Chapter 2 Some Basic Tools
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Class of Measure-Valued Markov Chains and Bayesian Nonparametrics
Bernoulli 18(3), 2012, 1002–1030 DOI: 10.3150/11-BEJ356 A class of measure-valued Markov chains and Bayesian nonparametrics STEFANO FAVARO1, ALESSANDRA GUGLIELMI2 and STEPHEN G. WALKER3 1Universit`adi Torino and Collegio Carlo Alberto, Dipartimento di Statistica e Matematica Ap- plicata, Corso Unione Sovietica 218/bis, 10134 Torino, Italy. E-mail: [email protected] 2Politecnico di Milano, Dipartimento di Matematica, P.zza Leonardo da Vinci 32, 20133 Milano, Italy. E-mail: [email protected] 3University of Kent, Institute of Mathematics, Statistics and Actuarial Science, Canterbury CT27NZ, UK. E-mail: [email protected] Measure-valued Markov chains have raised interest in Bayesian nonparametrics since the seminal paper by (Math. Proc. Cambridge Philos. Soc. 105 (1989) 579–585) where a Markov chain having the law of the Dirichlet process as unique invariant measure has been introduced. In the present paper, we propose and investigate a new class of measure-valued Markov chains defined via exchangeable sequences of random variables. Asymptotic properties for this new class are derived and applications related to Bayesian nonparametric mixture modeling, and to a generalization of the Markov chain proposed by (Math. Proc. Cambridge Philos. Soc. 105 (1989) 579–585), are discussed. These results and their applications highlight once again the interplay between Bayesian nonparametrics and the theory of measure-valued Markov chains. Keywords: Bayesian nonparametrics; Dirichlet process; exchangeable sequences; linear functionals -
Regularity of Solutions and Parameter Estimation for Spde’S with Space-Time White Noise
REGULARITY OF SOLUTIONS AND PARAMETER ESTIMATION FOR SPDE’S WITH SPACE-TIME WHITE NOISE by Igor Cialenco A Dissertation Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY (APPLIED MATHEMATICS) May 2007 Copyright 2007 Igor Cialenco Dedication To my wife Angela, and my parents. ii Acknowledgements I would like to acknowledge my academic adviser Prof. Sergey V. Lototsky who introduced me into the Theory of Stochastic Partial Differential Equations, suggested the interesting topics of research and guided me through it. I also wish to thank the members of my committee - Prof. Remigijus Mikulevicius and Prof. Aris Protopapadakis, for their help and support. Last but certainly not least, I want to thank my wife Angela, and my family for their support both during the thesis and before it. iii Table of Contents Dedication ii Acknowledgements iii List of Tables v List of Figures vi Abstract vii Chapter 1: Introduction 1 1.1 Sobolev spaces . 1 1.2 Diffusion processes and absolute continuity of their measures . 4 1.3 Stochastic partial differential equations and their applications . 7 1.4 Ito’sˆ formula in Hilbert space . 14 1.5 Existence and uniqueness of solution . 18 Chapter 2: Regularity of solution 23 2.1 Introduction . 23 2.2 Equations with additive noise . 29 2.2.1 Existence and uniqueness . 29 2.2.2 Regularity in space . 33 2.2.3 Regularity in time . 38 2.3 Equations with multiplicative noise . 41 2.3.1 Existence and uniqueness . 41 2.3.2 Regularity in space and time . -
Markov Process Duality
Markov Process Duality Jan M. Swart Luminy, October 23 and 24, 2013 Jan M. Swart Markov Process Duality Markov Chains S finite set. RS space of functions f : S R. ! S For probability kernel P = (P(x; y))x;y2S and f R define left and right multiplication as 2 X X Pf (x) := P(x; y)f (y) and fP(x) := f (y)P(y; x): y y (I do not distinguish row and column vectors.) Def Chain X = (Xk )k≥0 of S-valued r.v.'s is Markov chain with transition kernel P and state space S if S E f (Xk+1) (X0;:::; Xk ) = Pf (Xk ) a:s: (f R ) 2 P (X0;:::; Xk ) = (x0;:::; xk ) , = P[X0 = x0]P(x0; x1) P(xk−1; xk ): ··· µ µ µ Write P ; E for process with initial law µ = P [X0 ]. x δx x 2 · P := P with δx (y) := 1fx=yg. E similar. Jan M. Swart Markov Process Duality Markov Chains Set k µ k x µk := µP (x) = P [Xk = x] and fk := P f (x) = E [f (Xk )]: Then the forward and backward equations read µk+1 = µk P and fk+1 = Pfk : In particular π invariant law iff πP = π. Function h harmonic iff Ph = h h(Xk ) martingale. , Jan M. Swart Markov Process Duality Random mapping representation (Zk )k≥1 i.i.d. with common law ν, take values in (E; ). φ : S E S measurable E × ! P(x; y) = P[φ(x; Z1) = y]: Random mapping representation (E; ; ν; φ) always exists, highly non-unique. -
