Understanding Angular Momentum in Hadrons

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Angular Momentum in Hadrons Understanding Angular Momentum in Hadrons Kunal Kathuria Charlottesville, VA A Thesis Presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Physics UNIVERSITY OF VIRGINIA August, 2013 Declaration of Authorship I, Kunal Kathuria, declare that this thesis titled, `THESIS TITLE' and the work pre- sented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly at- tributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is my own work. I have acknowledged all main sources of help. Signed: Date: i "Humility means not being anxious to be honored by others." \Eloquence is truth concisely stated." [AC Bhaktivedanta Swami] If you can't explain it to a six year old, you don't understand it yourself. [Albert Einstein] At the heart of all knowledge lies simplicity of expression. UNIVERSITY OF VIRGINIA Abstract Department of Physics Doctor of Philosophy by Kunal Kathuria Charlottesville, VA The spin puzzle has been a relatively long-standing unresolved issue in hadron physics. We review and derive, using a wave-packet formalism, the first step preceding all spin sum rules: the connection of the angular momentum operator to the gravitomagnetic form factors of the energy-momentum tensor (EMT). We present our spin sum rule for spin one hadrons and comment on why the deuteron is an important system to study in an effort to understanding hadron spin and interactions better. We will visit a number of illuminating properties of spin seen from the wave packet approach (e.g. consequences/promotion of azimuthal symmetry in momentum space as the general rule for origin independence of angular momentum, merits of the different decompositions in the literature, a brand new way to express angular momentum, common \accepted" mistakes associated with the derivation etc) and will also say why this approach is the necessary starting point for all treatments. Additionally, we will attempt to clear a number of misconceptions surrounding the operators entering the sum rule (what the different relevant operators are, what the decompositions are, the merits of a partonic decomposition, the EMT in the free vs interacting theory, it being canonical vs Belinfante vs symmetric vs conserved etc) with simple and pertinent observations. Acknowledgements I would like to express my gratitude to my PhD advisor Simonetta Liuti for her very supportive attitude and very natural and open comportment during my work with her. I am grateful to her for her humble and gracious approach; for considering ideas just on merit without bias and strongly encouraging the originality she sees in her students. I am also thankful to Gary Goldstein for his collaboration and help in general. Thanks goes to all my collaborators in work and fellow students for discussions along the way, especially to J. Osvaldo Hernandez. I would like to say thank you to the physics department for supporting me as a graduate student and helping me earn a PhD in physics. I am extremely grateful for the support and presence of Amit Acara dasa and Mayapriya devi dasi, without whom my efforts would have been meaningless, and the rest of my family here, including my wife Prachi. I owe a big thanks to my parents for indulging my creative desires all along and I also thank my sister, Kamna. I thank my wife Prachi, the artist, for drawing the figures I needed for this document. Finally, thank you to Sunil Patel for providing the template for this manuscript. iv Contents Declaration of Authorshipi Abstract iii Acknowledgements iv List of Figures viii List of Tables ix Abbreviationsx Physical Constants xi 1 Introduction1 1.1 Preface: Writing Style.............................1 1.2 Introduction...................................2 1.2.1 Background...............................2 1.2.2 The Spin Crisis.............................4 1.2.3 Current Work..............................6 1.2.4 Specifics on Kinematical Regime...................7 1.2.5 Light-Cone Coordinates........................8 1.2.6 Brief Introduction to Generalized Parton Distributions.......8 1.2.7 Connection with the Energy-Momentum Tensor........... 13 2 Hadronic Spin Decomposition 14 2.1 The Two Decompositions and Operators Related to Angular Momentum. 14 2.2 Overview and Wave-Packet Results...................... 18 2.2.1 Overview................................ 18 2.2.2 The Nucleon Spin Sum Rule Developed by X. Ji.......... 19 2.2.3 Effective Zero Orbital Angular Momentum from Symmetry Con- siderations............................... 20 2.2.4 Azimuthal Momentum Symmetry is the Criterion for Zero OAM. 21 2.2.5 Necessity of Wave Packets and Comment on Separability of An- gular Momentum............................ 