<<

GARCH processes – probabilistic properties (Part 1)

Alexander Lindner

Centre of Mathematical Sciences Technical University of Munich D–85747 Garching Germany [email protected] http://www-m1.ma.tum.de/m4/pers/lindner/

Maphysto Workshop Non-Linear Modeling Copenhagen September 27 – 30, 2004

1 Contents

1. Definition of GARCH(p,q) processes 2. 3. Strict stationarity of GARCH(1,1) 4. Existence of 2nd moment of stationary solution 5. Tail behaviour, extremal behaviour 6. What can be done for the GARCH(p,q)? 7. GARCH is White 8. ARMA representation of squared GARCH process 9. The EGARCH process and further processes

2 GARCH(p,q) on N0

(εt)t N0 i.i.d.,P (ε0 = 0) = 0 (1) ∈ α0 > 0, α1, . . . , αp 0, β1, . . . , βq 0. 2 2 ≥ ≥ (σ0, . . . , σmax(p,q) 1) independent of εt : t max(p, q) 1 − { ≥ − }

Yt = σtεt, (2) p q 2 2 2 σt = α0 + αiYt i + βjσt j, t max(p, q). (3) X − X − i=1 j=1 ≥ ARCH | {z } GARCH | {z } (Yt)t N0 GARCH(p,q) process ∈

3 GARCH(p,q) on Z (1), (2) and (3) for t Z, and ∈ εt independent of

Yt 1 := Ys : s t 1 . − { ≤ − }

ARCH(p): Engle (1981) GARCH(p,q): Bollerslev (1986) Generalized AutoRegressive Conditional

4 Why conditional volatility?

2 Suppose σt Yt 1, ∈ − 2 or equivalently σt εt 1, t Z ∈ − ∀ ∈ (the process is “causal”)

2 Suppose Eεt = 0, Eε = 1, EYt < . Then t ∞

E(Yt Yt 1) = E(σtεt Yt 1) = σt E(εt Yt 1) = 0, − − − | 2 2| 2 2| 2 V (Yt Yt 1) = E(σt εt Yt 1) = σt E(εt Yt 1) = σt | − | − | − 2 Hence σt is the conditional

5 Markov property (a) GARCH(1,1):

2 (σt )t Z is a Markov process, since ∈ 2 2 2 σt = α0 + (α1εt 1 + β1)σt 1 − − 2 (σt ,Yt)t Z is Markov process, but (Yt)t Z is not. ∈ ∈

(b) GARCH(p,q), max(p, q) > 1

2 (σt )t Z is not Markov process ∈ 2 2 (σt , . . . , σt max(p,q)+1)t Z is Markov process. − ∈

6 Strict stationarity - GARCH(1,1) 2 2 2 2 σt = α0 + α1σt 1εt 1 + β1σt 1 2 − −2 − = (α1εt 1 + β1)σt 1 + α0 2 − − =: Atσt 1 + Bt (4) −

(At,Bt)t Z is i.i.d. sequence. ∈ (4) is called a random recurrence equation.

2 2 σt = Atσt 1 + Bt − 2 = AtAt 1σt 1 + AtBt 1 + Bt − − . − k 2 = At At kσt k 1 + At At i+1 Bt i . (5) ··· − − − X ··· − − i=0 =α0 |{z} Let k and hope that (5) converges. → ∞

7 Strict stationarity - continued

Suppose γ := E log A1 < 0

1 k (log At + log At 1 + ... + log At k+1) →∞ E log A1 a.s. k − − −→ ! | {z }

1 = a.s. ω n0(ω): log (At At k+1) γ/2 < 0 k n0(ω) ⇒ ∀ ∃ k ··· − ≤ ∀ ≥

kγ/2 = At At k+1 e k n0(ω) ⇒ | ··· − | ≤ ∀ ≥ Hence (5) converges almost surely.

8 Theorem: (Nelson, 1990) If 2 E log(α1ε1 + β1) < 0, (6) then GARCH(1,1) has a strictly stationary solution. Its marginal distribution is given by

∞ 2 2 α0 (α1ε 1 + β1) (α1ε i + β1) (7) X − − i=0 ···

If β1 > 0 (i.e. GARCH but not ARCH) and a strictly stationary solution exists, then (6) holds.

