( 12 ) United States Patent

Total Page:16

File Type:pdf, Size:1020Kb

( 12 ) United States Patent US010653736B2 (12 ) United States Patent ( 10 ) Patent No.: US 10,653,736 B2 Sekura et al. (45 ) Date of Patent: May 19 , 2020 (54 ) TOPICAL TREATMENTS INCORPORATING A61K 9/06 (2013.01 ) ; A61K 9/08 ( 2013.01 ) ; CANNABIS SP . DERIVED BOTANICAL DRUG A61K 31/045 ( 2013.01) ; A61K 31/047 PRODUCT (2013.01 ) ; A61K 31/05 ( 2013.01) ; A61K 31/085 ( 2013.01 ) ; A61K 31/12 ( 2013.01) ; ( 71) Applicants :Ronald D. Sekura , Key Largo , FL A61K 31/235 ( 2013.01 ) ; A61K 31/245 (US ) ; Roscoe M.Moore , Rockville, ( 2013.01 ) ; A61K 31/352 ( 2013.01) ; A61K MD (US ) 31/573 ( 2013.01) ; A61K 31/618 ( 2013.01) ; A61K 36/00 ( 2013.01) ; A61K 36/61 ( 2013.01) ; ( 72 ) Inventors: Ronald D. Sekura , Key Largo , FL A61K 45/06 ( 2013.01) ; A61K 47/12 (2013.01 ) ; ( US ) ; Roscoe M.Moore , Rockville , A61K 47/44 ( 2013.01) ; A61P 17/06 ( 2018.01) ; MD (US ) A61Q 5/006 ( 2013.01 ) ; A61Q 5/02 (2013.01 ) ; ( * ) Notice : Subject to any disclaimer , the term of this A61Q 19/00 ( 2013.01) ; A61Q 19/001 patent is extended or adjusted under 35 ( 2013.01) U.S.C. 154 ( b ) by 0 days . (58 ) Field of Classification Search CPC A61K 36/00 ( 21) Appl. No .: 16 /257,389 USPC 424/725 See application file for complete search history. ( 22 ) Filed : Jan. 25 , 2019 (65 ) Prior Publication Data (56 ) References Cited US 2019/0175675 A1 Jun . 13 , 2019 U.S. PATENT DOCUMENTS 5,002,932 A 3/1991 Langelier et al . Related U.S. Application Data 6,355,280 B1 3/2002 Segal et al . 6,630,507 B1 10/2003 Hampson et al . (63 ) Continuation of application No. 15 / 914,064 , filed on 6,730,330 B2 5/2004 Whittle et al. Mar. 7 , 2018 , now Pat . No. 10,226,496 , which is a 6,949,582 B1 9/2005 Wallace continuation of application No. 14 /750,558 , filed on 7,026,360 B1 4/2006 Festo Jun . 25 , 2015 , now abandoned , which is a 2005/0079136 A1 4/2005 Woolfe et al. 2005/0123635 A1 6/2005 McAughey et al . continuation of application No. 14 / 498,555 , filed on 2007/0060639 A1 3/2007 Wermeling Sep. 26 , 2014 , now Pat. No. 9,095,563 . 2008/0206161 Al 8/2008 Tamarkin et al. 2008/0255224 Al 10/2008 Blum (60 ) Provisional application No. 61/ 882,990 , filed on Sep. 2011/0129463 A1 6/2011 Erez et al . 26 , 2013 . 2011/0256245 Al 10/2011 Rosenblatt et al . 2012/0264818 Al 10/2012 Newland (51 ) Int. Ci. 2013/0011484 A1 1/2013 Bevier A61K 36/00 ( 2006.01 ) 2014/0302121 Al 10/2014 Bevier A61K 36/185 (2006.01 ) A61K 31/352 ( 2006.01 ) FOREIGN PATENT DOCUMENTS A61K 31/573 ( 2006.01 ) W W 2008/127459 Al 10/2008 A61K 31/085 ( 2006.01 ) WO WO 2013/006729 A2 1/2013 A61K 31/245 (2006.01 ) WO 2015/048508 A1 4/2015 A61K 31/047 ( 2006.01) A61K 31/235 (2006.01 ) A61K 31/045 ( 2006.01 ) OTHER PUBLICATIONS A61K 36/61 ( 2006.01) Office Action dated Nov. 1 , 2019 in Australian Patent Application A61K 9/00 (2006.01 ) No. 2014324891 , pages . A61K 45/06 (2006.01 ) Chinese Office Action dated Sep. 20 , 2018 in corresponding Patent A61K 31/12 ( 2006.01) Application No. 201480064243.X (with English Translation ), 21 A61K 31/618 (2006.01 ) pages . A61K 47/12 ( 2006.01 ) A61K 9/06 (2006.01 ) ( Continued ) A61K 9/08 ( 2006.01 ) Primary Examiner — Michael V Meller A61K 47/44 ( 2017.01 ) A61K 8/49 (2006.01 ) (74 ) Attorney , Agent, or Firm Oblon , McClelland , A61Q 