Prediction of Two-Dimensional Phase of Boron with Anisotropic Electric Conductivity Zhi-Hao Cui,†,‡ Elisa Jimenez-Izal,†,§ and Anastassia N
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Lithium, Boron and Beryllium Content Of
Published in Geochimica et Cosmochimica Acta 72, issue 22, 5475-5504, 2008 1 which should be used for any reference to this work The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere Flurin Vils a,*, Laure Pelletier a, Angelika Kalt a, Othmar Mu¨ntener b, Thomas Ludwig c a Institut de Ge´ologie et d’Hydroge´ologie, Universite´ de Neuchaˆtel, Rue Emile-Argand 11, CP 158, CH-2009 Neuchaˆtel, Switzerland b Institut de Mine´ralogie et Ge´ochimie, Universite´ de Lausanne, Anthropole, CH-1015 Lausanne, Switzerland c Mineralogisches Institut, Ruprecht-Karls-Universita¨t Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany Abstract Despite the key importance of altered oceanic mantle as a repository and carrier of light elements (B, Li, and Be) to depth, its inventory of these elements has hardly been explored and quantified. In order to constrain the systematics and budget of these elements we have studied samples of highly serpentinized (>50%) spinel harzburgite drilled at the Mid-Atlantic Ridge (Fifteen– Twenty Fracture zone, ODP Leg 209, Sites 1272A and 1274A). In-situ analysis by secondary ion mass spectrometry reveals that the B, Li and Be contents of mantle minerals (olivine, orthopyroxene, and clinopyroxene) remain unchanged during serpent- inization. B and Li abundances largely correspond to those of unaltered mantle minerals whereas Be is close to the detection limit. The Li contents of clinopyroxene are slightly higher (0.44–2.8 lggÀ1) compared to unaltered mantle clinopyroxene, and olivine and clinopyroxene show an inverse Li partitioning compared to literature data. -
Silver Conductive Grease, Boron Nitride Heat Sink Grease, Silicone Free Heat Sink Grease
Silver Conductive Grease, Boron Nitride Heat Sink Grease, Silicone Free Heat Sink Grease Description CircuitWorks® Conductive Grease, otherwise known as thermal greases, thermal gel, thermal compound, thermal paste, heat paste, heat sink paste or heat sink compound, are conveniently packaged in syringes for fast and easy application, and to reduce mess and wastage. The range covers a number of electronic production, rework and repair applications. We offer three types of conductive grease: Silver Conductive Grease Boron Nitride Heat Sink Grease Silicone Free Heat Sink Grease Features & Benefits RoHS compliant Conveniently packaged to reduce waste and mess Silicone free option available compound will not harden or dry out Excellent thermal conductivity Silver Conductive Grease The CIR CW7100 CircuitWorks® syringe dispenser for precise application of grease to provide Silver Conductive Grease, Boron Nitride Heat Sink Grease, Silicone Free Heat Sink Grease superior electrical and thermal conductivity, lubrication and protection. Maximum electrical and thermal conductivity Protects against moisture and corrosion Thermally stable over a wide temperature range Conductive lubricant containing pure silver Fills connector gaps to maximize electrical and thermal conductivity Controls static discharge Grounds circuits Typical Applications Lubrication of substation switches or circuit breakers Heat dissipation from transformers Low or medium speed sliding contacts Static grounding on seals or O-rings Extending the life of rotating switches Specifications -
Materials Design and Band Gap Engineering of Complex
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2016 Materials design and band gap engineering of complex nanostructures using a semi-empirical approach : low dimensional boron nanostructures, h-BN sheet with graphene domains and holey graphene. Cherno Baba Kah Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Condensed Matter Physics Commons Recommended Citation Kah, Cherno Baba, "Materials design and band gap engineering of complex nanostructures using a semi- empirical approach : low dimensional boron nanostructures, h-BN sheet with graphene domains and holey graphene." (2016). Electronic Theses and Dissertations. Paper 2491. https://doi.org/10.18297/etd/2491 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. MATERIALS DESIGN AND BAND GAP ENGINEERING OF COMPLEX : LOW NANOSTRUCTURES USING A SEMI-EMPIRICAL APPROACH , h DIMENSIONAL BORON NANOSTRUCTURES - BN SHEET WITH GRAPHENE DOMAINS AND HOLEY GRAPHENE By Cherno Baba Kah M.S, University of Louisville, 2013 M.S, Clark Atlanta University, 2011 B.S, University of The Gambia, -
