Outcomes, Counting, Countability, Measures and Probability OPRE 7310 Lecture Notes by Metin C¸Akanyıldırım Compiled at 02:01 on Thursday 20Th August, 2020

Total Page:16

File Type:pdf, Size:1020Kb

Outcomes, Counting, Countability, Measures and Probability OPRE 7310 Lecture Notes by Metin C¸Akanyıldırım Compiled at 02:01 on Thursday 20Th August, 2020 Outcomes, Counting, Countability, Measures and Probability OPRE 7310 Lecture Notes by Metin C¸akanyıldırım Compiled at 02:01 on Thursday 20th August, 2020 1 Why Probability? We have limited information about the experiments so we cannot know their outcomes with certainty. More information can be collected, if doing so is profitable, to reduce uncertainty. But some amount of uncertainty always remains as information collection is costly and might even be impossible or inaccurate. So we are often bound to work with probability models. Example: Instead of forecasting the number of probability books sold at the UTD bookstore tomorrow, let us ask everybody (students, faculty, staff, residents of Plano and Richardson) if they plan to buy a book tomor- row. Surveying potential customers in this manner is always possible. But surveys are costly and inaccurate. Before setting up probability models, we observe experiments and their outcomes in real-life to have a sense of what is likely to happen. Deriving inferences from observations is the field of Statistics. These inferences about the likelihood of outcomes become the ingredients of probability models that are designed to mimic the real-life experiments. Probability models can later be used to make decisions to manage the real-life contexts. Example: Some real-life experiments that are worthy of probability models are subatomic particle collisions, genetic breeding, weather forecasting, financial securities, queues. 2 An Event – A Collection of the Outcomes of an Experiment Outcome of an experiment may be uncertain before the experiment happens. That is, the outcome may not be determined with (sufficient) certainty ex ante. Here the word experiment has a broad meaning that covers more than laboratory experiments or on-site experiments. It covers any action or activity whose outcomes are of interest. This broader meaning is illustrated with the next example. Example: As an experiment, we can consider an update of Generally Accepted Accounting Principles (GAAP) issued by Financial Accounting Standards Board (FASB.org). Suppose that the board is investi- gating an update of reporting requirements for startups (more formally, Development Stage Entities). The board can decide to keep (K) the status quo, increase (I) the reporting requirements or decrease (D) them. Although accounting professionals can assess the likelihood of each of the outcomes K, I and D, they cannot be certain whether the board’s discussion will lead to I or D, or K, so the outcomes of the update experiment are uncertain. Sufficiency of certainty depends on the intended use of the associated probability model. A room ther- mostat may be assumed to be showing the room temperature with sufficient certainty for the purpose of controlling the temperature with an air conditioner. The same thermostat may have insufficient certainty for controlling the speed of a heat releasing chemical reaction. When the uncertainty is deemed to be sufficient, it can be reduced, say by employing a more accurate thermostat. Or a probabilistic model can be designed to incorporate the uncertainty, say by controlling the average speed of the reaction. 1 Example: Outcomes of a dice rolling experiment are 1, 2, 3, 4, 5 and 6. For a fair dice, each outcome is (sufficiently) uncertain. Each outcome of an experiment can be denoted generically by w or indexed as wi for specificity. Often these outcomes are minimal outcomes that cannot be or are not preferred to be separated into several other outcomes. Such minimal outcomes can be called elementary outcomes. Two elementary outcomes cannot occur at once, so elementary outcomes are mutually exclusive. Then elementary outcomes can be collected to obtain a set of outcomes W, that is generally called the sample space. Example: For the experiment of updating the accounting principles, w1 = K, w2 = I, w3 = D and W = fKg [ fIg [ fDg = fK, I, Dg. Example: For the experiment of rolling a dice, wi = i for i = 1, . , 6 and W = f1, 2, 3, 4, 5, 6g. An event is a collection of the outcomes of an experiment. So, an event is a subset of the sample space, i.e., a non-empty event A has w 2 A ⊆ W for some w. An event can be empty and is denoted by A = Æ. We are not