5700 ( 2006.01) Maier & Neustadt, L.L.P. A61Q 5/02 ( 2006.01) A61Q 19/00 ( 2006.01 ) ( 57 ) ABSTRACT A61P 17/06 ( 2006.01) A topical formulation comprising a Cannabis derived A61K 31/05 (2006.01 ) botanical drug product, wherein the concentration of tetra ( 52 ) U.S. CI. hydrocannabinol, cannabidiol, or both in the topical formu CPC A61K 36/185 (2013.01 ) ; A61K 8/498 lation is greater than 2 milligrams per kilogram . ( 2013.01) ; A61K 970014 (2013.01 ) ; A61K 9/0034 (2013.01 ) ; A61K 9/0043 ( 2013.01 ) ; 10 Claims, 1 Drawing Sheet US 10,653,736 B2 Page 2 ( 56 ) References Cited OTHER PUBLICATIONS Wei Taixing, “ Salicylic Acid ” , The Latest Clinical Drug Handbook , p . 765 and cover pages ( Aug. 31 , 2003 ) . Extended European Search Report dated Mar. 19 , 2018 in Patent Application No. 14846990.1 , 8 pages. Wilkinson , J. D. et al. , " Cannabinoids Inhibit Human Keratinocyte Proliferation Through a non -CB1 / CB2 Mechanism and have a Potential Therapeutic Value in the Treatment of Psoriasis ” Journal of Dermatological Science , Elsevier, vol . 45 , No. 2 , XP005836247 , pp . 87-92 ( Jan. 19 , 2007 ) . Office Action dated Jul. 19 , 2017 in Chinese Patent Application No. 201480064243.X (with English translation ) . Bhattacharya , et al. , Asia Pacific Journal of Pharmacology , pp . 179-188 ( 1989 ) . International Search Report and Written Opinion dated Dec. 29 , 2014 in PCT /US2014 /057801 . European Office Action dated Aug. 13 , 2019 in European Patent Application No. 14846990.1 , 6 pages . Canadian Office Action dated Sep. 30 , 2019 , in Patent Application No. 2,925,468 , 5 pages . U.S. Patent May 19 , 2020 US 10,653,736 B2 Fig . 1 . Fig . 2 . US 10,653,736 B2 1 2 TOPICAL TREATMENTS INCORPORATING products . To a large extent major focus has been directed at CANNABIS SP . DERIVED BOTANICAL DRUG systemically administered formulations and formulations PRODUCT taking advantage of psychotropic activities or use of can nabinoids as antioxidants and neuroprotectants . CROSS -REFERENCE TO RELATED 5 U.S. Pat . No. 6,630,507, incorporated herein by reference , APPLICATIONS discloses pharmaceutical compounds and compositions that are useful as tissue protectants , such as neuroprotectants and This application is a continuation of U.S. application Ser. cardioprotectants . The compounds and compositions are No. 15 /914,064 , filed on Mar. 7 , 2018 , which is a continu disclosed to be used in the treatment of acute ischemic ation of U.S. application Ser. No. 14 / 750,558, filed on Jun . 10 neurological insults or chronic neurodegenerative diseases . 25 , 2015 , which is a continuation of U.S. application Ser. The disclosed compositions include cannabidiol and other No. 14 /498,555 (now U.S. Pat . No. 9,095,563 ) , filed on Sep. cannabinoids, and the compositions are disclosed to include 26 , 14 , which claims the benefit of U.S. Provisional THC in amounts that do not promote psychoactive or Application No. 61/ 882,990 , filed on Sep. 26 , 2013 , which psychotoxic effects . Accordingly , there is no disclosure of is herein incorporated by reference in its entirety . 