Remark: + If E log A1 < , then | | ∞ 1 γ = inf E  log A0A 1 A n  : n N n + 1 | − ··· − | ∈ is called the Lyapunov exponent of the sequence (An)n Z. ∈

9 When is EY 2 < ? t ∞ 2 ∞ 2 2 σ0 = α0 (α1ε 1 + β1) (α1ε i + β1) X − − i=0 ···

2 ∞ 2 i Eσ = α0 E(α1ε + β1) < 0 X 1  i=0 ∞ 2 α1Eε + β1 < 1 ⇐⇒ 1

2 2 2 EYt = Eσt Eεt

So stationary solution (Yt)t Z has finite variance iff ∈ 2 α1Eε1 + β1 < 1

10 Tail behaviour of stochastic recurrence equations Theorem (Goldie 1991, Kesten 1973, Vervaat 1979) Suppose (Zt)t N satisfies the stochastic recurrence equation ∈ Zt = AtZt 1 + Bt, t N, − ∈ where ((At,Bt))t N,(A, B) i.i.d. sequences. Suppose κ > 0 such that ∈ ∃ (i) The law of log A , given A = 0, is not concentrated on rZ for any r > 0 | | | | 6 (ii) E A κ = 1 (iii) E| A| κ log+ A < (iv) E|B|κ < | | ∞ | | ∞ Then Z =d AZ +B, where Z independent of (A, B), has a unique solution in distribution which satisfies E[((AZ + B)+)κ ((AZ)+)κ] lim xκP (Z > x) = − =: C 0 x κE A κ log+ A →∞ ≥ | | | | (8)

11 Tail behaviour of GARCH(1,1)

Corollary: Suppose ε1 is continuous, P (ε1 > 0) > 0 and all of its moments exist. Further, suppose that 2 E log(α1ε1 + β1) < 0.

Then κ > 0 and C1 > 0,C2 > 0 such that for the stationary ∃ 2 solutions of (σt ) and (Yt): κ 2 lim x P (σ0 > x) = C1 x →∞ 2κ lim x P (Y0 > x) = C2 x →∞ Mikosch, St˘aric˘a(2000): GARCH(1,1) de Haan, Resnick, Rootz´en,de Vries: ARCH(1)

12 Extremal behaviour of GARCH(1,1) Mikosch and St˘aric˘a(2000) and de Haan et al. (1989) gave ex- treme value theory for GARCH(1,1) and ARCH(1).

Suppose a stationary solution (Yt)t N0 exists. ∈ d Let (Yt)t N0 be an i.i.d. sequence with Y0 = Y0. ∈ e e Then under the previous assumptions, θ (0, 1) such that for ∃ ∈ a certain sequence ct > 0, t N: ∈ 2κ lim P  max Yi ctx = exp( θx− ), x R t i=1,...,t →∞ ≥ − ∈ 2κ lim P  max Yi ctx = exp( x− ), x R. t i=1,...,t ≥ − ∈ →∞ e The GARCH(1,1) process has an extremal index θ, i.e. ex- ceedances over large thresholds occur in clusters, with an average cluster length of 1/θ

13 What can be done for GARCH(p,q)? 2 p 1 τt := (β1 + α1εt , β2, . . . , βp 1) R − 2 p 1 − ∈ ξt := (εt , 0,..., 0) R − ∈ q 2 α := (α2, . . . , αq 1) R − − ∈ Ip 1:(p 1) (p 1) identity matrix − − × − Mt:(p + q 1) (p + q 1) matrix − × − τt βp α αq   Ip 1 0 0 0 Mt := −  ξt 0 0 0     0 0 Iq 2 0  − p+q 1 N := (α0, 0,..., 0)0 R − 2 2 ∈ 2 2 Xt := (σt+1, . . . , σt p+2,Yt ,...,Yt q+2)0 − − Then (Yt)t Z solves the GARCH(p,q) equation if and only if ∈ Xt+1 = Mt+1Xt + N, t Z (9) ∈

14 GARCH(p,q) - continued (9) is a random recurrence equation. Theory for existence of stationary solutions can be applied.

2 For example, if Eε1 = 0, Eε1 = 1, then a necessary and sufficient condition for existence of a strictly stationary solution with finite second moments is p q α + β < 1. (10) X i X j i=1 j=1 (Bougerol and Picard (1992), Bollerslev (1986)) But stationary solutions can exist also if p q α + β = 1. X 1 X j i=1 j=1

A characterization for the existence of stationary solutions is achieved via the Lyapunov exponent (whether it is strictly nega- tive or not).