1 Introduction Branching Mechanism in a Superprocess from a Branching
数理解析研究所講究録 1157 巻 2000 年 1-16 1 An example of random snakes by Le Gall and its applications 渡辺信三 Shinzo Watanabe, Kyoto University 1 Introduction The notion of random snakes has been introduced by Le Gall ([Le 1], [Le 2]) to construct a class of measure-valued branching processes, called superprocesses or continuous state branching processes ([Da], [Dy]). A main idea is to produce the branching mechanism in a superprocess from a branching tree embedded in excur- sions at each different level of a Brownian sample path. There is no clear notion of particles in a superprocess; it is something like a cloud or mist. Nevertheless, a random snake could provide us with a clear picture of historical or genealogical developments of”particles” in a superprocess. ” : In this note, we give a sample pathwise construction of a random snake in the case when the underlying Markov process is a Markov chain on a tree. A simplest case has been discussed in [War 1] and [Wat 2]. The construction can be reduced to this case locally and we need to consider a recurrence family of stochastic differential equations for reflecting Brownian motions with sticky boundaries. A special case has been already discussed by J. Warren [War 2] with an application to a coalescing stochastic flow of piece-wise linear transformations in connection with a non-white or non-Gaussian predictable noise in the sense of B. Tsirelson. 2 Brownian snakes Throughout this section, let $\xi=\{\xi(t), P_{x}\}$ be a Hunt Markov process on a locally compact separable metric space $S$ endowed with a metric $d_{S}(\cdot, *)$ . -
Stochastic Pdes and Markov Random Fields with Ecological Applications
Intro SPDE GMRF Examples Boundaries Excursions References Stochastic PDEs and Markov random fields with ecological applications Finn Lindgren Spatially-varying Stochastic Differential Equations with Applications to the Biological Sciences OSU, Columbus, Ohio, 2015 Finn Lindgren - [email protected] Stochastic PDEs and Markov random fields with ecological applications Intro SPDE GMRF Examples Boundaries Excursions References “Big” data Z(Dtrn) 20 15 10 5 Illustration: Synthetic data mimicking satellite based CO2 measurements. Iregular data locations, uneven coverage, features on different scales. Finn Lindgren - [email protected] Stochastic PDEs and Markov random fields with ecological applications Intro SPDE GMRF Examples Boundaries Excursions References Sparse spatial coverage of temperature measurements raw data (y) 200409 kriged (eta+zed) etazed field 20 15 15 10 10 10 5 5 lat lat lat 0 0 0 −10 −5 −5 44 46 48 50 52 44 46 48 50 52 44 46 48 50 52 −20 2 4 6 8 10 14 2 4 6 8 10 14 2 4 6 8 10 14 lon lon lon residual (y − (eta+zed)) climate (eta) eta field 20 2 15 18 10 16 1 14 5 lat 0 lat lat 12 0 10 −1 8 −5 44 46 48 50 52 6 −2 44 46 48 50 52 44 46 48 50 52 2 4 6 8 10 14 2 4 6 8 10 14 2 4 6 8 10 14 lon lon lon Regional observations: ≈ 20,000,000 from daily timeseries over 160 years Finn Lindgren - [email protected] Stochastic PDEs and Markov random fields with ecological applications Intro SPDE GMRF Examples Boundaries Excursions References Spatio-temporal modelling framework Spatial statistics framework ◮ Spatial domain D, or space-time domain D × T, T ⊂ R. -
Subband Particle Filtering for Speech Enhancement