15 topical compositions that include THC in amounts that exceed the detection limit of THC . FIELD OF THE INVENTION In view of the foregoing , there is a need for topical This invention relates to topical formulations that com formulations that comprise a Cannabis derived botanical prise a Cannabis derived botanical drug product , methods of 20 drug product that take advantage of diverse pharmacologic making the topical formulations, and methods of using the activities, that are beyond and unforeseen from those topical formulations in treating dermatological diseases. described in U.S. Pat . No. 6,630,507 B1, in treatment of dermatologic and other diseases. We also define that the BACKGROUND OF THE INVENTION major cannabinoids are present in our products at concen 25 trations exceeding the commmonly applied maximum levels The botanical genus Cannabis includes the species indica that define cannabis derived products , such as hemp oil, and sativia . Within these species multiple distinct varieties legal for non -drug use can provide unexpected and highly and strains have been and continue to be developed . The genus known produce more than 480 different chemical beneficial treatments for a wide variety of diseases. substances . Among these chemicals approximately 80 dis- 30 BRIEF SUMMARY OF THE INVENTION tinct entities exist which are classified as cannabinoids. The two species differ in the amount of tetrahydrocannabinol One object of the invention is to provide a topical prepa ( THC ) produced. Cannabis sativia produces higher levels of ration comprising a Cannabis derived botanical drug prod THC . The psychotropic affects associated with THC have uct such that the concentration of tetrahydrocannabinol in made the sativia species preferred as a recreational sub- 35 the final product is greater than 2 milligrams per kilogram . stance and for medicinal use where the psychotropic effect Other objects of the invention include methods of making is desired . Not -with - standing THC and other chemical enti the topical preparations and methods of using the topical ties produced by the sativia species have significant and preparations to treat dermatological diseases. diverse pharmacological action . The indica species is cultivable in cooler climates and 40 BRIEF DESCRIPTION OF THE DRAWINGS produce more cannabidiol ( CBD ) than THC . This allows production of extracts with low THC . The seeds from FIG . 1 shows an area of skin affected by plaque psoriasis . Cannabis species are used to produce hemp oil which is used FIG . 2 shows the results of treating psoriasis affected area industrially and also as a nutritional supplement. by application of topical formulation comprising a Cannabis Cannabis derived materials which may contain THC and 45 derived botanical drug product according to the present CBD in addition to numerous natural substances produced invention . by the plants have been reported to have diverse pharma cological activities that include analgesic , anti- inflamma EMBODIMENTS OF THE PRESENT tory, anti - cancer , antibiotic , and anti- oxidant activity . INVENTION In most jurisdictions throughout the world , including the 50 United States , cannabinoids (which include THC , structur One embodiment of the present invention is [ 1 ] a topical ally related compounds, and in some instances CBD ) are formulation comprising a Cannabis derived botanical drug controlled substances and use for medical purposes has been product, wherein the concentration of tetrahydrocannabinol discouraged .