23 v Contents vi 2.2.6 Dark Angular Momentum....................... 24 2.2.7 Another Observable.......................... 25 2.3 A careful wave-packet treatment....................... 26 2.3.1 Relating Angular Momentum to the EMT.............. 26 2.3.2 Derivation of Sum Rule........................ 29 2.3.3 Obtaining a sum-rule with wave-packets............... 34 2.3.4 Translation-invariance for momentum and spin and translation- dependence for OAM.......................... 35 2.4 Gravitational Form Factors.......................... 37 2.4.1 The Connection with GPDs...................... 37 2.4.2 Checking Individual Terms for Conservation............. 39 3 Deuteron 42 3.1 Background................................... 42 3.2 Energy-Momentum Tensor Decomposition.................. 43 3.2.1 Trace Anomaly............................. 44 3.3 Spin One Sum Rule.............................. 44 3.4 Helicity Amplitudes: Formalism........................ 51 3.4.1 Simple Examples of Transformations................. 55 3.4.2 Accessing the Compton Form Factors................ 61 4 Simple Physical Arguments Related to Angular Momentum 62 4.1 Boost-like Operators.............................. 62 4.1.1 Commutation of Boost and Rotations................ 62 4.1.2 Degeneracy in Spin........................... 64 4.1.3 Pauli-Lubanski Vector: Contribution to Light-Cone Boost or An- gular Momentum?........................... 69 4.1.4 Good and Bad Components of the Pauli-Lubanski Vector..... 72 4.1.5 Longitudinal and Transverse Angular Momentum for the Nucleon and the Deuteron............................ 73 4.1.6 What About Orbital Angular Momentum?............. 77 4.1.7 What Does a Boost Do Classically and Quantum Mechanically to Angular Momentum?......................... 77 4.1.8 Meaning of Spin and Orbital Contributions in a Stationary State. 82 4.1.9 Why Transverse Angular Momentum Dominates.......... 84 4.1.10 Angular Momentum Contribution of the Magnetic Form Factor for the Proton and Deuteron..................... 85 4.1.11 What Does Boosting Do to Spin Individually?........... 86 4.1.12 Ji's Recent Argument for Gluon Spin................. 86 4.1.13 Spin-Orbit Coupling.......................... 87 4.1.14 Is There Origin Dependence in Angular Momentum? (On the Density Interpretation)........................ 88 4.1.15 Covariance of the Off-forward Matrix Element........... 88 4.1.16 Aside: Operator-shifting in Field Theory.............. 89 4.1.17 Comparing the Ji and JM Decompositions of the EMT....... 90 4.1.18 Further phenomenological development: Quark-Gluon Separation. 93 4.1.19 Eigenstates of the Pauli-Lubanski Spin Vector............ 93 4.1.20 Normalization of T µν ......................... 94 Contents vii 4.1.21 Burkardt's Torque Analysis...................... 95 4.1.22 On a Comment from Leader's Paper................. 95 5 Vorticity 97 5.1 Introduction and Observations........................ 97 5.1.1 The Nature of Vorticity........................ 97 5.1.2 Extension to Field Theory: Vorticity Density............ 100 5.1.3 The Circulation............................. 100 5.1.4 Vorticity is a Conserved Charge.................... 102 5.2 Calculations: Relating Vorticity and Angular Momentum......... 103 5.2.1 Involving Off-diagonal Elements of EMT............... 103 5.2.2 Writing Momentum as a Function of Vorticity............ 103 5.2.3 Evaluating the Becattini Term: Redefinition of J in terms of vorticity104 6 Conclusions and Philosophy 107 6.1 Summary of Contributions........................... 107 6.2 Brief Points of Philosophy........................... 110 6.2.1 Research Perspective.......................... 113 A Review 115 B Derivation of the Vorticity-Angular Momentum Connection 119 C Constructing the Transformation Matrices 122 Bibliography 125 List of Figures 1.1 Relative contributions of quark-spin, quark OAM, gluon spin, gluon OAM (JM) and quark-spin, quark OAM 0, gluon AM (Ji) of the two decomposi- tions of angular momentum of the proton in a simplified model, calculated by M. Burkardt. Each model sums to the same whole: total angular mo- mentum of the proton..............................5 1.2 Deeply Virtual Compton Scattering.....................9 2.1 Zero angular momentum of 2-particle system at any time in simple clas- sical example.................................. 21 z 2.2 Gaussian wave-packet centered at p0 ..................... 31 3.1 (color online) Upper panel: Total angular
Recommended publications
  • Theory of Angular Momentum Rotations About Different Axes Fail to Commute