14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP SUBBAND PARTICLE FILTERING FOR SPEECH ENHANCEMENT Ying Deng and V. John Mathews Dept. of Electrical and Computer Eng., University of Utah 50 S. Central Campus Dr., Rm. 3280 MEB, Salt Lake City, UT 84112, USA phone: + (1)(801) 581-6941, fax: + (1)(801) 581-5281, email: [email protected], [email protected] ABSTRACT as those discussed in [16, 17] and also in this paper, the integrations Particle filters have recently been applied to speech enhancement used to compute the filtering distribution and the integrations em- when the input speech signal is modeled as a time-varying autore- ployed to estimate the clean speech signal and model parameters do gressive process with stochastically evolving parameters. This type not have closed-form analytical solutions. Approximation methods of modeling results in a nonlinear and conditionally Gaussian state- have to be employed for these computations. The approximation space system that is not amenable to analytical solutions. Prior work methods developed so far can be grouped into three classes: (1) an- in this area involved signal processing in the fullband domain and alytic approximations such as the Gaussian sum filter [19] and the assumed white Gaussian noise with known variance. This paper extended Kalman filter [20], (2) numerical approximations which extends such ideas to subband domain particle filters and colored make the continuous integration variable discrete and then replace noise. Experimental results indicate that the subband particle filter each integral by a summation [21], and (3) sampling approaches achieves higher segmental SNR than the fullband algorithm and is such as the unscented Kalman filter [22] which uses a small num- effective in dealing with colored noise without increasing the com- ber of deterministically chosen samples and the particle filter [23] putational complexity. -
1 Markov Chain Notation for a Continuous State Space
The Metropolis-Hastings Algorithm 1 Markov Chain Notation for a Continuous State Space A sequence of random variables X0;X1;X2;:::, is a Markov chain on a continuous state space if... ... where it goes depends on where is is but not where is was. I'd really just prefer that you have the “flavor" here. The previous Markov property equation that we had P (Xn+1 = jjXn = i; Xn−1 = in−1;:::;X0 = i0) = P (Xn+1 = jjXn = i) is uninteresting now since both of those probabilities are zero when the state space is con- tinuous. It would be better to say that, for any A ⊆ S, where S is the state space, we have P (Xn+1 2 AjXn = i; Xn−1 = in−1;:::;X0 = i0) = P (Xn+1 2 AjXn = i): Note that it is okay to have equalities on the right side of the conditional line. Once these continuous random variables have been observed, they are fixed and nailed down to discrete values. 1.1 Transition Densities The continuous state analog of the one-step transition probability pij is the one-step tran- sition density. We will denote this as p(x; y): This is not the probability that the chain makes a move from state x to state y. Instead, it is a probability density function in y which describes a curve under which area represents probability. x can be thought of as a parameter of this density. For example, given a Markov chain is currently in state x, the next value y might be drawn from a normal distribution centered at x. -
Simulation of Markov Chains
Copyright c 2007 by Karl Sigman 1 Simulating Markov chains Many stochastic processes used for the modeling of financial assets and other systems in engi- neering are Markovian, and this makes it relatively easy to simulate from them. Here we present a brief introduction to the simulation of Markov chains. Our emphasis is on discrete-state chains both in discrete and continuous time, but some examples with a general state space will be discussed too. 1.1 Definition of a Markov chain We shall assume that the state space S of our Markov chain is S = ZZ= f:::; −2; −1; 0; 1; 2;:::g, the integers, or a proper subset of the integers. Typical examples are S = IN = f0; 1; 2 :::g, the non-negative integers, or S = f0; 1; 2 : : : ; ag, or S = {−b; : : : ; 0; 1; 2 : : : ; ag for some integers