Recommended publications
  • Clotrimazole Loaded Ufosomes for Topical Delivery: Formulation Development and In-Vitro Studies
    molecules Article Clotrimazole Loaded Ufosomes for Topical Delivery: Formulation Development and In-Vitro Studies Pradeep Kumar Bolla 1 , Carlos A. Meraz 1, Victor A. Rodriguez 1, Isaac Deaguero 1, Mahima Singh 2 , Venkata Kashyap Yellepeddi 3,4 and Jwala Renukuntla 5,* 1 Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W University Ave, El Paso, TX 79968, USA 2 Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA 3 Division of Clinical Pharmacology, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA 4 Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA 5 Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27240, USA * Correspondence: [email protected] Received: 9 August 2019; Accepted: 28 August 2019; Published: 29 August 2019 Abstract: Global incidence of superficial fungal infections caused by dermatophytes is high and affects around 40 million people. It is the fourth most common cause of infection. Clotrimazole, a broad spectrum imidazole antifungal agent is widely used to treat fungal infections. Conventional topical formulations of clotrimazole are intended to treat infections by effective penetration of drugs into the stratum corneum. However, drawbacks such as poor dermal bioavailability, poor penetration, and variable drug levels limit the efficiency. The present study aims to load clotrimazole into ufosomes and evaluate its topical bioavailability. Clotrimazole loaded ufosomes were prepared using cholesterol and sodium oleate by thin film hydration technique and evaluated for size, polydispersity index, and entrapment efficiency to obtain optimized formulation.
    [Show full text]
  • TRP Mediation
    molecules Review Remedia Sternutatoria over the Centuries: TRP Mediation Lujain Aloum 1 , Eman Alefishat 1,2,3 , Janah Shaya 4 and Georg A. Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] (L.A.); Eman.alefi[email protected] (E.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 3 Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan 4 Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] * Correspondence: [email protected]; Tel.: +971-50-413-4525 Abstract: Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
    [Show full text]
  • Clotrimazole (Topical) | Memorial Sloan Kettering Cancer Center
    PATIENT & CAREGIVER EDUCATION Clotrimazole (Topical) This information from Lexicomp® explains what you need to know about this medication, including what it’s used for, how to take it, its side effects, and when to call your healthcare provider. Brand Names: US 3 Day Vaginal [OTC]; Alevazol [OTC]; Antifungal (Clotrimazole) [OTC]; Antifungal Clotrimazole [OTC]; Clotrimazole 3 Day [OTC]; Clotrimazole Anti-Fungal [OTC]; Clotrimazole GRx [OTC] [DSC]; Desenex [OTC]; Gyne-Lotrimin 3 [OTC]; Gyne- Lotrimin [OTC]; Lotrimin AF For Her [OTC] [DSC]; Pro-Ex Antifungal [OTC]; Shopko Athletes Foot [OTC] [DSC] What is this drug used for? It is used to treat fungal infections of the skin. This drug is used to treat vaginal yeast infections. It may be given to you for other reasons. Talk with the doctor. What do I need to tell my doctor BEFORE I take this drug? All products: If you are allergic to this drug; any part of this drug; or any other drugs, foods, or substances. Tell your doctor about the allergy and what signs you had. All skin products: If you have nail or scalp infections. This drug will not work to treat nail or scalp infections. Clotrimazole (Topical) 1/6 This is not a list of all drugs or health problems that interact with this drug. Tell your doctor and pharmacist about all of your drugs (prescription or OTC, natural products, vitamins) and health problems. You must check to make sure that it is safe for you to take this drug with all of your drugs and health problems. Do not start, stop, or change the dose of any drug without checking with your doctor.