    153 CHAPTER 3 3.1. Rotations and Angular Momentum Commutation Relations followed by a 90° rotation about the z-axis. The net results are different, as we can see from Figure 3.1. Our first basic task is to work out quantitatively the manner in which Theory of Angular Momentum rotations about different axes fail to commute. To this end, we first recall how to represent rotations in three dimensions by 3 X 3 real, orthogonal matrices. Consider a vector V with components Vx ' VY ' and When we rotate, the three components become some other set of numbers, V;, V;, and Vz'. The old and new components are related via a 3 X 3 orthogonal matrix R: V'X Vx V'y R Vy I, (3.1.1a) V'z RRT = RTR =1, (3.1.1b) where the superscript T stands for a transpose of a matrix. It is a property of orthogonal matrices that 2 2 /2 /2 /2 vVx + V2y + Vz =IVVx + Vy + Vz (3.1.2) is automatically satisfied. This chapter is concerned with a systematic treatment of angular momen- tum and related topics. The importance of angular momentum in modern z physics can hardly be overemphasized. A thorough understanding of angu- Z z lar momentum is essential in molecular, atomic, and nuclear spectroscopy; I I angular-momentum considerations play an important role in scattering and I I collision problems as well as in bound-state problems. Furthermore, angu- I lar-momentum concepts have important generalizations-isospin in nuclear physics, SU(3), SU(2)® U(l) in particle physics, and so forth.
    [Show full text]
  • Magnetism, Angular Momentum, and Spin
    Chapter 19 Magnetism, Angular Momentum, and Spin P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin In 1820 Hans Christian Ørsted discovered that electric current produces a magnetic field that deflects compass needle from magnetic north, establishing first direct connection between fields of electricity and magnetism. P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Biot-Savart Law Jean-Baptiste Biot and Félix Savart worked out that magnetic field, B⃗, produced at distance r away from section of wire of length dl carrying steady current I is 휇 I d⃗l × ⃗r dB⃗ = 0 Biot-Savart law 4휋 r3 Direction of magnetic field vector is given by “right-hand” rule: if you point thumb of your right hand along direction of current then your fingers will curl in direction of magnetic field. current P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Microscopic Origins of Magnetism Shortly after Biot and Savart, Ampére suggested that magnetism in matter arises from a multitude of ring currents circulating at atomic and molecular scale. André-Marie Ampére 1775 - 1836 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Magnetic dipole moment from current loop Current flowing in flat loop of wire with area A will generate magnetic field magnetic which, at distance much larger than radius, r, appears identical to field dipole produced by point magnetic dipole with strength of radius 휇 = | ⃗휇| = I ⋅ A current Example What is magnetic dipole moment induced by e* in circular orbit of radius r with linear velocity v? * 휋 Solution: For e with linear velocity of v the time for one orbit is torbit = 2 r_v.
    [Show full text]
  • Arxiv:2012.00197V2 [Quant-Ph] 7 Feb 2021
    Unconventional supersymmetric quantum mechanics in spin systems 1, 1 1, Amin Naseri, ∗ Yutao Hu, and Wenchen Luo y 1School of Physics and Electronics, Central South University, Changsha, P. R. China 410083 It is shown that the eigenproblem of any 2 × 2 matrix Hamiltonian with discrete eigenvalues is involved with a supersymmetric quantum mechanics. The energy dependence of the superal- gebra marks the disparity between the deduced supersymmetry and the standard supersymmetric quantum mechanics. The components of an eigenspinor are superpartners|up to a SU(2) trans- formation|which allows to derive two reduced eigenproblems diagonalizing the Hamiltonian in the spin subspace. As a result, each component carries all information encoded in the eigenspinor. We p also discuss the generalization of the formalism to a system of a single spin- 2 coupled with external fields. The unconventional supersymmetry can be regarded as an extension of the Fulton-Gouterman transformation, which can be established for a two-level system coupled with multi oscillators dis- playing a mirror symmetry. The transformation is exploited recently to solve Rabi-type models. Correspondingly, we illustrate how the supersymmetric formalism can solve spin-boson models with no need to appeal a symmetry of the model. Furthermore, a pattern of entanglement between the components of an eigenstate of a many-spin system can be unveiled by exploiting the supersymmet- ric quantum mechanics associated with single spins which also recasts the eigenstate as a matrix product state. Examples of many-spin models are presented and solved by utilizing the formalism. I. INTRODUCTION sociated with single spins. This allows to reconstruct the eigenstate as a matrix product state (MPS) [2, 5].
