2010SP001049-AN-Bohaty 63..114

Total Page:16

File Type:pdf, Size:1020Kb

2010SP001049-AN-Bohaty 63..114 Age Assessment of Eocene–Pliocene Drill Cores Recovered During the SHALDRIL II Expedition, Antarctic Peninsula Steven M. Bohaty,1,2 Denise K. Kulhanek,3,4 Sherwood W. Wise Jr.,3 Kelly Jemison,3 Sophie Warny,5 and Charlotte Sjunneskog6 Pre-Quaternary strata were recovered from four sites on the continental shelf of the eastern Antarctic Peninsula during the SHALDRIL II cruise, NBP0602A (March–April 2006). Fully marine shelf sediments characterize these short cores and contain a mixture of opaline, carbonate-walled, and organic-walled microfossils, suitable for both biostratigraphic and paleoen- vironmental studies. Here we compile biostratigraphic information and pro- vide age assessments for the Eocene–Pliocene intervals of these cores, based primarily on diatom biostratigraphy with additional constraints from calcar- eous nannofossil and dinoflagellate cyst biostratigraphy and strontium isotope dating. The Eocene and Oligocene diatom floras are illustrated in nine figures. A late Eocene age (~37–34 Ma) is assigned to strata recovered in Hole 3C, and a late Oligocene age (~28.4–23.3 Ma) is determined for strata recovered in Hole 12A. Middle Miocene (~12.8–11.7 Ma) and early Pliocene (~5.1–4.3 Ma) ages are assigned to the sequence recovered in holes 5C and 5D, and an early Pliocene age (~5.1–3.8 Ma) is interpreted for cores recovered in holes 6C and 6D. These ages provide chronostratigraphic ground truthing for the thick sequences of Paleogene and Neogene strata present on the northwestern edge of the James Ross Basin and on the northeastern side of the Joinville Plateau, as interpreted from a network of seismic stratigraphic survey lines in the drilling areas. Although representing a coarse-resolution sampling of the complete sedimentary package, the well-constrained ages for these cores also 1Earth and Planetary Sciences Department, University of California, Santa Cruz, California, USA. 2Now at School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK. 3Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Florida, USA. 4Now at Department of Paleontology, GNS Science, Lower Hutt, New Zealand. 5Department of Geology and Geophysics and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA. 6Antarctic Research Facility, Florida State University, Tallahassee, Florida, USA. Tectonic, Climatic, and Cryospheric Evolution of the Antarctic Peninsula Special Publication 063 Copyright 2011 by the American Geophysical Union. 10.1029/2010SP001049 63 64 AGE ASSESSMENT OF EOCENE–PLIOCENE DRILL CORES allow for the broad reconstruction of marine and terrestrial paleoenviron- ments in the Antarctic Peninsula for the late Eocene-to-early Pliocene time interval. 1. INTRODUCTION The Antarctic Peninsula is a highly sensitive region to global climate change. Over the past ~50 years, instrumental temperature records from multiple stations show a higher degree of warming in the Antarctic Peninsula relative to other areas of Antarctica and the global average [Vaughan et al., 2003; Turner et al., 2005]. Given the modern sensitivity of this area to atmospheric temper- ature change, a pressing question is the future stability and sensitivity of ice sheets to climate change in the Antarctica Peninsula region. Critical insight into this question can be obtained from reconstructing the past behavior of ice sheets and climatic history of the region. Ice-core records from the Antarctic Peninsula currently extend only back to ~1200 cal yr BP [Mosley-Thompson and Thompson, 2003]. Extension of the glacial and paleoclimatic history of the region to millennial and million-year timescales must therefore rely on the geological record. Most geological information concerning the paleoclimatic history of