a; b > 0, in which case the state space is finite. Definition 1.1 A stochastic process fXn : n ≥ 0g is called a Markov chain if for all times n ≥ 0 and all states i0; : : : ; i; j 2 S, P (Xn+1 = jjXn = i; Xn−1 = in−1;:::;X0 = i0) = P (Xn+1 = jjXn = i) (1) = Pij: Pij denotes the probability that the chain, whenever in state i, moves next (one unit of time later) into state j, and is referred to as a one-step transition probability. The square matrix P = (Pij); i; j 2 S; is called the one-step transition matrix, and since when leaving state i the chain must move to one of the states j 2 S, each row sums to one (e.g., forms a probability distribution): For each i X Pij = 1: j2S We are assuming that the transition probabilities do not depend on the time n, and so, in particular, using n = 0 in (1) yields Pij = P (X1 = jjX0 = i): (Formally we are considering only time homogenous MC's meaning that their transition prob- abilities are time-homogenous (time stationary).) The defining property (1) can be described in words as the future is independent of the past given the present state. -
Chapter 8: Markov Chains
149 Chapter 8: Markov Chains 8.1 Introduction So far, we have examined several stochastic processes using transition diagrams and First-Step Analysis. The processes can be written as {X0, X1, X2,...}, where Xt is the state at time t. A.A.Markov On the transition diagram, Xt corresponds to 1856-1922 which box we are in at step t. In the Gambler’s Ruin (Section 2.7), Xt is the amount of money the gambler possesses after toss t. In the model for gene spread (Section 3.7), Xt is the number of animals possessing the harmful allele A in generation t. The processes that we have looked at via the transition diagram have a crucial property in common: Xt+1 depends only on Xt. It does not depend upon X0, X1,...,Xt−1. Processes like this are called Markov Chains. Example: Random Walk (see Chapter 4) none of these steps matter for time t+1 ? time t+1 time t ? In a Markov chain, the future depends only upon the present: NOT upon the past. 150 .. ...... .. .. ...... .. ....... ....... ....... ....... ... .... .... .... .. .. .. .. ... ... ... ... ....... ..... ..... ....... ........4................. ......7.................. The text-book image ...... ... ... ...... .... ... ... .... ... ... ... ... ... ... ... ... ... ... ... .... ... ... ... ... of a Markov chain has ... ... ... ... 1 ... .... ... ... ... ... ... ... ... .1.. 1... 1.. 3... ... ... ... ... ... ... ... ... 2 ... ... ... a flea hopping about at ... ..... ..... ... ...... ... ....... ...... ...... ....... ... ...... ......... ......... .. ........... ........ ......... ........... ........ -
Lecture 6: Particle Filtering, Other Approximations, and Continuous-Time Models
Lecture 6: Particle Filtering, Other Approximations, and Continuous-Time Models Simo Särkkä Department of Biomedical Engineering and Computational Science Aalto University March 10, 2011 Simo Särkkä Lecture 6: Particle Filtering and Other Approximations Contents 1 Particle Filtering 2 Particle Filtering Properties 3 Further Filtering Algorithms 4 Continuous-Discrete-Time EKF 5 General Continuous-Discrete-Time Filtering 6 Continuous-Time Filtering 7 Linear Stochastic Differential Equations 8 What is Beyond This? 9 Summary Simo Särkkä Lecture 6: Particle Filtering and Other Approximations Particle Filtering: Overview [1/3] Demo: Kalman vs. Particle Filtering: Kalman filter animation Particle filter animation Simo Särkkä Lecture 6: Particle Filtering and Other Approximations Particle Filtering: Overview [2/3] =⇒ The idea is to form a weighted particle presentation (x(i), w (i)) of the posterior distribution: p(x) ≈ w (i) δ(x − x(i)). Xi Particle filtering = Sequential importance sampling, with additional resampling step. Bootstrap filter (also called Condensation) is the simplest particle filter. Simo Särkkä Lecture 6: Particle Filtering and Other Approximations Particle Filtering: Overview [3/3] The efficiency of particle filter is determined by the selection of the importance distribution. The importance distribution can be formed by using e.g. EKF or UKF. Sometimes the optimal importance distribution can be used, and it minimizes the variance of the weights. Rao-Blackwellization: Some components of the model are marginalized in closed form ⇒ hybrid particle/Kalman filter. Simo Särkkä Lecture 6: Particle Filtering and Other Approximations Bootstrap Filter: Principle State density representation is set of samples (i) {xk : i = 1,..., N}. Bootstrap filter performs optimal filtering update and prediction steps using Monte Carlo. -