    [Show full text]
  • {|Sz; ↑〉, |S Z; ↓〉} the Spin Operators Sx = (¯H
    SU(2) • the spin returns to its original direction after time In the two dimensional space t = 2π/ωc. {|Sz; ↑i, |Sz; ↓i} • the wave vector returns to its original value after time t = 4π/ωc. the spin operators ¯h Matrix representation Sx = {(|Sz; ↑ihSz; ↓ |) + (|Sz; ↓ihSz; ↑ |)} 2 In the basis {|Sz; ↑i, |Sz; ↓i} the base vectors are i¯h represented as S = {−(|S ; ↑ihS ; ↓ |) + (|S ; ↓ihS ; ↑ |)} y 2 z z z z 1 0 ¯h |S ; ↑i 7→ ≡ χ |S ; ↓i 7→ ≡ χ S = {(|S ; ↑ihS ; ↑ |) − (|S ; ↓ihS ; ↓ |)} z 0 ↑ z 1 ↓ z 2 z z z z † † hSz; ↑ | 7→ (1, 0) ≡ χ↑ hSz; ↓ | 7→ (0, 1) ≡ χ↓, satisfy the angular momentum commutation relations so an arbitrary state vector is represented as [Sx,Sy] = i¯hSz + cyclic permutations. hSz; ↑ |αi Thus the smallest dimension where these commutation |αi 7→ hSz; ↓ |αi relations can be realized is 2. hα| 7→ (hα|S ; ↑i, hα|S ; ↓i). The state z z The column vector |αi = |Sz; ↑ihSz; ↑ |αi + |Sz; ↓ihSz; ↓ |αi hS ; ↑ |αi c behaves in the rotation χ = z ≡ ↑ hSz; ↓ |αi c↓ iS φ D (φ) = exp − z z ¯h is called the two component spinor like Pauli’s spin matrices Pauli’s spin matrices σi are defined via the relations iSzφ Dz(φ)|αi = exp − |αi ¯h ¯h −iφ/2 (Sk)ij ≡ (σk)ij, = e |Sz; ↑ihSz; ↑ |αi 2 iφ/2 +e |Sz; ↓ihSz; ↓ |αi. where the matrix elements are evaluated in the basis In particular: {|Sz; ↑i, |Sz; ↓i}. Dz(2π)|αi = −|αi. For example ¯h S = S = {(|S ; ↑ihS ; ↓ |) + (|S ; ↓ihS ; ↑ |)}, Spin precession 1 x 2 z z z z When the Hamiltonian is so H = ωcSz (S1)11 = (S1)22 = 0 the time evolution operator is ¯h (S1)12 = (S1)21 = , iS ω t 2 U(t, 0) = exp − z c = D (ω t).
    [Show full text]
  • Qualification Exam: Quantum Mechanics
    Qualification Exam: Quantum Mechanics Name: , QEID#43228029: July, 2019 Qualification Exam QEID#43228029 2 1 Undergraduate level Problem 1. 1983-Fall-QM-U-1 ID:QM-U-2 Consider two spin 1=2 particles interacting with one another and with an external uniform magnetic field B~ directed along the z-axis. The Hamiltonian is given by ~ ~ ~ ~ ~ H = −AS1 · S2 − µB(g1S1 + g2S2) · B where µB is the Bohr magneton, g1 and g2 are the g-factors, and A is a constant. 1. In the large field limit, what are the eigenvectors and eigenvalues of H in the "spin-space" { i.e. in the basis of eigenstates of S1z and S2z? 2. In the limit when jB~ j ! 0, what are the eigenvectors and eigenvalues of H in the same basis? 3. In the Intermediate regime, what are the eigenvectors and eigenvalues of H in the spin space? Show that you obtain the results of the previous two parts in the appropriate limits. Problem 2. 1983-Fall-QM-U-2 ID:QM-U-20 1. Show that, for an arbitrary normalized function j i, h jHj i > E0, where E0 is the lowest eigenvalue of H. 2. A particle of mass m moves in a potential 1 kx2; x ≤ 0 V (x) = 2 (1) +1; x < 0 Find the trial state of the lowest energy among those parameterized by σ 2 − x (x) = Axe 2σ2 : What does the first part tell you about E0? (Give your answers in terms of k, m, and ! = pk=m). Problem 3. 1983-Fall-QM-U-3 ID:QM-U-44 Consider two identical particles of spin zero, each having a mass m, that are con- strained to rotate in a plane with separation r.