the Antarctic Peninsula region is confinedtolatePleistocene–Holocene time intervals. Marine sediment cores, for example, have been effectively used to reconstruct ice-sheet retreat history since the Last Glacial Maximum [e.g., Heroy and Anderson, 2007] and a detailed paleoceanographic history through the Holocene [e.g., Domack et al., 2003]. The pre-Quaternary record is much less known. Knowledge of the Eocene–Pliocene history has been pieced together primarily from drill cores on the continental rise on the western side of the Antarctic Peninsula (Ocean Drilling Program (ODP) Leg 178) [Barker and Camerlenghi, 2002] and outcrop records from Brabant, James Ross, Seymour, Cockburn, Alexander, and King George islands [e.g., Pirrie et al., 1997; Troedson and Smellie, 2002; Birkenmajer et al., 2005; Hambrey et al., 2008; Smellie et al., 2009]. Obtaining additional records and further exploitation of existing records, however, is necessary to answer key paleoclimatic questions for the region, such as ice sheet presence/stability in warm intervals of the Pliocene [Smellie et al., 2009] and the timing, extent, and character of initial ice-sheet development in the region during the Paleogene [Anderson et al., 2006]. Drilling in high-latitude regions such as the Antarctic Peninsula presents a number of chal- lenges. Most areas along the continental shelves are subject to sea ice cover, drifting icebergs, and rapidly changing weather conditions. In addition, both the coarse-grained nature of proximal glacimarine sediments and the erosive nature of glaciers further hinder the recovery and paleocli- matic interpretation of Antarctic drill cores. In ice-proximal areas, these challenges have been overcome in a variety of ways, including strategic use of large drilling ships by international ocean drilling expeditions (e.g., Deep Sea Drilling Project (DSDP) Leg 28, ODP Legs 178 and 188, and Integrated Ocean Drilling Program Expedition 318) and sea ice/ice shelf-based drilling projects (e.g., Cape Roberts Project and ANDRILL). Nevertheless, drilling in shallow continental shelf areas of the Antarctic Peninsula is not feasible using either a large, non-ice-strengthened drill ship or an ice-based platform. In order to overcome these obstacles, the Shallow Drilling project (SHALDRIL) was designed around the idea of mounting a medium-sized drill rig on an ice- breaking research vessel in order to allow quick drilling of shallow targets in ice-infested areas. Testing of the SHALDRIL strategy was undertaken during two cruises in the austral fall seasons of 2005 and 2006. The primary drilling target of these cruises was a section of thick, seaward dipping strata on the eastern (Weddell Sea) side of the Antarctic Peninsula: an untapped rock sequence ideal for reconstructing the Eocene-to-Pleistocene paleoclimatic and glacial history of the region [Anderson, 1999]. BOHATY ET AL. 65 The two SHALDRIL cruises utilized the research vessel icebreaker (RVIB) Nathaniel B. Palmer, temporarily mounting a drill rig over a moon pool in the aft section of the ship. During the first season of drilling (SHALDRIL Cruise NBP05-02, March–April 2005), a long Holocene succession was cored at a site along the South Shetland Islands [Milliken et al., 2009], as well as a number of technical holes aimed at testing the drill rig (Shipboard Scientific Party, SHALDRIL 2005 cruise report, 2005, http://www.arf.fsu.edu/projects/documents/shaldril2005.pdf ). After modification of the drilling tools and techniques, 12 sites were drilled during the second cruise (SHALDRIL II Cruise NBP0602A, March–April 2006) in the northwestern Weddell Sea, off the eastern tip of the Antarctic Peninsula (Shipboard Scientific Party, SHALDRIL II 2006 NBP0602A cruise report, 2006, http://www.arf.fsu.edu/projects/documents/Shaldril_2_Report. pdf, hereinafter