interested in impossible events in practice, the consideration of Æ is useful for theoretical construction of probability models. Example: For the experiment of updating the accounting principles, the event of not increasing the reporting requirements can be denoted by fK, Dg. Example: For the experiment of rolling a dice, the event of an even outcome is f2, 4, 6g and the event of no outcome is Æ. Example: Consider the collision of two hydrogen atoms on a plane. One of the atoms is stationary at the origin and is hit by another moving from the left to right. After the collision, the atom moving from left to right can move to the 1st, 2nd, 3rd or 4th quadrant. The sample space for the movement of this atom is f1, 2, 3, 4g and the event that it bounces back (moves from right to left after the collision) is f2, 3g. Since an event corresponds to a set in the sample space, we can apply set operations on events. In particular, for two events A and B, we can speak of intersection, union, set difference. If the intersection of two events is empty, they are called disjoint: If A \ B = Æ, then A and B are disjoint. Example: In an experiment of rolling a dice twice, we can consider the sum and the multiplication of the numbers in the first and second rolls. Let A be the event that the multiplication is odd; B be the event that the sum is odd; C be the event that both multiplication and sum are odd; D be the event that both multiplication and sum are even. The outcomes in A have both the first and second number odd, while the outcomes in B have an odd number and an even number. Hence no outcome can be in both event A and B, which turn out to be disjoint events: A \ B = Æ = C. To be in D, an outcome must have both numbers even. In each outcome, either both numbers are odd (so multiplication is odd and sum is even =) A); or one is odd while the other is even (so multiplication is even and sum is odd =) B); or both numbers are even (so multiplication and sum are even =) D). Hence, A [ B [ D = W. To convince yourself further, you can enumerate each outcome and see whether it falls in A or B or D by completing Table 1. Some experiments are truly physical but their outcome is treated as a random variable in probability contexts. A good examples are rolling a die and flipping a coin. If we put a coin head up on our thumb and throw it up with no spin, it comes down head up. Then there is no flip or randomness. Some bakery cooks flatten the dough bread an throw it in the air without any flips1. Similarly, good players can consistently 1Indian cook throws dough for six metres https://www.youtube.com/watch?v=VhoiBIdz dU 2 Table 1: Sample space W for two dice rolls is composed of pairs (i, j) for i, j = 1 . 6. What is shown in each cell below are (multiplication=ij,sum=i + j) and the associated event. Second Roll 1 2 3 4 5 6 1 (1, 2), A (2, 3), B (3, 4), A (4, 5), B (5, 6), A (6, 7), B 2 (2, 3), B (4, 4), D (6, 5), B (8, 6), D (10, 7), B (12, 8), D First 3 (3, 4), (6, 5), (9, 6), (12, 7), (15, 8), (18, 9), Roll 4 (4, 5), (8, 6), (12, 7), (16, 8), (20, 9), (24, 10), 5 6 throw a frisbee or a football without a flip to facilitate a catch. We readily accept the absence of random- ness or a flip in the throws of flattened doug, friebee and football but make numerous examples based on randomness in throws of a coin. Perhaps, there is less rasndomness in coin flips than we are used to. Example: Suppose a coin is flipped with a vertical speed of vj and stays in the air for tair = 2vj/g seconds where g is the gravitational acceleration constant. The same coin has the angular speed of v◦ given in terms of revolutions per second. Then the coin makes v◦tair revolutions in the air. If the coin has head up and is thrown up to make 1 revolution in the air, it comes down as head up. If it makes (1/4, 3/4) revolutions in the air, it comes down as tail. In general, it comes down tail after (k + 1/4, k + 3/4) revolutions for k = 0, 1, 2 . Said differently, v◦tair 2 (k + 1/4, k + 3/4) for k = 0, 1, 2 . guarantees an outcome of tail. To start with head up and end with tail up (H ! T), we need to relate vertical and angular speeds to each other: vj 1 1 3 H ! T if v◦ 2 k + , k + for k = 0, 1, 2 . g 2 4 4 Figure 1 shows the regions of speed that maintain head (H ! H) or switch head to tail (H ! T). These regions are separated by hyperbolas of the form v◦vj = constant. From our experience, we can say that a coin stays in the air for about half a second, so vj/g ≈ 0.25 and the left-hand side of Figure 1 is more relevant in practical applications than its right-hand side.
