show full text]
  • Fecundity and Larval Development of Monochamus Galloprovincialis (Coleoptera Cerambycidae) in Experimental Breeding Fotini A
    Fecundity and larval development of Monochamus galloprovincialis (Coleoptera Cerambycidae) in experimental breeding Fotini A. Koutroumpa, Bruno Vincent, Géraldine Roux-Morabito, Carine Martin, François Lieutier To cite this version: Fotini A. Koutroumpa, Bruno Vincent, Géraldine Roux-Morabito, Carine Martin, François Lieutier. Fecundity and larval development of Monochamus galloprovincialis (Coleoptera Cerambycidae) in experimental breeding. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2008, 65 (7), pp.1. hal-00883423 HAL Id: hal-00883423 https://hal.archives-ouvertes.fr/hal-00883423 Submitted on 1 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. For. Sci. 65 (2008) 707 Available online at: c INRA, EDP Sciences, 2008 www.afs-journal.org DOI: 10.1051/forest:2008056 Original article Fecundity and larval development of Monochamus galloprovincialis (Coleoptera Cerambycidae) in experimental breeding Fotini A. Koutroumpa, Bruno Vincent, Géraldine Roux-Morabito,CarineMartin, François Lieutier* Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES-EA-1207, Université d’Orléans, BP6759, rue de Chartres, 45067 Orléans Cedex 2, France (Received 31 January 2008; accepted 9 July 2008) Keywords: Abstract Monochamus galloprovincialis / •The study aimed at clarifying basic life traits (fecundity, mortality and development) of biology / Monochamus galloprovincialis, the vector of Bursaphelenchus xylophilus, the causative agent of the fecundity / Pine Wilt Disease, in Portugal.
    [Show full text]
  • Nematicidal Activity of Benzyloxyalkanols Against Pine Wood Nematode
    biomolecules Article Nematicidal Activity of Benzyloxyalkanols against Pine Wood Nematode Junheon Kim 1,*,† , Su Jin Lee 1,†,‡ , Joon Oh Park 1,§ and Kyungjae Andrew Yoon 2 1 Forest Insect Pests and Disease Division, National Institute of Forest Science, Seoul 02455, Korea; [email protected] (S.J.L.); [email protected] (J.O.P.) 2 Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-961-2672 † These authors contributed equally to this study. ‡ Present address: Division of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea. § Present address: Urban Forest Clinic, Boryeong 33455, Korea. Abstract: Pine wilt disease (PWD) is caused by the pine wood nematode (PWN; Bursaphelenchus xylophilus) and causes severe environmental damage to global pine forest ecosystems. The current strategies used to control PWN are mainly chemical treatments. However, the continuous use of these reagents could result in the development of pesticide-resistant nematodes. Therefore, the present study was undertaken to find potential alternatives to the currently used PWN control agents abamectin and emamectin. Benzyloxyalkanols (BzOROH; R = C2–C9) were synthesized and the nematicidal activity of the synthetic compounds was investigated. Enzymatic inhibitory assays (acetylcholinesterase (AChE) and glutathione S-transferase (GST)) were performed with BzOC8OH and BzOC9OH to understand their mode of action. The benzyloxyalkanols showed higher Citation: Kim, J.; Lee, S.J.; Park, J.O.; nematicidal activity than did benzyl alcohol. Among the tested BzOROHs, BzC8OH and BzC9OH Yoon, K.A.
    [Show full text]
  • Asian Longhorned Beetle in Colorado - Identification of Insects and Damage of Similar Appearance
    Colorado Exotic Insect Detection and Identification Fact Sheet Series Asian Longhorned Beetle in Colorado - Identification of Insects and Damage of Similar Appearance Matt Camper and Whitney Cranshaw Figure 1. Asian longhorned beetle larvae. Photo Figure 2. Female Asian longhorned beetle. Photo courtesy of Michael Bohne courtesy of Michael Bohne The Asian longhorned beetle (ALB), Anoplophora glabripennis, is a wood boring beetle of Asian origin that was first detected in Brooklyn in 1996. Two years later a separate infestation was found in the Chicago suburbs. The Asian longhorned beetle has the potential to be very damaging to certain types of hardwood trees, causing tree decline and even death. Many native trees are susceptible to this insect and there are concerns that it could seriously affect natural forest systems as well as shade trees. Intensive efforts to eradicate this insect have been instituted where it was detected. This effort appears to have been very successful in the Chicago infestation and Asian longhorned beetle was officially declared eradicated in 2007. However, infestations in the New York City area have spread more widely so that detections of the insect have occurred in all city boroughs, parts of Long Island, and three New Jersey counties. Areas known to be infested remain fairly small and sustained eradication efforts continue to attempt elimination of the insect in New York and New Jersey. In addition, quarantine efforts prevent movement of wood materials that could be potentially infested from outside the area of known infestation. Introduction of Asian longhorned beetle into Colorado most likely would occur via hardwood packing materials (Figure 3) originating from China-shipped goods.