Shipboard Scientific Party, 2006). The major successes of this cruise were the recovery of a long Holocene record from the Firth of Tay near Joinville Island [Michalchuk et al., 2009] and penetration into thick, pre-Quaternary strata on the continental shelf at four of the sites: NBP0602A-3, NBP0602A-5, NBP0602A-6, and NBP0602A-12 (Figure 1 and Table 1). Sedi- ments of Eocene age were recovered from a stratigraphic succession within the James Ross Basin at Site 3, and Oligocene–Pliocene age sediments were cored on the northeastern edge of the Joinville Plateau at sites 5, 6, and 12. In this chapter, we compile and revise the biostratigraphic age constraints for the pre-Quater- nary cores recovered on the SHALDRIL II cruise at sites NBP0602A-3, NBP0602A-5, NBP0602A-6, and NBP0602A-12, updating the initial shipboard biostratigraphic report (Ship- board Scientific Party, 2006). We also report on two strontium isotope ages that were generated after the cruise, which provide supporting age information. The presence of reworked sedimen- tary clasts of Paleocene and Cretaceous age within upper Quaternary sediments recovered at Site NBP0602A-9 has been reported separately by Kulhanek [2007]. Although the short cores recovered on the SHALDRIL cruise do not individually span long intervals of time, the age estimates provide valuable constraints for interpreting many different aspects of the geologic and paleoclimate history of the Antarctic Peninsula. Important outcomes of the integrated results include derivation of the erosional and glacial history of the eastern Antarctic Peninsula from the seismic architecture of the James Ross Basin and Joinville Plateau [Anderson, 1999; Smith and Figure 1. Location map of sites drilled during the SHALDRIL II expedition that recovered pre-Quaternary strata. Drill core sections of Eocene-to-Pliocene age were recovered on the Weddell Sea side of the
Recommended publications
  • 1. Leg 189 Summary1
    Exon, N.F., Kennett, J.P., Malone, M.J., et al., 2001 Proceedings of the Ocean Drilling Program, Initial Reports Volume 189 1. LEG 189 SUMMARY1 Shipboard Scientific Party2 ABSTRACT The Cenozoic Era is unusual in its development of major ice sheets. Progressive high-latitude cooling during the Cenozoic eventually formed major ice sheets, initially on Antarctica and later in the North- ern Hemisphere. In the early 1970s, a hypothesis was proposed that cli- matic cooling and an Antarctic cryosphere developed as the Antarctic Circumpolar Current progressively thermally isolated the Antarctic continent. This current resulted from the opening of the Tasmanian Gateway south of Tasmania during the Paleogene and the Drake Pas- sage during the earliest Neogene. The five Leg 189 drill sites, in 2463 to 3568 m water depths, tested, refined, and extended the above hypothesis, greatly improving under- standing of Southern Ocean evolution and its relation with Antarctic climatic development. The relatively shallow region off Tasmania is one of the few places where well-preserved and almost-complete marine Cenozoic carbonate-rich sequences can be drilled in present-day lati- tudes of 40°–50°S and paleolatitudes of up to 70°S. The broad geological history of all the sites was comparable, although there are important differences among the three sites in the Indian Ocean and the two sites in the Pacific Ocean, as well as from north to south. In all, 4539 m of core was recovered with an excellent overall recov- ery of 89%, with the deepest core hole penetrating 960 m beneath the seafloor. The entire sedimentary sequence cored is marine and contains a wealth of microfossil assemblages that record marine conditions from the Late Cretaceous (Maastrichtian) to the late Quaternary and domi- nantly terrestrially derived sediments until the earliest Oligocene.