Of the Periodic Table
of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use. -
Lecture 25: Main Group Chemistry
Lecture 23: Main Group Chemistry An Introduction We have spent the better part of the school year developing physical models to describe atomic structure, chemical bonding and the thermodynamics and kinetics physical and chemical phenomena. In all of that, however, we have been just as content to use generic symbols like A + B Æ C + D or to describe a weak acid as HA, as to actually assign it a real chemical structure with real chemical reactivity. In this chapter we right this wrong, working systematically through the main groups of the periodic table, learning for each group and particularly significant elements in those groups: • The natural forms in which the elements are found, including the hydrides and oxides • The famous chemical reactions that involve the chemical compounds containing those elements • The important practical uses of the compounds containing those elements. Common themes in Main Group Chemistry: We must have learned something useful during the year that will help to explain the chemistry of the main group elements. Here are some important themes that appear to explain pretty much everything that happens 1. The number of valence electrons in atoms drive the chemistry of a compound. And the main group number corresponds to the number of valence electrons 2. Compounds formed by main group elements pretty much always satisfy the octet rule if they can, achieving noble gas- like electronic configurations 3. There are trends in the periodic table that are pretty much determined by the effective nuclear charge and overall number of electrons in an atom. These trends are: a) atomic radius decreases moving to the right and up the periodic table b) ionization energy increases moving to the right and up the periodic table c) electronegativity increases to the right and up the periodic table d) polarizability increases to the right and down the periodic table e) non-metallic character increases to the right and up the periodic table 4. -
A New Strategy of Bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability
A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability Rimsha Baloach University of Education Khurshid Ayub University of Education Tariq Mahmood University of Education Anila Asif University of Education Sobia Tabassum University of Education Mazhar Amjad Gilani ( [email protected] ) University of Education Original Research Full Papers Keywords: Boron phosphide (B12P12), Bi-alkali metal doping, Nonlinear optical response (NLO), Density functional theory Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-207373/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Inorganic and Organometallic Polymers and Materials on April 16th, 2021. See the published version at https://doi.org/10.1007/s10904-021-02000-6. A New Strategy of bi-Alkali Metal Doping to Design Boron Phosphide Nanocages of High Nonlinear Optical Response with Better Thermodynamic Stability ABSTRACT: Nonlinear optical materials possess high rank in fields of optics owing to their impacts, utilization and extended applications in industrial sector. Therefore, design of molecular systems with high nonlinear optical response along with high thermodynamic stability is a dire need of this era. Hence, the present study involves investigation of bi-alkali metal doped boron phosphide nanocages M2@B12P12 (M=Li, Na, K) in search of stable nonlinear optical materials. The investigation includes execution of geometrical and opto-electronic properties of complexes by means of density functional theory (DFT) computations. Bi-doped alkali metal atoms introduce excess of electrons in the host B12P12 nanocage. -
Periodic Table of the Elements Notes
Periodic Table of the Elements Notes Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals (left side of the table) Nonmetals (right side of the table) Metalloids (touching the zig zag line) Basic Organization by: Atomic structure Atomic number Chemical and Physical Properties Uses of the Periodic Table Useful in predicting: chemical behavior of the elements trends properties of the elements Atomic Structure Review: Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus). Energy Levels Review: Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms Energy Levels & Valence Electrons Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only) The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons Using the Table to Identify Valence Electrons Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18. Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons. -