    [Show full text]
  • Us Anti-Doping Agency
    2019U.S. ANTI-DOPING AGENCY WALLET CARDEXAMPLES OF PROHIBITED AND PERMITTED SUBSTANCES AND METHODS Effective Jan. 1 – Dec. 31, 2019 CATEGORIES OF SUBSTANCES PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) • Non-Approved Substances: investigational drugs and pharmaceuticals with no approval by a governmental regulatory health authority for human therapeutic use. • Anabolic Agents: androstenediol, androstenedione, bolasterone, boldenone, clenbuterol, danazol, desoxymethyltestosterone (madol), dehydrochlormethyltestosterone (DHCMT), Prasterone (dehydroepiandrosterone, DHEA , Intrarosa) and its prohormones, drostanolone, epitestosterone, methasterone, methyl-1-testosterone, methyltestosterone (Covaryx, EEMT, Est Estrogens-methyltest DS, Methitest), nandrolone, oxandrolone, prostanozol, Selective Androgen Receptor Modulators (enobosarm, (ostarine, MK-2866), andarine, LGD-4033, RAD-140). stanozolol, testosterone and its metabolites or isomers (Androgel), THG, tibolone, trenbolone, zeranol, zilpaterol, and similar substances. • Beta-2 Agonists: All selective and non-selective beta-2 agonists, including all optical isomers, are prohibited. Most inhaled beta-2 agonists are prohibited, including arformoterol (Brovana), fenoterol, higenamine (norcoclaurine, Tinospora crispa), indacaterol (Arcapta), levalbuterol (Xopenex), metaproternol (Alupent), orciprenaline, olodaterol (Striverdi), pirbuterol (Maxair), terbutaline (Brethaire), vilanterol (Breo). The only exceptions are albuterol, formoterol, and salmeterol by a metered-dose inhaler when used
    [Show full text]
  • Self-Nano-Emulsifying Drug-Delivery Systems: from the Development to the Current Applications and Challenges in Oral Drug Delivery
    pharmaceutics Review Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery Aristote B. Buya 1,2 , Ana Beloqui 1, Patrick B. Memvanga 2 and Véronique Préat 1,* 1 Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; [email protected] (A.B.B.); [email protected] (A.B.) 2 Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo; [email protected] * Correspondence: [email protected]; Tel.: +32-27647309 Received: 3 November 2020; Accepted: 5 December 2020; Published: 9 December 2020 Abstract: Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance.
    [Show full text]
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • Drugs Interfering with the Metabolism of Tacrolimus (FK506)
    BLOOD SCIENCES DEPARTMENT OF CLINICAL BIOCHEMISTRY Title of Document: Drugs Interfering with the metabolism of tacrolimus (FK506) Q Pulse Reference No: BS/CB/DCB/TOX/4 Version NO: 6 Authoriser: P Beresford Page 1 of 3 Drugs Interfering with the Metabolism of Tacrolimus (FK506) Introduction Tacrolimus (FK506) is an immunosuppressant drug. The purpose of this protocol is to highlight drug interactions in the metabolism of tacrolimus (FK506) Systemically available tacrolimus is metabolised by hepatic CYP3A4. There is also evidence of gastrointestinal metabolism by CYP3A4 in the intestinal wall. Concomitant use of medicinal products or herbal remedies known to inhibit or induce CYP3A4 may affect the metabolism of tacrolimus and thereby increase or decrease tacrolimus blood levels. It is therefore recommended to monitor tacrolimus blood levels whenever substances which have the potential to alter CYP3A metabolism are used concomitantly and to adjust the tacrolimus dose as appropriate in order to maintain similar tacrolimus exposure Inhibitors of metabolism Clinically the following substances have been shown to increase tacrolimus blood levels: Strong interactions have been observed with antifungal agents such as ketoconazole, fluconazole, itraconazole and voriconazole, the macrolide antibiotic erythromycin or HIV protease inhibitors (e.g. ritonavir). Concomitant use of these substances may require decreased tacrolimus doses in nearly all patients. Weaker interactions have been observed with clotrimazole, clarithromycin, josamycin, nifedipine, nicardipine, diltiazem, verapamil, danazol, ethinylestradiol, omeprazole and nefazodone. In vitro the following substances have been shown to be potential inhibitors of tacrolimus metabolism: bromocriptine, cortisone, dapsone, ergotamine, gestodene, lidocaine, mephenytoin, miconazole, midazolam, nilvadipine, norethisterone, quinidine, tamoxifen, troleandomycin. Grapefruit juice has been reported to increase the blood level of tacrolimus and should therefore be avoided.