    [Show full text]
  • Pliocene-Pleistocene Evolution of Sea Surface and Intermediate Water
    PUBLICATIONS Paleoceanography RESEARCH ARTICLE Pliocene-Pleistocene evolution of sea surface 10.1002/2016PA002954 and intermediate water temperatures Key Points: from the southwest Pacific • Reconstructed Tasman Sea surface and Antarctic Intermediate Water Erin L. McClymont1, Aurora C. Elmore1, Sev Kender2,3, Melanie J. Leng2,3, Mervyn Greaves4, and temperatures fi 4,5 • Long-term cooling trends from ~3.0 to Henry Elder eld 2.6 Ma and from 1.5 Ma to present 1 2 • Complex subtropical front displacement Department of Geography, Durham University, Durham, UK, Centre for Environmental Geochemistry, School of and subantarctic cooling trends since Geography, University of Nottingham, Nottingham, UK, 3British Geological Survey, Nottingham, UK, 4Department of Earth Pliocene Sciences, University of Cambridge, Cambridge, UK, 5Deceased 19 April 2016 Abstract Over the last 5 million years, the global climate system has evolved toward a colder mean state, Correspondence to: E. L. McClymont, marked by large-amplitude oscillations in continental ice volume. Equatorward expansion of polar waters [email protected] and strengthening temperature gradients have been detected. However, the response of the mid latitudes and high latitudes of the Southern Hemisphere is not well documented, despite the potential importance for Citation: climate feedbacks including sea ice distribution and low-high latitude heat transport. Here we reconstruct the McClymont, E. L., A. C. Elmore, S. Kender, Pliocene-Pleistocene history of both sea surface and Antarctic Intermediate Water (AAIW) temperatures on M. J. Leng, M. Greaves, and H. Elderfield orbital time scales from Deep Sea Drilling Project Site 593 in the Tasman Sea, southwest Pacific. We confirm (2016), Pliocene-Pleistocene evolution of sea surface and intermediate water overall Pliocene-Pleistocene cooling trends in both the surface ocean and AAIW, although the patterns are temperatures from the southwest complex.
    [Show full text]
  • (Bacillariophyta) Offers New Insights Into Eocene Marine Diatom Biostratigraphy and Palaeobiogeography
    Acta Geologica Polonica, Vol. 68 (2018), No. 1, pp. 53–88 DOI: 10.1515/agp-2017-0031 From museum drawers to ocean drilling: Fenneria gen. nov. (Bacillariophyta) offers new insights into Eocene marine diatom biostratigraphy and palaeobiogeography JAKUB WITKOWSKI Stratigraphy and Earth History Lab, Faculty of Geosciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland. E-mail: [email protected] ABSTRACT: Witkowski, J. 2018. From museum drawers to ocean drilling: Fenneria gen. nov. (Bacillariophyta) offers new insights into Eocene marine diatom biostratigraphy and palaeobiogeography. Acta Geologica Polonica, 68 (1), 53−88. Warszawa. Triceratium barbadense Greville, 1861a, T. brachiatum Brightwell, 1856, T. inconspicuum Greville, 1861b and T. kanayae Fenner, 1984a, are among the most common diatoms reported worldwide from lower to middle Eocene biosiliceous sediments. Due to complicated nomenclatural histories, however, they are often confused. A morpho- metric analysis performed herein indicates that T. brachiatum is conspecific with T. inconspicuum, and that both were previously often misidentified as T. barbadense. Triceratium barbadense sensu stricto is a distinct species similar to Triceratium castellatum West, 1860. Triceratium brachiatum and T. kanayae are transferred herein to a new genus, Fenneria, for which a close phylogenetic relationship with Medlinia Sims, 1998 is proposed. A review of the geographic and stratigraphic distribution of Fenneria shows that the best constrained records of its occurrences are found at DSDP Site 338, and ODP Sites 1051 and 1260. The ages of the base (B) and top (T) of each species’ stratigraphic range are calibrated here to the Geomagnetic Polarity Timescale either directly or inferred via correlation with dinocyst biostratigraphy.
