Cushion Bogs Are Stronger Carbon Dioxide Net Sinks Than Moss
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. -
Growth and Reproduction in an Alpine Cushion Plant: Astragalus Kentrophyta Var
Great Basin Naturalist Volume 55 Number 2 Article 3 4-21-1995 Growth and reproduction in an alpine cushion plant: Astragalus kentrophyta var. implexus Wayne R. Owen University of California, Davis and White Mountain Research Station, University of California, Las Angeles Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Owen, Wayne R. (1995) "Growth and reproduction in an alpine cushion plant: Astragalus kentrophyta var. implexus," Great Basin Naturalist: Vol. 55 : No. 2 , Article 3. Available at: https://scholarsarchive.byu.edu/gbn/vol55/iss2/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 55(2), © 1995, pp. 117-123 GROWTH AND REPRODUCTION IN AN ALPINE CUSHION PLANT: ASTRAGALUS KENTROPHYTA VAR. IMPLEXUS Wayne R. Owen1 ABSTRACf.-A two-year field experiment was conducted to investigate factors hypothesized to affect the reproduc tive potential ofAstragalus kentrophyta var. implexus and to test the importance oftrade-offs between growth and repro duction in this species. Levels of mineral nutrients, water, herbivory, and competition were manipulated. Seed output R."1d growth of individuals in treatment groups were compared against control plants. Neither water nor mineral nutri ents alone were shown to affect growth or reproduction. Herbivory was shown to be similarly unimportant in affecting growth and reproduction. Competition with other species influenced growth but not reproduction. No significant trade offs between growth and reproduction were detected within years. -
Paleoecology of Late Quaternary Deposits in Chiloe Continental, Chile
Revista Chilena de Historia Natural 65:235-245,1992 Paleoecology of Late Quaternary Deposits in Chiloe Continental, Chile Paleoecología de los dep6sitos del Cuaternario tardio en Chiloe Continental, Chile 1 2 3 CALVIN J. HEUSSER , LINDA E. HEUSSER and ARTURO HAUSER 1 Clinton Woods, Tuxedo, New York 10987, USA. 2 Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964, USA. 3 Servicio Nacional de Geologia y Mineria, Casilla 10465, Santiago, Chile. ABSTRACT Two stratigraphic records of the late Quaternary vegetation and paleoenvironmental setting of Chiloe Continental, heretofore unstudied, are from (1) a 7.2 m deposit of mire peat at Cuesta Moraga (43025's), dated at 12,310 yr B.P. and interrupted by multiple tephra layers, resting on glacial drift, and (2) a 3-m road cut near Chaiten (42°54'S), 75 km north of Cuesta Moraga, containing a peat bed with wood, dated 11,850 yr B.P., underlying a thick tephra layer and overlying drift. Records are of fossil pollen, spores, and matrix macroremains, loss on ignition, lithology, and ra- diocarbon chronology. There is throughout in the data no indication of fire in predominantly Nothofagus forest com- munities, which during the late-glacial at Chaiten contained, among other tree species, Drimys, Pseudopanax, and Po- docarpus. At Cuesta Moraga, where the forest was relatively open and continued to be open during the Holocene, late- glacial ground cover of Empetrum, Gunnera, and polypodiaceous ferns was supplanted on the mire largely by mi- nerotrophic Cyperaceae until about 8,000 yr B.P.; later, especially after 5,000 yr B.P., ombrotrophic cushion plants, notably Astelia, Donatia, and Tetroncium, with Dacrydium, proliferated on the surface of the mire. -
University of Groningen Fen Mires with Cushion Plants in Bale
University of Groningen Fen Mires with cushion plants in Bale Mountains, Ethiopia Dullo, B.W.; Grootjans, A. P.; Roelofs, J.G.M; Senbeta, A.F.; Fritz, C. Published in: Mires and Peat IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Dullo, B. W., Grootjans, A. P., Roelofs, J. G. M., Senbeta, A. F., & Fritz, C. (2015). Fen Mires with cushion plants in Bale Mountains, Ethiopia. Mires and Peat, 15, 1-10. [UNSP 07]. http://mires-and- peat.net/pages/volumes/map15/map1507.php Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. -
Biogeography of the Monocotyledon Astelioid Clade (Asparagales): a History of Long-Distance Dispersal and Diversification with Emerging Habitats
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Biogeography of the monocotyledon astelioid clade (Asparagales): A history of long-distance dispersal and diversification with emerging habitats Birch, Joanne L ; Kocyan, Alexander Abstract: The astelioid families (Asteliaceae, Blandfordiaceae, Boryaceae, Hypoxidaceae, and Lanari- aceae) have centers of diversity in Australasia and temperate Africa, with secondary centers of diversity in Afromontane Africa, Asia, and Pacific Islands. The global distribution of these families makes this an excellent lineage to test if current distribution patterns are the result of vicariance or long-distance dispersal and to evaluate the roles of tertiary climatic and geological drivers in lineage diversification. Sequence data were generated from five chloroplast regions (petL-psbE, rbcL, rps16-trnK, trnL-trnLF, trnS-trnSG) for 104 ingroup species sampled across global diversity. The astelioid phylogeny was inferred using maximum parsimony, maximum likelihood, and Bayesian inference methods. Divergence dates were estimated with a relaxed clock applied in BEAST. Ancestral ranges were reconstructed in ’BioGeoBEARS’ applying the corrected Akaike information criterion to test for the best-fit biogeographic model. Diver- sification rates were estimated in Bayesian Analysis of Macroevolutionary Mixtures [BAMM]. Astelioid relationships were inferred as Boryaceae(Blandfordiaceae(Asteliaceae(Hypoxidaceae plus Lanariaceae))). The crown astelioid node was dated to the Late Cretaceous (75.2 million years; 95% highest posterior densities interval 61.0-90.0 million years) with an inferred Eastern Gondwanan origin. However, aste- lioid speciation events have not been shaped by Gondwanan vicariance. Rather long-distance dispersal since the Eocene is inferred to account for current distributions. -