Fundamental Concepts of Time-Series Econometrics
CHAPTER 1 Fundamental Concepts of Time-Series Econometrics Many of the principles and properties that we studied in cross-section econometrics carry over when our data are collected over time. However, time-series data present important challenges that are not present with cross sections and that warrant detailed attention. Random variables that are measured over time are often called “time series.” We define the simplest kind of time series, “white noise,” then we discuss how variables with more complex properties can be derived from an underlying white-noise variable. After studying basic kinds of time-series variables and the rules, or “time-series processes,” that relate them to a white-noise variable, we then make the critical distinction between stationary and non- stationary time-series processes. 1.1 Time Series and White Noise 1.1.1 Time-series processes A time series is a sequence of observations on a variable taken at discrete intervals in 1 time. We index the time periods as 1, 2, …, T and denote the set of observations as ( yy12, , ..., yT ) . We often think of these observations as being a finite sample from a time-series stochastic pro- cess that began infinitely far back in time and will continue into the indefinite future: pre-sample sample post-sample ...,y−−−3 , y 2 , y 1 , yyy 0 , 12 , , ..., yT− 1 , y TT , y + 1 , y T + 2 , ... Each element of the time series is treated as a random variable with a probability distri- bution. As with the cross-section variables of our earlier analysis, we assume that the distri- butions of the individual elements of the series have parameters in common. -
Markov Random Fields and Stochastic Image Models
Markov Random Fields and Stochastic Image Models Charles A. Bouman School of Electrical and Computer Engineering Purdue University Phone: (317) 494-0340 Fax: (317) 494-3358 email [email protected] Available from: http://dynamo.ecn.purdue.edu/»bouman/ Tutorial Presented at: 1995 IEEE International Conference on Image Processing 23-26 October 1995 Washington, D.C. Special thanks to: Ken Sauer Suhail Saquib Department of Electrical School of Electrical and Computer Engineering Engineering University of Notre Dame Purdue University 1 Overview of Topics 1. Introduction (b) Non-Gaussian MRF's 2. The Bayesian Approach i. Quadratic functions ii. Non-Convex functions 3. Discrete Models iii. Continuous MAP estimation (a) Markov Chains iv. Convex functions (b) Markov Random Fields (MRF) (c) Parameter Estimation (c) Simulation i. Estimation of σ (d) Parameter estimation ii. Estimation of T and p parameters 4. Application of MRF's to Segmentation 6. Application to Tomography (a) The Model (a) Tomographic system and data models (b) Bayesian Estimation (b) MAP Optimization (c) MAP Optimization (c) Parameter estimation (d) Parameter Estimation 7. Multiscale Stochastic Models (e) Other Approaches (a) Continuous models 5. Continuous Models (b) Discrete models (a) Gaussian Random Process Models 8. High Level Image Models i. Autoregressive (AR) models ii. Simultaneous AR (SAR) models iii. Gaussian MRF's iv. Generalization to 2-D 2 References in Statistical Image Modeling 1. Overview references [100, 89, 50, 54, 162, 4, 44] 4. Simulation and Stochastic Optimization Methods [118, 80, 129, 100, 68, 141, 61, 76, 62, 63] 2. Type of Random Field Model 5. Computational Methods used with MRF Models (a) Discrete Models i.