Filesystem in Userspace FUSE.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Filesystem in Userspace FUSE.Pdf International Journal of Computer Architecture and Mobility (ISSN 2319-9229) Volume 1-Issue 8, June 2013 Filesystem in Userspace (FUSE) Shashi Bahir, Rahul Bangar, Sujit Shetty, Saurabh Shinde, Vandana Jagtap Department of Computer Engineering, MIT Pune Pune University, India [email protected] [email protected] [email protected] [email protected] [email protected] Abstract- Developing kernel file systems for UNIX is a is a steep learning curve for doing kernel development due to challenging task, due to a variety of reasons. This approach the lack of facilities that are available to application requires the programmer to understand and deal with programmers complicated kernel code and data structures, making new code prone to bugs caused by programming errors. The kernel code User space filesystems have seen a strong resurgence. lacks memory protection, requires careful use of synchronization FUSE is a framework that allows file systems to be developed primitives, can be written only in C, and that too without being in userspace while offering ease of use and flexibility. linked against the standard C library. Debugging kernel code is also tedious, and errors can require rebooting the system. This document is meant to highlight the features of This document gives an idea about FUSE (loadable “Kernel loadable fuse”. The main idea is to make a kernel module), which allows non privileged users to develop completely new filesystem which interacts with the kernel but own file system in userspace. it is actually mounted in the userspace. With the help of the fuse application we would combine two different filesystem Keywords—VFS (Virtual File System), UNIX, kernel, userspace, and create a virtual file system. E.g. Windows (NTFS) filesystems Filesystem and Red Hat Linux Enterprise (EXT4) Filesystem this will make the user memory space big and a fast I. INTRODUCTION processing. When both the filesystems are mounted the virtual Developing in-kernel file systems for UNIX is a filesystem (VFS) created is to have a combination of these challenging task, due to a variety of reasons. This approach filesystem. This will make the user memory space big and a requires the programmer to understand and deal with fast processing. When the user want to access the internet the complicated kernel code and data structures, making new code Trivial Data Filesystem (TDFS) is going to interact with the prone to bugs caused by programming errors. Moreover, there Network FileSystem (NFS) Available Online at: www.ijcam.com International Journal of Computer Architecture and Mobility (ISSN 2319-9229) Volume 1-Issue 8, June 2013 mainstream operating systems. FUSE requires a programmer to deal only with a simple application programming interface (API) consisting of familiar file system operations. A variety of programming language bindings are available for FUSE, which, coupled with its simplicity, makes file system development accessible to a large number of programmers. FUSE file systems can also be mounted by nonprivileged users, which motivate novel uses for file systems. For instance, WikipediaFS allows a user to view and edit Wikipedia articles as if they were local files. Fig. 1 System Architecture The kernel code lacks memory protection, requires careful II. WORKING OF FUSE use of synchronization primitives, can be written only in C, and that too without being linked against the standard C library. Debugging kernel code is also tedious, and errors can require rebooting the system. Even a fully functional in-kernel file system has several disadvantages. Porting a file system written for a particular flavor of Unix to a different one can require significant changes in the design and implementation of the file system, even though the use of similar file system interfaces (such as Fig. 2 A flow-chart diagram illustrating how FUSE works the VFS layer) on several Unix-like systems makes the task somewhat easier. Besides, an in-kernel file system can be There is something of delineation between what is called mounted only with super user privileges. This can be a “kernel-space” and “user-space”. Kernel-space is roughly hindrance for file system development and usage on centrally indicated by anything that is happening within the kernel code administered machines, such as those in universities and or the “space” of the kernel code and resources, typically as a corporations. privileged user. On the other hand “user-space” indicates anything that is happening outside of the kernel where any In contrast to kernel development, programming in user user can create and run an application and use system space mitigates, or completely eliminates, several of the resources. abovementioned issues. The illustration corresponds to the “hello world” file FUSE is a widely used framework available for UNIX like system on the FUSE website. At a high level the “hello world” operating system, which allows non privileged users to file system is compiled to create a binary called “hello”. This develop file systems in user space. It has been merged into the binary is executed in the upper right hand corner of the Linux kernel, while ports are also available for several