Recommended publications
  • GTI Diagonalization
    GTI Diagonalization A. Ada, K. Sutner Carnegie Mellon University Fall 2017 1 Comments Cardinality Infinite Cardinality Diagonalization Personal Quirk 1 3 “Theoretical Computer Science (TCS)” sounds distracting–computers are just a small part of the story. I prefer Theory of Computation (ToC) and will refer to that a lot. ToC: computability theory complexity theory proof theory type theory/set theory physical realizability Personal Quirk 2 4 To my mind, the exact relationship between physics and computation is an absolutely fascinating open problem. It is obvious that the standard laws of physics support computation (ignoring resource bounds). There even are people (Landauer 1996) who claim . this amounts to an assertion that mathematics and com- puter science are a part of physics. I think that is total nonsense, but note that Landauer was no chump: in fact, he was an excellent physicists who determined the thermodynamical cost of computation and realized that reversible computation carries no cost. At any rate . Note the caveat: “ignoring resource bounds.” Just to be clear: it is not hard to set up computations that quickly overpower the whole (observable) physical universe. Even a simple recursion like this one will do. A(0, y) = y+ A(x+, 0) = A(x, 1) A(x+, y+) = A(x, A(x+, y)) This is the famous Ackermann function, and I don’t believe its study is part of physics. And there are much worse examples. But the really hard problem is going in the opposite direction: no one knows how to axiomatize physics in its entirety, so one cannot prove that all physical processes are computable.
    [Show full text]
  • Cardinality of Accumulation Points of Infinite Sets 1 Introduction
    International Mathematical Forum, Vol. 11, 2016, no. 11, 539 - 546 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6224 Cardinality of Accumulation Points of Infinite Sets A. Kalapodi CTI Diophantus, Computer Technological Institute & Press University Campus of Patras, 26504 Patras, Greece Copyright c 2016 A. Kalapodi. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract One of the fundamental theorems in real analysis is the Bolzano- Weierstrass property according to which every bounded infinite set of real numbers has an accumulation point. Since this theorem essentially asserts the completeness of the real numbers, the notion of accumulation point becomes substantial. This work provides an efficient number of examples which cover every possible case in the study of accumulation points, classifying the different sizes of the derived set A0 and of the sets A \ A0, A0 n A, for an infinite set A. Mathematics Subject Classification: 97E60, 97I30 Keywords: accumulation point; derived set; countable set; uncountable set 1 Introduction The \accumulation point" is a mathematical notion due to Cantor ([2]) and although it is fundamental in real analysis, it is also important in other areas of pure mathematics, such as the study of metric or topological spaces. Following the usual notation for a metric space (X; d), we denote by V (x0;") = fx 2 X j d(x; x0) < "g the open sphere of center x0 and radius " and by D(x0;") the set V (x0;") n fx0g.
    [Show full text]
  • 17 Axiom of Choice
    Math 361 Axiom of Choice 17 Axiom of Choice De¯nition 17.1. Let be a nonempty set of nonempty sets. Then a choice function for is a function f sucFh that f(S) S for all S . F 2 2 F Example 17.2. Let = (N)r . Then we can de¯ne a choice function f by F P f;g f(S) = the least element of S: Example 17.3. Let = (Z)r . Then we can de¯ne a choice function f by F P f;g f(S) = ²n where n = min z z S and, if n = 0, ² = min z= z z = n; z S . fj j j 2 g 6 f j j j j j 2 g Example 17.4. Let = (Q)r . Then we can de¯ne a choice function f as follows. F P f;g Let g : Q N be an injection. Then ! f(S) = q where g(q) = min g(r) r S . f j 2 g Example 17.5. Let = (R)r . Then it is impossible to explicitly de¯ne a choice function for . F P f;g F Axiom 17.6 (Axiom of Choice (AC)). For every set of nonempty sets, there exists a function f such that f(S) S for all S . F 2 2 F We say that f is a choice function for . F Theorem 17.7 (AC). If A; B are non-empty sets, then the following are equivalent: (a) A B ¹ (b) There exists a surjection g : B A. ! Proof. (a) (b) Suppose that A B.