    [Show full text]
  • Late Eocene Southern Ocean Cooling and Invigoration of Circulation
    RESEARCH ARTICLE Late Eocene Southern Ocean Cooling and Invigoration 10.1029/2019GC008182 of Circulation Preconditioned Antarctica for Key Points: ‐ • Late Eocene accelerated deepening Full Scale Glaciation of the Tasman Gateway led to Alexander J. P. Houben1,2 , Peter K. Bijl1, Appy Sluijs1 , Stefan Schouten3, invigorated surface and bottom 1,3 water circulation in the Southern and Henk Brinkhuis Ocean 1 • Biomarker paleothermometry and Marine Palynology and Paleoceanography, Laboratory of Palaeobotany and Palynology, Department of Earth Sciences, quantitative dinocyst distribution Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands, 2Now at Geological Survey of the Netherlands patterns coevally demonstrate (TNO), Utrecht, The Netherlands, 3Royal Netherlands Institute for sea research (NIOZ) and Utrecht University, Texel, cooling and enhanced productivity The Netherlands • Invigoration of a wind‐driven Antarctic counter current had profound effects and aided preconditioning Antarctica for Abstract During the Eocene‐Oligocene Transition (EOT; 34–33.5 Ma), Antarctic ice sheets relatively glacial expansion rapidly expanded, leading to the first continent‐scale glaciation of the Cenozoic. Declining atmospheric CO2 concentrations and associated feedbacks have been invoked as underlying mechanisms, but the role of Supporting Information: the quasi‐coeval opening of Southern Ocean gateways (Tasman Gateway and Drake Passage) and resulting • Supporting Information S1 • Data Set S1 changes in ocean circulation is as yet poorly understood. Definitive field evidence from EOT sedimentary successions from the Antarctic margin and the Southern Ocean is lacking, also because the few available sequences are often incomplete and poorly dated, hampering detailed paleoceanographic and paleoclimatic Correspondence to: analysis. Here we use organic dinoflagellate cysts (dinocysts) to date and correlate critical Southern Ocean A.
    [Show full text]
  • Glacial-Interglacial Sea Surface Temperture And
    PLANKTIC FORAMINIFERA-BASED SEA SURFACE TEMPERATURE ESTIMATES AND LATE QUATERNARY OCEANOGRAPHY OFF NEW ZEALAND’S WEST COAST Andrew Peter Kolodziej A thesis submitted in partial fulfillment for the degree of Masters of Science in Geology School of Geography, Environment and Earth Sciences Victoria University 2010 i ii Abstract Planktic foraminiferal assemblages were used to investigate the paleoceanography of the Eastern Tasman Sea over the last 480 kyrs (Marine Isotope Stages 12-1). One hundred and sixty-two faunas (96 picked and identified as part of this project (MIS 12-6) added to 66 census counts from Dr. M. Crundwell (MIS 6-1)) have been assembled from Marion Dufresne piston core MD06-2986 (~43˚ S. off New Zealand‟s west coast, 1477 m water depth). Faunal changes through the last five glacial-interglacial cycles are used to track surface water mass movement. Glacial periods are dominated by the eutrophic species Globigerina bulloides, with significant contributions from the temperate species Globoconella inflata. Temperate species Neogloboquadrina incompta and Gc. inflata dominate interglacials, with the former dominating the warmer parts and the latter dominating the cooler parts of the interglacials. Modern Analogue Technique (MAT) and an Artificial Neural Network (ANN) were used to estimate past sea surface temperatures (SST) based on the foraminiferal census counts data (23 species, ~46,000 specimens). SSTs show that MIS 12 was the longest, sustained cold period, while the coldest temperature was recorded in MIS 5d (~8º C). Interglacials MIS 11 and 5e are the two warmest stages of the record, with SSTs reaching ~18.5º C, about ~2º C warmer than present day.