    [Show full text]
  • Ketoconazole and Posaconazole Selectively Target HK2-Expressing Glioblastoma Cells
    Published OnlineFirst October 15, 2018; DOI: 10.1158/1078-0432.CCR-18-1854 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Ketoconazole and Posaconazole Selectively Target HK2-expressing Glioblastoma Cells Sameer Agnihotri1, Sheila Mansouri2, Kelly Burrell2, Mira Li2, Mamatjan Yasin, MD2, Jeff Liu2,3, Romina Nejad2, Sushil Kumar2, Shahrzad Jalali2, Sanjay K. Singh2, Alenoush Vartanian2,4, Eric Xueyu Chen5, Shirin Karimi2, Olivia Singh2, Severa Bunda2, Alireza Mansouri7, Kenneth D. Aldape2,6, and Gelareh Zadeh2,7 Abstract Purpose: Hexokinase II (HK2) protein expression is eleva- in vivo. Treatment of mice bearing GBM with ketoconazole ted in glioblastoma (GBM), and we have shown that HK2 and posaconazole increased their survival, reduced tumor could serve as an effective therapeutic target for GBM. Here, we cell proliferation, and decreased tumor metabolism. In interrogated compounds that target HK2 effectively and addition, treatment with azoles resulted in increased pro- restrict tumor growth in cell lines, patient-derived glioma stem portion of apoptotic cells. cells (GSCs), and mouse models of GBM. Conclusions: Overall, we provide evidence that azoles exert Experimental Design: We performed a screen using a set of their effect by targeting genes and pathways regulated by HK2. 15 drugs that were predicted to inhibit the HK2-associated These findings shed light on the action of azoles in GBM. gene signature. We next determined the EC50 of the com- Combined with existing literature and preclinical results, these pounds by treating glioma cell lines and GSCs. Selected data support the value of repurposing azoles in GBM clinical compounds showing significant impact in vitro were used to trials.
    [Show full text]
  • 2021 Formulary List of Covered Prescription Drugs
    2021 Formulary List of covered prescription drugs This drug list applies to all Individual HMO products and the following Small Group HMO products: Sharp Platinum 90 Performance HMO, Sharp Platinum 90 Performance HMO AI-AN, Sharp Platinum 90 Premier HMO, Sharp Platinum 90 Premier HMO AI-AN, Sharp Gold 80 Performance HMO, Sharp Gold 80 Performance HMO AI-AN, Sharp Gold 80 Premier HMO, Sharp Gold 80 Premier HMO AI-AN, Sharp Silver 70 Performance HMO, Sharp Silver 70 Performance HMO AI-AN, Sharp Silver 70 Premier HMO, Sharp Silver 70 Premier HMO AI-AN, Sharp Silver 73 Performance HMO, Sharp Silver 73 Premier HMO, Sharp Silver 87 Performance HMO, Sharp Silver 87 Premier HMO, Sharp Silver 94 Performance HMO, Sharp Silver 94 Premier HMO, Sharp Bronze 60 Performance HMO, Sharp Bronze 60 Performance HMO AI-AN, Sharp Bronze 60 Premier HDHP HMO, Sharp Bronze 60 Premier HDHP HMO AI-AN, Sharp Minimum Coverage Performance HMO, Sharp $0 Cost Share Performance HMO AI-AN, Sharp $0 Cost Share Premier HMO AI-AN, Sharp Silver 70 Off Exchange Performance HMO, Sharp Silver 70 Off Exchange Premier HMO, Sharp Performance Platinum 90 HMO 0/15 + Child Dental, Sharp Premier Platinum 90 HMO 0/20 + Child Dental, Sharp Performance Gold 80 HMO 350 /25 + Child Dental, Sharp Premier Gold 80 HMO 250/35 + Child Dental, Sharp Performance Silver 70 HMO 2250/50 + Child Dental, Sharp Premier Silver 70 HMO 2250/55 + Child Dental, Sharp Premier Silver 70 HDHP HMO 2500/20% + Child Dental, Sharp Performance Bronze 60 HMO 6300/65 + Child Dental, Sharp Premier Bronze 60 HDHP HMO
    [Show full text]
  • COMIRB Protocol
    w COMIRB Protocol COLORADO MULTIPLE INSTITUTIONAL REVIEW BOARD CAMPUS BOX F-490 TELEPHONE: 303-724-1055 Fax: 303-724-0990 Protocol #:15-0929 Project Title: A randomized, double blind, placebo-controlled crossover study of tolerability and efficacy of Cannabidiol (CBD) on tremor in Parkinson’s disease Principal Investigator: Maureen Anne Leehey, MD Version Date: 12May2017 I. Hypotheses and Specific Aims: Parkinson disease (PD) is a relatively common, progressive, disabiling disorder that responds partially to symptomatic treatments. Since cannabis has become legal in Colorado, many persons with PD have been trying it to see if it relieves any of their symptoms. According to published and anecdotal reports cannabidiol (CBD), is a component of cannabis, has potential beneficial medical uses. However, the safety, tolerability, dose and benefits are unknown. There are many forms of CBD being marketed. In this study we are using Epidiolex, because it is >99% pure CBD with only a trace amount of THC (<0.15%) and because it has more data on it regarding safety, tolerability, dosing and efficacy than most other forms. It is manufactured by GW Pharmaceuticals and currently it is being used in four FDA approved epilepsy studies. GW has determined a dose range that is best tolerated and effective in psychosis and seizure disorders. These studies are described in the Investigational Brochure (IB) Edition 8, Section 7.3.1. The largest cohort of subjects have been in epilepsy studies, and the majority of them were pediatric. Because there is no definitive published data on what dose of Epidiolex is best tolerated and effective in an adult population with a neurodegenerative disease, PD, this study is conducted in two stages.