    [Show full text]
  • Worksheet: Cardinality, Countable and Uncountable Sets
    Math 347 Worksheet: Cardinality A.J. Hildebrand Worksheet: Cardinality, Countable and Uncountable Sets • Key Tool: Bijections. • Definition: Let A and B be sets. A bijection from A to B is a function f : A ! B that is both injective and surjective. • Properties of bijections: ∗ Compositions: The composition of bijections is a bijection. ∗ Inverse functions: The inverse function of a bijection is a bijection. ∗ Symmetry: The \bijection" relation is symmetric: If there is a bijection f from A to B, then there is also a bijection g from B to A, given by the inverse of f. • Key Definitions. • Cardinality: Two sets A and B are said to have the same cardinality if there exists a bijection from A to B. • Finite sets: A set is called finite if it is empty or has the same cardinality as the set f1; 2; : : : ; ng for some n 2 N; it is called infinite otherwise. • Countable sets: A set A is called countable (or countably infinite) if it has the same cardinality as N, i.e., if there exists a bijection between A and N. Equivalently, a set A is countable if it can be enumerated in a sequence, i.e., if all of its elements can be listed as an infinite sequence a1; a2;::: . NOTE: The above definition of \countable" is the one given in the text, and it is reserved for infinite sets. Thus finite sets are not countable according to this definition. • Uncountable sets: A set is called uncountable if it is infinite and not countable. • Two famous results with memorable proofs.
    [Show full text]
  • The Set of All Countable Ordinals: an Inquiry Into Its Construction, Properties, and a Proof Concerning Hereditary Subcompactness
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2009 The Set of All Countable Ordinals: An Inquiry into Its Construction, Properties, and a Proof Concerning Hereditary Subcompactness Jacob Hill College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Mathematics Commons Recommended Citation Hill, Jacob, "The Set of All Countable Ordinals: An Inquiry into Its Construction, Properties, and a Proof Concerning Hereditary Subcompactness" (2009). Undergraduate Honors Theses. Paper 255. https://scholarworks.wm.edu/honorstheses/255 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Set of All Countable Ordinals: An Inquiry into Its Construction, Properties, and a Proof Concerning Hereditary Subcompactness A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors in Mathematics from the College of William and Mary in Virginia, by Jacob Hill Accepted for ____________________________ (Honors, High Honors, or Highest Honors) _______________________________________ Director, Professor David Lutzer _________________________________________ Professor Vladimir Bolotnikov _________________________________________ Professor George Rublein _________________________________________
    [Show full text]
  • A Search for a Constructivist Approach for Understanding the Uncountable Set P(N) Cindy Stenger University of North Alabama
    CORE Metadata, citation and similar papers at core.ac.uk Provided by DigitalCommons@Florida International University Florida International University FIU Digital Commons School of Education and Human Development College of Arts, Sciences & Education Faculty Publications 3-2008 A Search for a Constructivist Approach for Understanding the Uncountable Set P(N) Cindy Stenger University of North Alabama Kirk Weller University of Michigan-Flint Ilana Arnon Center for Educational Technology, Tel Aviv Ed Dubinsky Florida International University Draga Vidakovic Georgia State University Follow this and additional works at: http://digitalcommons.fiu.edu/education_fac Part of the Education Commons Recommended Citation Stenger, Cindy; Weller, Kirk; Arnon, Ilana; Dubinsky, Ed; and Vidakovic, Draga, "A Search for a Constructivist Approach for Understanding the Uncountable Set P(N)" (2008). School of Education and Human Development Faculty Publications. 1. http://digitalcommons.fiu.edu/education_fac/1 This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in School of Education and Human Development Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. CINDY STENGER, KIRK WELLER, ILANA ARNON, ED DUBINSKY, DRAGA VIDAKOVIC A SEARCH FOR A CONSTRUCTIVIST APPROACH FOR UNDERSTANDING THE UNCOUNTABLE SET P(N) RESUMEN. En el presente estudio nos preguntamos si los individuos construyen estructuras mentales para el conjunto P(N) que da significado a la expresión “todos los subconjuntos de N ”. Los aportes de nuestra investigación en relación con esta pregunta tienen dos vertientes. Primeramente, identificamos las perspectivas constructivistas que han sido o podrían haber sido utilizadas para describir los mecanismos de pensamiento acerca de los conjuntos infinitos, en particular el conjunto de los números naturales.