    [Show full text]
  • Quantum/Classical Interface: Fermion Spin
    Quantum/Classical Interface: Fermion Spin W. E. Baylis, R. Cabrera, and D. Keselica Department of Physics, University of Windsor Although intrinsic spin is usually viewed as a purely quantum property with no classical ana- log, we present evidence here that fermion spin has a classical origin rooted in the geometry of three-dimensional physical space. Our approach to the quantum/classical interface is based on a formulation of relativistic classical mechanics that uses spinors. Spinors and projectors arise natu- rally in the Clifford’s geometric algebra of physical space and not only provide powerful tools for solving problems in classical electrodynamics, but also reproduce a number of quantum results. In particular, many properites of elementary fermions, as spin-1/2 particles, are obtained classically and relate spin, the associated g-factor, its coupling to an external magnetic field, and its magnetic moment to Zitterbewegung and de Broglie waves. The relationship is further strengthened by the fact that physical space and its geometric algebra can be derived from fermion annihilation and creation operators. The approach resolves Pauli’s argument against treating time as an operator by recognizing phase factors as projected rotation operators. I. INTRODUCTION The intrinsic spin of elementary fermions like the electron is traditionally viewed as an essentially quantum property with no classical counterpart.[1, 2] Its two-valued nature, the fact that any measurement of the spin in an arbitrary direction gives a statistical distribution of either “spin up” or “spin down” and nothing in between, together with the commutation relation between orthogonal components, is responsible for many of its “nonclassical” properties.
    [Show full text]
  • Importance of Hydrogen Atom
    Hydrogen Atom Dragica Vasileska Arizona State University Importance of Hydrogen Atom • Hydrogen is the simplest atom • The quantum numbers used to characterize the allowed states of hydrogen can also be used to describe (approximately) the allowed states of more complex atoms – This enables us to understand the periodic table • The hydrogen atom is an ideal system for performing precise comparisons of theory and experiment – Also for improving our understanding of atomic structure • Much of what we know about the hydrogen atom can be extended to other single-electron ions – For example, He+ and Li2+ Early Models of the Atom • ’ J.J. Thomson s model of the atom – A volume of positive charge – Electrons embedded throughout the volume • ’ A change from Newton s model of the atom as a tiny, hard, indestructible sphere “ ” watermelon model Experimental tests Expect: 1. Mostly small angle scattering 2. No backward scattering events Results: 1. Mostly small scattering events 2. Several backward scatterings!!! Early Models of the Atom • ’ Rutherford s model – Planetary model – Based on results of thin foil experiments – Positive charge is concentrated in the center of the atom, called the nucleus – Electrons orbit the nucleus like planets orbit the sun ’ Problem: Rutherford s model “ ” ’ × – The size of the atom in Rutherford s model is about 1.0 10 10 m. (a) Determine the attractive electrical force between an electron and a proton separated by this distance. (b) Determine (in eV) the electrical potential energy of the atom. “ ” ’ × – The size of the atom in Rutherford s model is about 1.0 10 10 m. (a) Determine the attractive electrical force between an electron and a proton separated by this distance.