    [Show full text]
  • FDA Briefing Document Pharmacy Compounding Advisory Committee
    FDA Briefing Document Pharmacy Compounding Advisory Committee (PCAC) Meeting June 23, 2016 The attached package contains background information prepared by the Food and Drug Administration (FDA) for the panel members of the Pharmacy Compounding Advisory Committee (advisory committee). We are bringing certain compounding issues to this advisory committee to obtain the committee’s advice. The background package may not include all issues relevant to the final regulatory recommendation and instead is intended to focus on issues identified by the Agency for discussion by the advisory committee. The FDA background package often contains assessments and/or conclusions and recommendations written by individual FDA reviewers. Such conclusions and recommendations do not necessarily represent the final position of the individual reviewers, nor do they necessarily represent the final position of the Review Division or Office. The FDA does not intend to issue a final determination on the issues at hand until input from the advisory committee process has been considered, all reviews have been finalized, consultation with the United States Pharmacopeia has occurred, and public comment has been considered through notice and comment rulemaking. The final determination may be affected by issues not discussed at the advisory committee meeting. Table of Contents I. Introduction ................................................................................................................... 3 A. Bulk Drug Substances That Can Be Used by Compounders under
    [Show full text]
  • And Tualang Honey As Antifungal Agents for Candida Speciesin Vitro Evaluation of Nanoemulsions of Curcumin, Piperine
    Journal of Archive of SID J Appl Biotechnol Rep. 2020 Sep;7(3):190-198 Applied Biotechnology doi 10.30491/JABR.2020.109997 Reports Original Article In Vitro Evaluation of Nanoemulsions of Curcumin, Piperine and Tualang Honey as Antifungal Agents for Candida Species Zhi Xin Phuna1, James Ken Ee Yu1, Jie Ying Tee1, Shao Qi Chuah1, Nicholas Wee Han Tan1, Shantini Vijayabalan2, Aimi Syamima Abdul Manap3, Sreenivas Patro Sisinthy4, Priya Madhavan1* 1School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia 2School of Pharmacy, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia 3School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia 4Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, University Kuala Lumpur (RCMP UniKL), Ipoh, 30450 Perak, Malaysia Corresponding Author: Priya Madhavan, PhD, Senior Lecturer, School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia. Tel: +60-162120585, Email: [email protected] Received February 12, 2020; Accepted April 3, 2020; Online Published July 7, 2020 Abstract Introduction: Vulvovaginal candidiasis (VVC) has received enormous attention, not only due to its negative influences on women’s life but also because of the escalating trend of fungal resistance towards current antifungal drugs. In recent decades, researchers have been focusing on the development of natural products as antifungal agents due to their low side effects compared to standard antifungal drugs. In this study, the antifungal activities of curcumin, piperine, and tualang honey (TH) in single, combination, and combined nanoemulsions were evaluated.
    [Show full text]