    [Show full text]
  • On the Necessary Use of Abstract Set Theory
    ADVANCES IN MATHEMATICS 41, 209-280 (1981) On the Necessary Use of Abstract Set Theory HARVEY FRIEDMAN* Department of Mathematics, Ohio State University, Columbus, Ohio 43210 In this paper we present some independence results from the Zermelo-Frankel axioms of set theory with the axiom of choice (ZFC) which differ from earlier such independence results in three major respects. Firstly, these new propositions that are shown to be independent of ZFC (i.e., neither provable nor refutable from ZFC) form mathematically natural assertions about Bore1 functions of several variables from the Hilbert cube I” into the unit interval, or back into the Hilbert cube. As such, they are of a level of abstraction significantly below that of the earlier independence results. Secondly, these propositions are not only independent of ZFC, but also of ZFC together with the axiom of constructibility (V = L). The only earlier examples of intelligible statements independent of ZFC + V= L either express properties of formal systems such as ZFC (e.g., the consistency of ZFC), or assert the existence of very large cardinalities (e.g., inaccessible cardinals). The great bulk of independence results from ZFCLthe ones that involve standard mathematical concepts and constructions-are about sets of limited cardinality (most commonly, that of at most the continuum), and are obtained using the forcing method introduced by Paul J. Cohen (see [2]). It is now known in virtually every such case, that these independence results are eliminated if V= L is added to ZFC. Finally, some of our propositions can be proved in the theory of classes, as formalized by the Morse-Kelley class theory with the axiom of choice for sets (MKC), but not in ZFC.
    [Show full text]
  • On Cantor's Uncountability Proofs
    On Cantor's important proofs W. Mueckenheim University of Applied Sciences, Baumgartnerstrasse 16, D-86161 Augsburg, Germany [email protected] ________________________________________________________ Abstract. It is shown that the pillars of transfinite set theory, namely the uncountability proofs, do not hold. (1) Cantor's first proof of the uncountability of the set of all real numbers does not apply to the set of irrational numbers alone, and, therefore, as it stands, supplies no distinction between the uncountable set of irrational numbers and the countable set of rational numbers. (2) As Cantor's second uncountability proof, his famous second diagonalization method, is an impossibility proof, a simple counter-example suffices to prove its failure. (3) The contradiction of any bijection between a set and its power set is a consequence of the impredicative definition involved. (4) In an appendix it is shown, by a less important proof of Cantor, how transfinite set theory can veil simple structures. 1. Introduction Two finite sets have the same cardinality if there exists a one-to-one correspondence or bijection between them. Cantor extrapolated this theorem to include infinite sets as well: If between a set M and the set Ù of all natural numbers a bijection M ¨ Ù can be established, then M is denumerable or 1 countable and it has the same cardinality as Ù, namely ¡0. There may be many non-bijective mappings, but at least one bijective mapping must exist. In 1874 Cantor [1] published the proof that the set ¿ of all algebraic numbers (including the set – of all rational numbers) is denumerable.
    [Show full text]
  • Paul B. Larson a BRIEF HISTORY of DETERMINACY §1. Introduction
    Paul B. Larson A BRIEF HISTORY OF DETERMINACY x1. Introduction. Determinacy axioms are statements to the effect that certain games are determined, in that each player in the game has an optimal strategy. The commonly accepted axioms for mathematics, the Zermelo-Fraenkel axioms with the Axiom of Choice (ZFC; see [??, ??]), im- ply the determinacy of many games that people actually play. This applies in particular to many games of perfect information, games in which the players alternate moves which are known to both players, and the out- come of the game depends only on this list of moves, and not on chance or other external factors. Games of perfect information which must end in finitely many moves are determined. This follows from the work of Ernst Zermelo [??], D´enesK}onig[??] and L´aszl´oK´almar[??], and also from the independent work of John von Neumann and Oskar Morgenstern (in their 1944 book, reprinted as [??]). As pointed out by Stanis law Ulam [??], determinacy for games of perfect information of a fixed finite length is essentially a theorem of logic. If we let x1,y1,x2,y2,::: ,xn,yn be variables standing for the moves made by players player I (who plays x1,::: ,xn) and player II (who plays y1,::: ,yn), and A (consisting of sequences of length 2n) is the set of runs of the game for which player I wins, the statement (1) 9x18y1 ::: 9xn8ynhx1; y1; : : : ; xn; yni 2 A essentially asserts that the first player has a winning strategy in the game, and its negation, (2) 8x19y1 ::: 8xn9ynhx1; y1; : : : ; xn; yni 62 A essentially asserts that the second player has a winning strategy.1 We let ! denote the set of natural numbers 0; 1; 2;::: ; for brevity we will often refer to the members of this set as \integers".