    [Show full text]
  • Eocene Cooling Linked to Early Flow Across the Tasmanian Gateway
    Eocene cooling linked to early flow across the Tasmanian Gateway Peter K. Bijla,1, James A. P. Bendleb,2, Steven M. Bohatyc, Jörg Prossd,e, Stefan Schoutenf, Lisa Tauxeg, Catherine E. Stickleyh, Robert M. McKayi, Ursula Röhlj, Matthew Olneyk, Appy Sluijsa, Carlota Escutial, Henk Brinkhuisa,f, and Expedition 318 Scientists3 aDepartment of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CD, Utrecht, The Netherlands; bGeographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; cOcean and Earth Science, University of Southampton, Southampton SO14 3ZH, United Kingdom; dPaleoenvironmental Dynamics Group, Institute of Geosciences, University of Frankfurt, 60438 Frankfurt, Germany; eBiodiversity and Climate Research Centre, 60325 Frankfurt, Germany; fNIOZ Royal Netherlands Institute for Sea Research, 1790 AB, Den Burg, Texel, The Netherlands; gGeosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0220; hDepartment of Geology, University of Troms, N-9037 Troms, Norway; iAntarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand; jMARUM–Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany; kDepartment of Geology, University of South Florida, Tampa, FL 33620; and lInstituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas (Spain)–Universite de Granada, 18002 Granada, Spain Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved April 23, 2013 (received for review November 30, 2012) The warmest global temperatures of the past 85 million years a marked, gradual cooling starting in the latest early Eocene occurred during a prolonged greenhouse episode known as the (∼49.5 Ma) (2–4), which culminated in the onset of large-scale Early Eocene Climatic Optimum (52–50 Ma).
    [Show full text]
  • Surface-Circulation Change in the Southern Ocean Across the Middle Eocene Climatic Optimum: Inferences from Dinoflagellate Cysts and Biomarker Paleothermometry 5
    Clim. Past Discuss., https://doi.org/10.5194/cp-2019-35 Manuscript under review for journal Clim. Past Discussion started: 4 April 2019 c Author(s) 2019. CC BY 4.0 License. Surface-circulation change in the Southern Ocean across the Middle Eocene Climatic Optimum: inferences from dinoflagellate cysts and biomarker paleothermometry 5 Margot J. Cramwinckel1, Lineke Woelders1,*, Emiel P. Huurdeman2, Francien Peterse1, Stephen J. Gallagher3, Jörg Pross2, Catherine E. Burgess4,#, Gert-Jan Reichart1,5, Appy Sluijs1, Peter K. Bijl1 1Department of Earth Sciences, Faculty of Geoscience, Utrecht University, Utrecht, The Netherlands 10 2Paleoenvironmental Dynamics Group, Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany 3School of Earth Sciences, The University of Melbourne, Melbourne, Australia 4School of Earth and Ocean Sciences, Cardiff University, Cardiff, United Kingdom 5NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Texel, The Netherlands *Now at Institute of Arctic and Alpine Research, University of Colorado, Boulder, US 15 #Now at Shell UK LTD, Aberdeen, UK Correspondence to: Margot J. Cramwinckel ([email protected]) Abstract Global climate cooled from the early Eocene hothouse (~52–50 Ma) to the latest Eocene (~34 Ma). At the same time, the tectonic evolution of the Southern Ocean was characterized by the opening and deepening of circum-Antarctic gateways, 20 which affected both surface- and deep-ocean circulation. The Tasman Gateway played a key role in regulating ocean throughflow between Australia and Antarctica. Southern Ocean surface currents through and around the Tasman Gateway have left recognizable tracers in the spatiotemporal distribution of plankton fossils, including organic-walled dinoflagellate cysts.