    [Show full text]
  • Pine Wood Nematode in Green Coniferous Sawn Wood in Oregon
    UnHed States Department of Incidence ofthe Agriculture Pine Wood Nematode in Forest Service Green Coniferous Sawn Wood in Oregon and California Southeastern Forest Experiment Station Research Note L. David Dwinell SE-367 May 1993 Abstract The pine wood nematode is transmitted from one tree Samples of green sawn Douglas-fir, redwood, ponderosa pine, to another when its insect vector, Monochamus spp., and white fir were collected in August. and September 1992 lays its eggs in freshly cut, felled, dying, or recently from seven mills in Oregon and California, and assayed for the dead conifers, particularly pines (Wingfield 1983). In pine wood nemat.ode, Bursal'helenchus xylol'hilus. The nulls these cases, the nematode is a secondary associate and produced about 108 nLillion board feet during the survey period. not the cause of mortality. The result, however, is that The pine wood nematode was not found in any of the 424 samples of Douglas-fir, the 192 of redwood, or the 3 of white fir. the nematode may occasionally be present in green The nematode was recovered from 8 of 105 samples of green lumber, particularly pine (Dwinell 1990; Dwinell and ponderosa pine lumber from a nLill in Oregon. These eight Nickle 1989). samples cont.ained an average of 54 pine wood nematodes per gram of dry weight. This is the first report of the pine wood nematode in Oregon. There is a paucity of critical information on the Bursaphelenchus-Monochamus-conifer complex in Keywords: Bursaphelenchus xylophilus, Pseudotsl1ga menZleSIl, the Pacific Northwest. Monochamus scutellatus Sequoia s empervirens, Pinus ponderosa, Abies concolol', lumber, oregonensis LeConte, M .
    [Show full text]
  • Hylobius Abietis
    On the cover: Stand of eastern white pine (Pinus strobus) in Ottawa National Forest, Michigan. The image was modified from a photograph taken by Joseph O’Brien, USDA Forest Service. Inset: Cone from red pine (Pinus resinosa). The image was modified from a photograph taken by Paul Wray, Iowa State University. Both photographs were provided by Forestry Images (www.forestryimages.org). Edited by: R.C. Venette Northern Research Station, USDA Forest Service, St. Paul, MN The authors gratefully acknowledge partial funding provided by USDA Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology. Contributing authors E.M. Albrecht, E.E. Davis, and A.J. Walter are with the Department of Entomology, University of Minnesota, St. Paul, MN. Table of Contents Introduction......................................................................................................2 ARTHROPODS: BEETLES..................................................................................4 Chlorophorus strobilicola ...............................................................................5 Dendroctonus micans ...................................................................................11 Hylobius abietis .............................................................................................22 Hylurgops palliatus........................................................................................36 Hylurgus ligniperda .......................................................................................46
    [Show full text]
  • Comparative Transcriptome Analysis of the Pinewood Nematode
    International Journal of Molecular Sciences Article Comparative Transcriptome Analysis of the Pinewood Nematode Bursaphelenchus xylophilus Reveals the Molecular Mechanism Underlying Its Defense Response to Host-Derived α-pinene Yongxia Li 1,2,†, Fanli Meng 1,2,†, Xun Deng 1, Xuan Wang 1,2, Yuqian Feng 1,2, Wei Zhang 1,2, Long Pan 1,2 and Xingyao Zhang 1,2,* 1 Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (Y.L.); mfl@caf.ac.cn (F.M.); [email protected] (X.D.); [email protected] (X.W.); [email protected] (Y.F.); [email protected] (W.Z.); [email protected] (L.P.) 2 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China * Correspondence: [email protected]; Tel.: +86-10-6288-8570 † These authors contributed equally to this work. Received: 17 January 2019; Accepted: 16 February 2019; Published: 20 February 2019 Abstract: Bursaphelenchus xylophilus is fatal to the pine trees around the world. The production of the pine tree secondary metabolite gradually increases in response to a B. xylophilus infestation, via a stress reaction mechanism(s). α-pinene is needed to combat the early stages of B. xylophilus infection and colonization, and to counter its pathogenesis. Therefore, research is needed to characterize the underlying molecular response(s) of B. xylophilus to resist α-pinene. We examined the effects of different concentrations of α-pinene on the mortality and reproduction rate of B. xylophilus in vitro.
    [Show full text]