    [Show full text]
  • 1. the Hamiltonian, H = Α Ipi + Βm, Must Be Her- Mitian to Give Real
    1. The hamiltonian, H = αipi + βm, must be her- yields mitian to give real eigenvalues. Thus, H = H† = † † † pi αi +β m. From non-relativistic quantum mechanics † † † αi pi + β m = aipi + βm (2) we know that pi = pi . In addition, [αi,pj ] = 0 because we impose that the α, β operators act on the spinor in- † † αi = αi, β = β. Thus α, β are hermitian operators. dices while pi act on the coordinates of the wave function itself. With these conditions we may proceed: To verify the other properties of the α, and β operators † † piαi + β m = αipi + βm (1) we compute 2 H = (αipi + βm) (αj pj + βm) 2 2 1 2 2 = αi pi + (αiαj + αj αi) pipj + (αiβ + βαi) m + β m , (3) 2 2 where for the second term i = j. Then imposing the Finally, making use of bi = 1 we can find the 26 2 2 2 relativistic energy relation, E = p + m , we obtain eigenvalues: biu = λu and bibiu = λbiu, hence u = λ u the anti-commutation relation | | and λ = 1. ± b ,b =2δ 1, (4) i j ij 2. We need to find the λ = +1/2 helicity eigenspinor { } ′ for an electron with momentum ~p = (p sin θ, 0, p cos θ). where b0 = β, bi = αi, and 1 n n idenitity matrix. ≡ × 1 Using the anti-commutation relation and the fact that The helicity operator is given by 2 σ pˆ, and the posi- 2 1 · bi = 1 we are able to find the trace of any bi tive eigenvalue 2 corresponds to u1 Dirac solution [see (1.5.98) in http://arXiv.org/abs/0906.1271].
    [Show full text]
  • 33-234 Quantum Physics Spring 2015
    33-234 Quantum Physics Spring 2015 Derivation of Angular Momentum Rules in Quantum Mechanics R.M. Suter March 23, 2015 These notes follow the derivation in the text but provide some additional details and alternate explanations. Comments are welcome. For 33-234, you will not be responsible for the details of the derivations given here. We have covered the material necessary to follow the derivations so these details are presented for the ambitious and curious. All students should, however, be sure to understand the results as displayed on page 6 and following as well as the basic commutation properties given on this and the next page. Classical angular momentum. The classical angular momentum of a point particle is computed as L = R p, (1) × where R is the position, p is the linear momentum. For circular motion, this reduces to 2 2πR L = Rp = Rmv = ωmR using v = T = ωR. In the absence of external torques, L is a conserved quantity; in other words, it is constant in magnitude and direction. In the presence of a torque, τ (a vector quantity), generated by a force, F, τ = R F, the equation dL × of motion is dt = τ. In a composite system, the total angular momentum is computed as a vector sum: LT = Pi Li. We would like to determine the stationary states of angular momentum and determine the “good” quantum numbers that describe these states. For a particle bound by some potential in three dimensions, we want to know the set of physical quantities that can be used to specify the stable states or eigenstates.
    [Show full text]
  • A Classical Spinor Approach to the Quantum/Classical Interface
    A Classical Spinor Approach to the Quantum/Classical Interface William E. Baylis and J. David Keselica Department of Physics, University of Windsor A promising approach to the quantum/classical interface is described. It is based on a formulation of relativistic classical mechanics in the Cli¤ord algebra of physical space. Spinors and projectors arise naturally and provide powerful tools for solving problems in classical electrodynamics. They also reproduce many quantum results, allowing insight into quantum processes. I. INTRODUCTION The quantum/classical (Q/C) interface has long been a subject area of interest. Not only should it shed light on quantum processes, it may also hold keys to unifying quantum theory with classical relativity. Traditional studies of the interface have largely concentrated on quantum systems in states of large quantum numbers and the relation of solutions to classical chaos,[1] to quantum states in decohering interactions with the environment,[2] or in continuum states, where semiclassical approximations are useful.[3] Our approach[4–7] is fundamentally di¤erent. We start with a description of classical dynamics using Cli¤ord’s geometric algebra of physical space (APS). An important tool in the algebra is the amplitude of the Lorentz transfor- mation that boosts the system from its rest frame to the lab. This enters as a spinor in a classical context, one that satis…es linear equations of evolution suggesting superposition and interference, and that bears a close relation to the quantum wave function. Although APS is the Cli¤ord algebra generated by a three-dimensional Euclidean space, it contains a four- dimensional linear space with a Minkowski spacetime metric that allows a covariant description of relativistic phe- nomena.