15 GARCH(p,q) is White Noise

2 Suppose Eεt = 0, Eε = 1 and (10). Then for h 1, t ≥ EYt = E(σtεt) = E(σtE(εt Yt 1)) = 0 | − E(YtYt+h) = E(σtσt+hεt E(εt+h Yt+h 1)) = 0 | − =0 2 | {z } But (Yt )t Z is not White Noise. ∈

2 2 2 2 ut := Y σ = σ (ε 1) t − t t t − Suppose Eu2 < and let h 1: t ∞ ≥ Eut = 0 2 2 2 2 E(utut+h) = E(σ (ε 1)σ ) E(ε 1) = 0 t t − t+h t+h − Hence (ut)t Z is White Noise ∈

16 2 The ARMA representation of Yt

p q 2 2 2 σt = α0 + αiYt i + βjσt j X − X − i=1 j=1 2 2 Substitute σ = Y ut. Then t t −

p q q 2 2 2 Yt αiYt i βjYt j = α0 + ut βjut j X − X − X − − i=1 − j=1 − j=1

2 Hence (Yt )t Z satisfies an ARMA(max(p, q), q) equation. ∈ 2 Hence function and of (Yt )t Z is that of ARMA(max(p, q), q) process with the given parameters.∈

17 Drawbacks of GARCH

Black (1976): Volatility tends to rise in response to “bad • news” and to fall in response to “good news” The volatility in the GARCH process is determined only by • the magnitude of the previous return and shock, not by its sign. The parameters in GARCH are restricted to be positive to • 2 ensure positivity of σt . When estimating, however, sometimes best fits are achieved for negative parameters.

18 Exponential GARCH (EGARCH) (Nelson, 1991)

(εt)t Z i.i.d.(0, 1) ∈ Yt = σtεt p q 2 2 log(σt ) = α0 + αig(εt i) + βj log(σt j) X − X − i=1 j=1 2 2 g(εt) = θεt + γ( εt E εt ), θ + γ = 0 | | − | | 6 Most often, εt i.i.d. normal. EGARCH models often fit the data nicely, but

2 log(σt ) has tails not much heavier than Gaussian tails (like • c dx2 x e− , x , c, d > 0) → ∞ tails of Yt are approximately like • (log x)2 log x P (Y0 > x) e− = x− , x ≈ → ∞ 2 Neither (log σt )t Z nor (Yt)t Z show cluster behaviour. • ∈ ∈ (Lindner, Meyer (2001)) Similar results for stochastic volatility models by Breidt and Davis (1998)

19 Other GARCH type models Many many other GARCH type models exist, like

MGARCH (multiplicative GARCH) • NGARCH (non-linear asymmetric GARCH) • TGARCH (threshold GARCH) • FIGARCH (fractional integrated GARCH) • •··· •··· See Gouri´eroux(1997) or Duan (1997) for some of them.

20 References Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of 31, 307-327.

Bougerol, P. and Picard, N. (1992) Stationarity of GARCH processes and of some nonnegative time series. Journal of Econometrics 52, 115-127.

Brandt, A. (1986) The stochastic equation Yn+1 = AnYn +Bn with stationary coefficients. Adv. Appl. Probab. 18, 211-220.

Breidt, F. and Davis, R (1998) Extremes of stochastic volatility models. Ann. Appl. Probab. 8, 664-675. de Haan, L., Resnick, S., Rootz´en,H. and de Vries, C. (1989) Extremal be- haviour of solutions to a stochastic differnce equation with applications to ARCH processes. Stoch. Proc. Appl. 32, 213-224.

Duan, J.-C. (1997) Augmented GARCH(p, q) process and its diffusion limit. Journal of Econometrics 79, 97-127.

Engle, R. (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica 50, 987-1007.

Goldie, C. (1991) Implicit and tails of solutions of random equations. Ann. Appl. Probab. 1, 126-166.

Gouri´eroux,C. (1997) ARCH Models and Financial Applications. Springer, New York.

Kesten, H. (1973) Random difference equations and renewal theory for prod- ucts of random matrices. Acta Math. 131, 207-248.

21 Lindner, A. and Meyer, K. (2001) Extremal behavior of finite EGARCH pro- cesses. Preprint.

Mikosch, T. and St˘aric˘a,C (2000) Limit theory for the sample and extremes of a GARCH(1,1) process. Ann. Statist. 28, 1427-1451.

Vervaat, W. (1979) On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv. Appl. Probab. 11, 750-783.

22