    [Show full text]
  • CSIRO Report Template
    The seamount fauna off southern Tasmania: Benthic communities, their conservation and impacts of trawling J. Anthony Koslow and Karen Gowlett-Holmes The seamount fauna off southern Tasmania: Benthic communities, their conservation and impacts of trawling Final report to Environment Australia and The Fisheries Research Development Corporation J. Anthony Koslow and Karen Gowlett-Holmes FIS HERIE S RESEARCH & ..iJJb_ Environment CS I RO DEVELO PMENT �,4�'/111t«tt""" Australia CORPORATIO N MARINE RESEARCH Depurrment of the Environment FRDC Project 95/058 Cover Main photo: Seamount coral reef at -1000m depth south of Tasmania showing colonial coral substrate (So/enosmiliavariabi/is) with sea urchins, gold coral, sea whips and sea fans, sponges and other species over it. Inset photos of individual organisms collected from the seamounts. From top : Squat lobster, Gastroptychus sp. (Chirostylidae), possible new species; Sea urchin, ?Aporocidaris sp. (Cidaridae) brooding young; Colonial coral , dominant on reef substrate, So/enosmiliavariabilis Duncan, 1873 (Caryophylliidae); Unidentified pycnogonid; Crinoid, Diplocrinus sibogae (Doderlein, 1907) (Pentacrinidae), new Australian record Koslow, J. Anthony. The seamount fauna of southern Australia : benthic communities, their conservation and impacts of trawling ISBN 0 643 06171 1. 1. Trawls and trawling - Environmental aspects - Australia, Southeastern. 2. Marine animals - Monitoring - Australia, Southeastern. 3. Seamounts - Australia, Southeastern. I. Gowlett-Holmes, Karen. II. Australia. Environment
    [Show full text]
  • Constraining Early to Middle Eocene Climate Evolution of the 2 Southwest Pacific and Southern Ocean
    1 CONSTRAINING EARLY TO MIDDLE EOCENE CLIMATE EVOLUTION OF THE 2 SOUTHWEST PACIFIC AND SOUTHERN OCEAN. 3 4 Edoardo Dallanave*,1, Valerian Bachtadse1, Erica M. Crouch3, Lisa Tauxe2, Claire 5 L. Shepherd3,4, Hugh E.G. Morgans3, Christopher J. Hollis3, Benjamin R. Hines3,4, 6 Saiko Sugisaki2. 7 8 *Corresponding author; email: [email protected]. Phone: 9 +49 (0) 89 2180 4206. Fax: +49 (0) 89 2180 4205. 10 1Department of Earth and Environmental Science, Ludwig-Maximilians 11 University, Munich D-80333, Germany. 12 2Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, 13 California 92093–0220, USA 14 3GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand 15 4 School of Geography, Environment and Earth Sciences, Victoria University of 16 Wellington, PO Box 600, Wellington 6140, New Zealand 17 18 Abstract 19 One of the major deficiencies of the global database for the early Paleogene is 20 the scarcity of reliable magnetostratigraphically-calibrated climate records from 21 the southern Pacific Ocean, the largest ocean basin during this time. We present a 22 new magnetostratigraphic record from marine sediments cropping out along the 23 mid-Waipara River, South Island, New Zealand. Fully oriented samples for 24 paleomagnetic analyses were collected along 45 m of stratigraphic section, which 25 encompasses magnetic polarity Chrons from C23n to C21n. These results are 26 integrated with foraminiferal, calcareous nannofossil, and dinoflagellate cyst 27 (dinocyst) biostratigraphy from samples collected in three different expeditions 28 along a total of ~80 m of section. Biostratigraphic data indicates continuous 29 sedimentation from the Waipawan to the Heretaungan New Zealand stages (i.e., 30 Ypresian–Lutetian international stages), from about 55.5 to 46 Ma.
    [Show full text]
  • Early Palaeogene Temperature Evolution of the Southwest Pacific Ocean
    Vol 461 | 8 October 2009 | doi:10.1038/nature08399 LETTERS Early Palaeogene temperature evolution of the southwest Pacific Ocean Peter K. Bijl1, Stefan Schouten3, Appy Sluijs1, Gert-Jan Reichart2, James C. Zachos4 & Henk Brinkhuis1 Relative to the present day, meridional temperature gradients in the deepening of the Tasmanian Gateway lead to a reorganization of the Early Eocene age ( 56–53 Myr ago) were unusually low, with Tasman and proto-Leeuwin ocean currents13. 1 slightly warmer equatorial regions but with much warmer subtro- According to the oldest part of the record, TEX86-derived SSTs at the pical Arctic2 and mid-latitude3 climates. By the end of the Eocene ETP gradually decreased from ,25 uC around 63 Myr ago to a min- epoch ( 34 Myr ago), the first major Antarctic ice sheets had imum of ,20 uC around 58 Myr ago (Fig. 2a). During the Late appeared4,5, suggesting that major cooling had taken place. Yet the Palaeocene and Early Eocene, Tasman SSTs gradually rose to tropical global transition into this icehouse climate remains poorly con- values of ,34 uC during the Early Eocene climatic optimum (EECO)6, strained, as only a few temperature records are available portraying between 53 and 49 Myr ago (Fig. 2a). A gradual cooling trend through- the Cenozoic climatic evolution of the high southern latitudes. Here out the Middle Eocene (starting at the termination of the EECO we present a uniquely continuous and chronostratigraphically well- ,49 Myr ago) arrived at temperatures of ,23 uC ,42 Myr ago, which calibrated TEX86 record of sea surface temperature (SST) from an is still relatively warm.