Structure and Bonding of New Boron and Carbon Superpolyhedra
Structural Chemistry (2019) 30:805–814 https://doi.org/10.1007/s11224-019-1279-5 ORIGINAL RESEARCH Structure and bonding of new boron and carbon superpolyhedra Olga A. Gapurenko1 & Ruslan M. Minyaev1 & Nikita S. Fedik2 & Vitaliy V. Koval1 & Alexander I. Boldyrev2 & Vladimir I. Minkin1 Received: 16 November 2018 /Accepted: 1 January 2019 /Published online: 10 January 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Using the DFT methods, we computationally predict the stability of cage compounds E4nRn (E = B, C; R = H, F; n = 4, 8, 12, 24) based on Platonic bodies and Archimedean polyhedrons in which all vertices are replaced by tetrahedral E4R fragments. Cage compounds B60R12 and C60 with pyramidal units B5RorC5 are also examined and it is shown that only boron compounds are stable. The nature of chemical bonding in the discussed compounds is analyzed using the AdNDP and NBO methods. The hydrocarbons have classical 2c-2e C-C σ-bonds, while the boron compounds are formed by the polyhedral units with the delocalized multicenter bonds which connected three and more boron atoms. The new example of spherical aromaticity accord- 2 ing to the 2(N+1) rule in the case of B16F4 with multicenter 16c-2e bonds are revealed. Stable compound B60H12 contains 12 5c- 2e B-B bonds. Keywords Сage clusters . Chemical bonding . 3c-2e bond . Spherical aromaticity . AdNDP . NBO Construction of novel allotropic forms of carbon based on was proposed [1] as the system with the same symmetry as the tetrahedrane- and cubane-like building blocks was pro- sp3-carbon to replace the carbon atoms in the diamond posed by Burdett and Lee [1] and by Johnston and lattice. -
Group Elements
BORON FAMILY 199 CHAPTER-5 BORON FAMILY 5.1 Introduction The group 13 of the periodic table consists of the elements boron (B), aluminium (Al), gallium (Ga), indium (In) and thallium (Tl). Except boron which is a non-metal all other elements of this group show typical metallic properties. The nonmetallic character of B is possibly due to its small size, high ionization energy and comparatively high electronegativity. 5.2 Electronic Configuration: The elements of group 13 belong to p-block elements since the last electron in them enters the p- orbital. They have in all three electrons in the valence shell, two of these are present in the s-orbital and one in the p-orbital. Therefore, their general valence shell electronic configuration is represented as ns2 np1 where n = 2 to 6. The complete electronic configuration of these elements are given in the following table. Element Atomic Number Electronic Configuration 2 1 Boron (B) 5 [He] 2s 2p Aluminium (Al) 13 [Ne] 3s23p1 Gallium (Ga) 31 [Ar] 3d10 4s24p1 Indium (In) 49 [Kr] 4d105s25p1 Thallium (T1) 81 [Xe] 4f 14 5d10 6s26p1 5.3 General Characteristics Some of these properties are discussed below: (i) Atomic and Ionic radii: The atomic and ionic radii of group 13 elements are smaller than the corresponding elements of group 2. Explanation: This is because on moving from left to right, i.e, from group 2 to group 13 in a given period the nuclear charge increases while the new electron enters the same shell. Further the electrons in the same shell do not screen each other. -
The Ionic Conductivity in Lithium-Boron Oxide Materials and Its Relation to Structural, Electronic and Defect Properties: Insights from Theory
Journal of Physics: Condensed Matter TOPICAL REVIEW Related content - Topical Review The ionic conductivity in lithium-boron oxide Paul Heitjans and Sylvio Indris - Double perovskites with ferromagnetism materials and its relation to structural, electronic above room temperature and defect properties: insights from theory D Serrate, J M De Teresa and M R Ibarra - How chemistry controls electron localization in 3d1 perovskites: a Wannier- To cite this article: Mazharul M Islam et al 2012 J. Phys.: Condens. Matter 24 203201 function study E Pavarini, A Yamasaki, J Nuss et al. Recent citations View the article online for updates and enhancements. - Some device implications of voltage controlled magnetic anisotropy in Co/Gd 2 O 3 thin films through REDOX chemistry Guanhua Hao et al - Lithium Diffusion Mechanisms in -LiMO2 (M = Al, Ga): A Combined Experimental and Theoretical Study Mazharul M. Islam et al - First-principles study of structural, electronic, energetic and optical properties of substitutional Cu defect in Li 2 B 4 O 7 scintillator C. Santos et al This content was downloaded from IP address 134.129.67.237 on 13/06/2018 at 22:54 IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 24 (2012) 203201 (29pp) doi:10.1088/0953-8984/24/20/203201 TOPICAL REVIEW The ionic conductivity in lithium-boron oxide materials and its relation to structural, electronic and defect properties: insights from theory Mazharul M Islam1,2, Thomas Bredow1,2 and Paul Heitjans2,3 1 Mulliken Center for Theoretical Chemistry, Universitat¨ -