    [Show full text]
  • An Introduction to Set Theory
    AN INTRODUCTION TO SET THEORY Professor William A. R. Weiss November 21, 2014 2 Contents 0 Introduction 7 1 LOST 11 2 FOUND 23 3 The Axioms of Set Theory 29 4 The Natural Numbers 37 5 The Ordinal Numbers 47 6 Relations and Orderings 59 7 Cardinality 69 8 What's So Real About The Real Numbers? 79 9 Ultrafilters Are Useful 87 3 4 CONTENTS 10 The Universe 97 11 Reflection 103 12 Elementary Submodels 123 13 Constructibility 139 14 Appendices 155 .1 The Axioms of ZFC . 155 .2 Tentative Axioms . 156 CONTENTS 5 Preface These notes for a graduate course in set theory are on their way to be- coming a book. They originated as handwritten notes in a course at the University of Toronto given by Prof. William Weiss. Cynthia Church pro- duced the first electronic copy in December 2002. James Talmage Adams produced a major revision in February 2005. The manuscript has seen many changes since then, often due to generous comments by students, each of whom I here thank. Chapters 1 to 11 are now close to final form. Chapters 12 and 13 are quite readable, but should not be considered as a final draft. One more chapter will be added. 6 CONTENTS Chapter 0 Introduction Set Theory is the true study of infinity. This alone assures the subject of a place prominent in human culture. But even more, Set Theory is the milieu in which mathematics takes place today. As such, it is expected to provide a firm foundation for all the rest of mathematics.
    [Show full text]
  • Determinacy-Related Consequences on Limit Superiors
    DETERMINACY-RELATED CONSEQUENCES ON LIMIT SUPERIORS Daniel Walker, B.S. Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS May 2013 APPROVED: Stephen Jackson, Major Professor Douglas Brozovic, Committee Member Su Gao, Committee Member and Chair of the Department of Mathematics Mark Wardell, Dean of the Toulouse Graduate School Walker, Daniel. Determinacy-Related Consequences on Limit Superiors. Doctor of Philosophy (Mathematics), May 2013, 26 pp., bibliography, 13 titles. Laczkovich proved from ZF that, given a countable sequence of Borel sets on a perfect Polish space, if the limit superior along every subsequence was uncountable, then there was a particular subsequence whose intersection actually contained a perfect subset. Komjath later expanded the result to hold for analytic sets. In this paper, by adding AD and sometimes V=L(R) to our assumptions, we will extend the result further. This generalization will include the increasing of the length of the sequence to certain uncountable regular cardinals as well as removing any descriptive requirements on the sets. Copyright 2013 by Daniel Walker ii TABLE OF CONTENTS Page CHAPTER 1. INTRODUCTORY REMARKS ............................................................... 1 CHAPTER 2. THE COUNTABLE CASE ...................................................................... 9 CHAPTER 3. THE GENERAL CASE .......................................................................... 16 CHAPTER 4. GENERALIZING THE SELECTION LEMMA ...................................... 19 BIBLIOGRAPHY ........................................................................................................... 25 iii CHAPTER 1 INTRODUCTORY REMARKS Throughout this paper we are assuming the axioms of ZF. We also equivocate between R and !!. Definition 1. Given a limit ordinal λ, an unbounded S ⊆ λ, and a sequence of sets 0 0 hAαiα2S, define the limit superior of hAαiα2S by lim sup Aα = fx : 8α < λ 9α > α (α 2 S α2S ^ x 2 Aα0 )g.
    [Show full text]
  • The Axiom of Determinacy
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 The Axiom of Determinacy Samantha Stanton Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Physical Sciences and Mathematics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2189 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. College of Humanities and Sciences Virginia Commonwealth University This is to certify that the thesis prepared by Samantha Stanton titled “The Axiom of Determinacy” has been approved by his or her committee as satisfactory completion of the thesis requirement for the degree of Master of Science. Dr. Andrew Lewis, College of Humanities and Sciences Dr. Lon Mitchell, College of Humanities and Sciences Dr. Robert Gowdy, College of Humanities and Sciences Dr. John Berglund, Graduate Chair, Mathematics and Applied Mathematics Dr. Robert Holsworth, Dean, College of Humanities and Sciences Dr. F. Douglas Boudinot, Graduate Dean Date © Samantha Stanton 2010 All Rights Reserved The Axiom of Determinacy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Samantha Stanton Master of Science Director: Dr. Andrew Lewis, Associate Professor, Department Chair Department of Mathematics and Applied Mathematics Virginia Commonwealth University Richmond, Virginia May 2010 ii Acknowledgment I am most appreciative of Dr. Andrew Lewis. I would like to thank him for his support, patience, and understanding through this entire process.
    [Show full text]