    [Show full text]
  • An Antarctic Stratigraphic Record of Stepwise Ice Growth Through the Eocene-Oligocene Transition
    Montclair State University Montclair State University Digital Commons Department of Earth and Environmental Studies Faculty Scholarship and Creative Works Department of Earth and Environmental Studies 3-1-2017 An Antarctic stratigraphic record of stepwise ice growth through the Eocene-Oligocene transition Sandra Passchier Montclair State University, [email protected] Daniel J. Ciarletta Montclair State University Triantafilo E. Miriagos Montclair State University Peter K. Bijl Utrecht University Steven M. Bohaty University of Southampton Follow this and additional works at: https://digitalcommons.montclair.edu/earth-environ-studies-facpubs Part of the Geology Commons MSU Digital Commons Citation Passchier, Sandra; Ciarletta, Daniel J.; Miriagos, Triantafilo E.; Bijl, eterP K.; and Bohaty, Steven M., "An Antarctic stratigraphic record of stepwise ice growth through the Eocene-Oligocene transition" (2017). Department of Earth and Environmental Studies Faculty Scholarship and Creative Works. 27. https://digitalcommons.montclair.edu/earth-environ-studies-facpubs/27 This Article is brought to you for free and open access by the Department of Earth and Environmental Studies at Montclair State University Digital Commons. It has been accepted for inclusion in Department of Earth and Environmental Studies Faculty Scholarship and Creative Works by an authorized administrator of Montclair State University Digital Commons. For more information, please contact [email protected]. An Antarctic stratigraphic record of stepwise ice growth
    [Show full text]
  • 1 Message to the Editor Dear Editor Yannick Donnadieu, 5 Thank You
    Message to the editor Dear editor Yannick Donnadieu, 5 Thank you for your patience with our revision, and for thinking along with us in order to work towards an acceptable compromise for the discussion paragraph on regional surface ocean circulation. Please find our author reply and the second revision of the manuscript (with tracked changes) attached below. 10 As we discussed in follow-up emails, we have tried to accommodate both the reviewers comments and your recommendations in a much elaborated paragraph 5.1. First, we now present the various possible mechanisms that could explain our dinocyst records (transport by Tasman Current, transport through Tasmanian Gateway, transport by East Australian Current) as alternative scenarios next to each other. In the second half of the paragraph, we focus on the uncertainties in available model simulations, and make the case that, at present, we cannot use these to fully constrain the plausibility of the different scenarios. 15 We outline the three major obstacles: limitations in model resolution, uncertainty on geographic boundary conditions, and the prevailing regional proxy-model temperature mismatch. In this discussion, we also incorporate your comments on the interplay between deep-water formation and surface-ocean circulation. Rather than trying to choose one of the proposed scenarios with too limited means (wich did not seem to work in the revised version of our manuscript), we would like to focus a bit more on what future research might be needed to distinguish between these options. See also the AR below. 20 As we also noted in our previous email, forthcoming collaborations between several of the co-authors of the present manuscript and the group of Anna von der Heydt (Utrecht University) will present more high-resolution simulations that might shed more light on this issue in the future.
    [Show full text]