Cushion-Plant Vegetation on Public Lands in the Blm Rock Springs Field Office, Wyoming
CUSHION-PLANT VEGETATION ON PUBLIC LANDS IN THE BLM ROCK SPRINGS FIELD OFFICE, WYOMING Final Report for Assistance Agreement KAA010012, Task Order No. TO-13 between the BLM Rock Springs Field Office, and the University of Wyoming, Wyoming Natural Diversity Database By George P. Jones Wyoming Natural Diversity Database, University of Wyoming Laramie, Wyoming October 18, 2004 TABLE OF CONTENTS Abstract ........................................................................................................................................... 1 Acknowledgements ......................................................................................................................... 2 Introduction ..................................................................................................................................... 3 Methods ........................................................................................................................................... 3 Sample Area Selection ................................................................................................................ 3 Data Collection ............................................................................................................................ 4 Data Analysis .............................................................................................................................. 5 Results ............................................................................................................................................. 7 -
Literaturverzeichnis
Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings. -
The Effects of Human Trampling Disturbance, Plant-Plant Interactions, and Climate on the Performance and Distribution of The
THE EFFECTS OF HUMAN TRAMPLING DISTURBANCE, PLANT-PLANT INTERACTIONS, AND CLIMATE ON THE PERFORMANCE AND DISTRIBUTION OF THE ALPINE CUSHION PLANT SILENE ACAULIS by NATHALIE ISABELLE CHARDON B.A., University of California, Berkeley, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Environmental Studies Program 2018 ii This thesis entitled: The Effects of Human Trampling Disturbance, Plant-Plant Interactions, and Climate on the Performance and Distribution of the Alpine Cushion Plant Silene acaulis written by Nathalie Isabelle Chardon has been approved for the Environmental Studies Program ________________________________ Prof. Daniel F. Doak (Chair) ________________________________ Prof. William D. Bowman ________________________________ Prof. Katherine N. Suding ________________________________ Dr. Sonja Wipf ________________________________ Dr. Christian Rixen Date: _______________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above-mentioned discipline. iii Chardon, N. I. (Ph.D., Environmental Studies) The Effects of Human Trampling Disturbance, Plant-Plant Interactions, and Climate on the Performance and Distribution of the Alpine Cushion Plant Silene acaulis Thesis directed by Prof. Daniel F. Doak Delineating the abiotic and biotic processes that set species geographic distributions has been a central theme in ecological research for hundreds of years, yet we still do not understand many aspects of this broad question. Discerning what processes determine past and current range limits is particularly critical for predicting how species distributions will respond to climate change. -
Endemic Wild Ornamental Plants from Northwestern Yunnan, China
HORTSCIENCE 40(6):1612–1619. 2005. have played an important role in world horti- culture and have been introduced to Western countries where they have been widely cul- Endemic Wild Ornamental Plants tivated. Some of the best known examples include Rhododendron, Primula, Gentiana, from Northwestern Yunnan, China Pedicularis, and Saussurea, which are all im- 1 portant genera in northwestern Yunnan (Chen Xiao-Xian Li and Zhe-Kun Zhou et al., 1989; Feng, 1983; Guan et al., 1998; Hu, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P.R. 1990; Shi and Jin, 1999; Yang, 1956;). Many of China 650204 these ornamental species are endemic to small areas of northwestern Yunnan (e.g., Rhododen- Additional index words. horticultural potential dron russatum), therefore, their cultivation not Abstract. Northwestern Yunnan is situated in the southern part of the Hengduan Mountains, only provides for potential sources of income which is a complex and varied natural environment. Consequently, this region supports a generation, but also offers a potential form of great diversity of endemic plants. Using fi eld investigation in combination with analysis conservation management: these plants can of relevant literature and available data, this paper presents a regional ethnobotanical be used directly for their ornamental plant study of this area. Results indicated that northwestern Yunnan has an abundance of wild value or as genetic resources for plant breed- ornamental plants: this study identifi ed 262 endemic species (belonging to 64 genera and ing programs. The aims of current paper are 28 families) with potential ornamental value. The distinguishing features of these wild to describe the unique fl ora of northwestern plants, their characteristics and habitats are analyzed; the ornamental potential of most Yunnan and provide detailed information of plants stems from their wildfl owers, but some species also have ornamental fruits and those resources, in terms of their potential foliage. -