    [Show full text]
  • Notes on Quantum Mechanics
    Notes on Quantum Mechanics Finn Ravndal Institute of Physics University of Oslo, Norway e-mail: [email protected] v.4: December, 2006 2 Contents 1 Linear vector spaces 7 1.1 Realvectorspaces............................... 7 1.2 Rotations ................................... 9 1.3 Liegroups................................... 11 1.4 Changeofbasis ................................ 12 1.5 Complexvectorspaces ............................ 12 1.6 Unitarytransformations . 14 2 Basic quantum mechanics 17 2.1 Braandketvectors.............................. 17 2.2 OperatorsinHilbertspace . 19 2.3 Matrixrepresentations . 20 2.4 Adjointoperations .............................. 21 2.5 Eigenvectors and eigenvalues . ... 22 2.6 Thequantumpostulates ........................... 23 2.7 Ehrenfest’stheorem.............................. 25 2.8 Thetimeevolutionoperator . 25 2.9 Stationarystatesandenergybasis. .... 27 2.10Changeofbasis ................................ 28 2.11 Schr¨odinger and Heisenberg pictures . ...... 29 2.12TheLieformula................................ 31 2.13 Weyl and Cambell-Baker-Hausdorff formulas . ...... 32 3 Discrete quantum systems 35 3.1 Matrixmechanics............................... 35 3.2 Thehydrogenmolecule............................ 36 3 4 CONTENTS 3.3 Thegeneraltwo-statesystem . 38 3.4 Neutrinooscillations . 40 3.5 Reflection invariance and symmetry transformations . ......... 41 3.6 Latticetranslationinvariance . .... 43 3.7 Latticedynamicsandenergybands . .. 45 3.8 Three-dimensional lattices . ... 47 4 Schr¨odinger wave mechanics
    [Show full text]
  • Gauge Theory
    Preprint typeset in JHEP style - HYPER VERSION 2018 Gauge Theory David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/gaugetheory.html [email protected] Contents 0. Introduction 1 1. Topics in Electromagnetism 3 1.1 Magnetic Monopoles 3 1.1.1 Dirac Quantisation 4 1.1.2 A Patchwork of Gauge Fields 6 1.1.3 Monopoles and Angular Momentum 8 1.2 The Theta Term 10 1.2.1 The Topological Insulator 11 1.2.2 A Mirage Monopole 14 1.2.3 The Witten Effect 16 1.2.4 Why θ is Periodic 18 1.2.5 Parity, Time-Reversal and θ = π 21 1.3 Further Reading 22 2. Yang-Mills Theory 26 2.1 Introducing Yang-Mills 26 2.1.1 The Action 29 2.1.2 Gauge Symmetry 31 2.1.3 Wilson Lines and Wilson Loops 33 2.2 The Theta Term 38 2.2.1 Canonical Quantisation of Yang-Mills 40 2.2.2 The Wavefunction and the Chern-Simons Functional 42 2.2.3 Analogies From Quantum Mechanics 47 2.3 Instantons 51 2.3.1 The Self-Dual Yang-Mills Equations 52 2.3.2 Tunnelling: Another Quantum Mechanics Analogy 56 2.3.3 Instanton Contributions to the Path Integral 58 2.4 The Flow to Strong Coupling 61 2.4.1 Anti-Screening and Paramagnetism 65 2.4.2 Computing the Beta Function 67 2.5 Electric Probes 74 2.5.1 Coulomb vs Confining 74 2.5.2 An Analogy: Flux Lines in a Superconductor 78 { 1 { 2.5.3 Wilson Loops Revisited 85 2.6 Magnetic Probes 88 2.6.1 't Hooft Lines 89 2.6.2 SU(N) vs SU(N)=ZN 92 2.6.3 What is the Gauge Group of the Standard Model? 97 2.7 Dynamical Matter 99 2.7.1 The Beta Function Revisited 100 2.7.2 The Infra-Red Phases of QCD-like Theories 102 2.7.3 The Higgs vs Confining Phase 105 2.8 't Hooft-Polyakov Monopoles 109 2.8.1 Monopole Solutions 112 2.8.2 The Witten Effect Again 114 2.9 Further Reading 115 3.
    [Show full text]