Direct Chemical Conversion of Graphene to Boron- and Nitrogen- and Carbon-Containing Atomic Layers
ARTICLE Received 3 Sep 2013 | Accepted 2 Jan 2014 | Published 24 Jan 2014 DOI: 10.1038/ncomms4193 Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers Yongji Gong1,*, Gang Shi2,*, Zhuhua Zhang2,3,*, Wu Zhou4, Jeil Jung5, Weilu Gao6, Lulu Ma2, Yang Yang2, Shubin Yang2,GeYou2, Robert Vajtai2, Qianfan Xu6, Allan H. MacDonald5, Boris I. Yakobson1,2, Jun Lou2, Zheng Liu2,7,8,w & Pulickel M. Ajayan1,2 Graphene and hexagonal boron nitride are typical conductor and insulator, respectively, while their hybrids hexagonal boron carbonitride are promising as a semiconductor. Here we demonstrate a direct chemical conversion reaction, which systematically converts the hexagonal carbon lattice of graphene to boron nitride, making it possible to produce uniform boron nitride and boron carbonitride structures without disrupting the structural integrity of the original graphene templates. We synthesize high-quality atomic layer films with boron-, nitrogen- and carbon-containing atomic layers with full range of compositions. Using this approach, the electrical resistance, carrier mobilities and bandgaps of these atomic layers can be tuned from conductor to semiconductor to insulator. Combining this technique with lithography, local conversion could be realized at the nanometre scale, enabling the fabrication of in-plane atomic layer structures consisting of graphene, boron nitride and boron carbonitride. This is a step towards scalable synthesis of atomically thin two-dimensional integrated circuits. 1 Department of Chemistry, Rice University, Houston, Texas 77005, USA. 2 Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA. 3 State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory of Intelligent Nano Materials and Devices of MoE, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China. -
Synthesis and Atomic Scale Investigation of Borophene on Au(111)
Synthesis and Atomic Scale Investigation of Borophene on Au(111) A thesis submitted towards partial fulfilment of BS-MS Dual Degree Programme By Navathej P Genesh (BS-MS student, Registration No.: 20121004) Under the guidance of Dr. Aparna Deshpande Department of Physics Indian Institute of Science Education and Research (IISER) Pune, India 1 2 3 Acknowledgements I would like to express my sincere gratitude to Dr. Aparna Deshpande for her valuable suggestions and guidance without which this project would not have come till this point. I also want to thank my lab members who have helped me throughout this year at all the phases of this project. I would like to thank Dr. Sumati Patil for the help in procuring boron powder. I am grateful to Rejaul for all his overnight discussions which made the course of this work easier. I also wanted to thank Thasneem, Imran and Nilesh Sir for their constant support. I am grateful to Nithin Raj PD, Anjana Raj, other friends and my family for their motivation and support. 4 TABLE OF CONTENTS List of Figures and List of Tables 7 List of Abbreviations 9 Abstract 10 INTRODUCTION 1.1 Introduction 11 1.2 Two dimensional materials 11 1.3 Boron 12 1.4 Borophene 13 METHODS 2.1 Scanning Tunneling Microscope (STM) 17 2.2 UHV - LT Scanning Tunneling Microscope: what is UHV and what is 20 LT? 2.3 Rotary pump 21 2.4 Turbo molecular pump 23 2.5 Titanium sublimation pump 24 2.6 Ion pump 25 2.7 Ion gauge 25 2.8 Pirani gauge 26 2.9 Noise reduction 27 2.10 Tip preparation 28 2.11 Sputtering and annealing 29 2.12 Molecular evaporator 29 2.13 Atomic force microscope (AFM) 30 2.14 Energy dispersive X-Ray analysis (EDAX) 31 2.15 Sample preparation 31 RESULTS AND DISCUSSION 3.1 Cleaning bare Au(111) 32 5 3.2 The first trial 36 3.3 Second trial 38 3.4 Third trial 39 3.5 Fourth trial 43 CONCLUSIONS AND OUTLOOK 45 BIBILIOGRAPHY 46 6 LIST OF FIGURES Figure Caption Page No.