Phylogenetics of Asterids Based on 3 Coding and 3 Non-Coding Chloroplast DNA Markers and the Utility of Non-Coding DNA at Higher Taxonomic Levels
MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 24 (2002) 274–301 www.academicpress.com Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels Birgitta Bremer,a,e,* Kaare Bremer,a Nahid Heidari,a Per Erixon,a Richard G. Olmstead,b Arne A. Anderberg,c Mari Kaallersj€ oo,€ d and Edit Barkhordariana a Department of Systematic Botany, Evolutionary Biology Centre, Norbyva€gen 18D, SE-752 36 Uppsala, Sweden b Department of Botany, University of Washington, P.O. Box 355325, Seattle, WA, USA c Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden d Laboratory for Molecular Systematics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden e The Bergius Foundation at the Royal Swedish Academy of Sciences, P.O. Box 50017, SE-104 05 Stockholm, Sweden Received 25 September 2001; received in revised form 4 February 2002 Abstract Asterids comprise 1/4–1/3 of all flowering plants and are classified in 10 orders and >100 families. The phylogeny of asterids is here explored with jackknife parsimony analysis of chloroplast DNA from 132 genera representing 103 families and all higher groups of asterids. Six different markers were used, three of the markers represent protein coding genes, rbcL, ndhF, and matK, and three other represent non-coding DNA; a region including trnL exons and the intron and intergenic spacers between trnT (UGU) to trnF (GAA); another region including trnV exons and intron, trnM and intergenic spacers between trnV (UAC) and atpE, and the rps16 intron. -
Petr Macek – “Nurse Effect of Cushion Plants: Plant Interactions in Arctic
Nurse effect of cushion plants: Plant interacons in Arcc tundra ecosystems in the face of climate change Petr Macek1, Patrick Saccone1, Esther Frei2, Tomáš Hájek1,3, Jitka Klimešová3 and Alexandra Bernardová1 1Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Czech Republic 2Swiss Federal Instute for Forest, Snow and Landscape Research WSL, Switzerland 3Instute of Botany, Czech Academy of Sciences, Czech Republic Plant-plant interacons • Specific case – facilitaon (nurse plants) • Shrubs in arid zones, cushion plants hps://www.desertmuseum.org/programs/ifnm_cactusgallery.php Cushion plants • Known from Alpine ecosystems to: • Enhance soil resources (1,2) • Milden climac extremes (both high and low temperature) (3) • Increase species (4,5) diversity (1) Arroyo et al. 2003, Plant Ecol. (2) Schöb et al. 2013, J. Ecol. (3) Cavieres et al. 2007, AAAR (4) Cavieres et al. 2014, Ecol. Le. (5) Buerfield et al. 2013, Ecol. Le. Plant-plant interacons with cushion plants • PosiDve interacons • Cost of interacon (COI) • one plant's benefit may be another plant's cost (1) (1) Schöb et al. 2013, Funct. Ecol. Climate change – ongoing and fast • Everyone acknowledge it (except Donald ;) • Fastest in the Arcc and Alpine zone (1) • Influencing ecosystem funconing (1,2) • Most likely also posive plant-plant interacons (1) Thuiller et al., 2005, PNAS (2) Rosenzweig et al., 2007, IPCC Why to study plant interacons in the Arcc? • High potenal of novel community formaon (either immigraon or community reassembly from local species pool) • -
Cushion Plant Revegetation and Recovery After Recreational Trampling on a Colorado Fourteener
Regis University ePublications at Regis University All Regis University Theses Spring 2019 Cushion Plant Revegetation and Recovery After Recreational Trampling on a Colorado Fourteener Rachel Kreb Regis University Follow this and additional works at: https://epublications.regis.edu/theses Recommended Citation Kreb, Rachel, "Cushion Plant Revegetation and Recovery After Recreational Trampling on a Colorado Fourteener" (2019). All Regis University Theses. 918. https://epublications.regis.edu/theses/918 This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact [email protected]. i MS ENVIRONMENTAL BIOLOGY CAPSTONE PROJECT by Rachel N. Kreb A Project Presented in Partial Fulfillment of the Requirements for the Degree Masters of Science in Environmental Biology REGIS UNIVERSITY May, 2019 i ii MS ENVIRONMENTAL BIOLOGY CAPSTONE PROJECT by Rachel N. Kreb has been approved May, 2019 APPROVED: __________________________________, Catherine Kleier, Ph.D. (Faculty Advisor) __________________________________, Kristofor Voss, Ph.D. (Chapters 1 & 2) __________________________________, Michael Ennis, Ph.D. (Chapter 3) __________________________________, Anna Braswell, Ph.D. (Chapter 4) __________________________________, Ariel Wooldridge, M.S. (Exit Survey & Repository) ii iii Table of Contents Chapter 1. Literature Review: Recruitment