illustration with a file system mount point of /tmp/fuse. Then Available Online at: www.ijcam.com International Journal of Computer Architecture and Mobility (ISSN 2319-9229) Volume 1-Issue 8, June 2013 the user executes ls -l command against the mount point (ls -l during a maintenance period. But since it’s a file system is till /tmp/fuse). This command goes through glibc to the VFS. The recommend that you run it on a test system first before putting VFS then goes to the FUSE module since the mount point it into production. corresponds to a FUSE based file system. The FUSE kernel A third advantage is that if the file system crashes for module then goes through glibc and libfuse (libfuse is the some reason, it doesn’t necessarily take down the entire OS. If FUSE library in user space) and contacts the actual file system the kernel files system crashes, there is a distinct possibility binary (“hello”). The file system binary returns the results that the kernel could also throw an exception and crash. The back down the stack to the FUSE kernel model, back through kernel and file system developers have taken great pains to the VFS, and finally back to the ls -l command. prevent this from happening but the fact that the file system resides in kernel space increases the possibility of a problem causing a kernel panic compared to a user-space application III. ADVANTAGES OF FUSE that typically crashes without causing a kernel panic. If a user- The first advantage is that they don’t reside in the kernel, space file system crashes, you can just kill any associated naturally, so it’s fairly easy to distribute your code. That is, processes (I love “kill -9″ – just be sure you’re killing the the code does not have to go through the extremely rigorous correct process) and then remount the file system. Of course, and sometimes aggravating process of testing, review, there is the possibility of data corruption in this case, but justification, stylistic code changes, test, review, justification, hopefully the user-space file system designers have etc. Hopefully the developer(s) of the user-space file system mechanisms to limit this. have paid attention to security, maintainability, interactions with other user applications, etc., so that the code is reasonably safe for testing. Being in user-space also means IV. ILLUSTRATION that the file system code can be tested sooner since a bug Traditional operating system design makes a division usually just crashes the application and doesn’t cause a kernel between the “kernel” of the system, which is responsible for panic. Developers don’t have to wait for something complete interfacing with hardware devices, provides networking, file and tested before releasing to a wider test audience and can system and other low-level services and “user space” where get some very immediate feedback as to the usefulness of the user applications execute. Typically the kernel is file system. “monolithic,” meaning that all its services share a single The second advantage is that if there is an enhancement or memory address space and execute at elevated hardware a bug fix, you can quickly update the file system (no waiting privilege level, and strictly divided from user space, in which for a couple of kernel revisions). The file system is in user- each application has its own address space. space so you can update as you would any other user-space application using the package tools for your distribution (e.g. File systems are traditionally implemented in kernel space yum or apt-get). Of course, it is likely you will have to to take advantage of low overhead of accessing internal kernel unmount the file system, upgrade, and then remount the file services such as storage device drivers (typically this is to system, but this is a fairly common process that most avoid a context switch between user space and kernel space) administrators have mastered, typically performing upgrades and to make themselves transparently accessible to any and all Available Online at: www.ijcam.com International Journal of Computer Architecture and Mobility (ISSN 2319-9229) Volume 1-Issue 8, June 2013 user space processes. REFERENCES [1] Network Distributed File System in User FUSE project aims to provide the means by which file Space Ivan Voras, Mario Žagar Faculty of systems can be written in user space and exposed via the Electrical Engineering & Computing, University kernel to rest of the operating system in a transparent way (i.e. of Zagreb,Unska3,10000 Zagreb, Croatia not distinguishable from other file systems).
Recommended publications
  • High Velocity Kernel File Systems with Bento
    High Velocity Kernel File Systems with Bento Samantha Miller, Kaiyuan Zhang, Mengqi Chen, and Ryan Jennings, University of Washington; Ang Chen, Rice University; Danyang Zhuo, Duke University; Thomas Anderson, University of Washington https://www.usenix.org/conference/fast21/presentation/miller This paper is included in the Proceedings of the 19th USENIX Conference on File and Storage Technologies. February 23–25, 2021 978-1-939133-20-5 Open access to the Proceedings of the 19th USENIX Conference on File and Storage Technologies is sponsored by USENIX. High Velocity Kernel File Systems with Bento Samantha Miller Kaiyuan Zhang Mengqi Chen Ryan Jennings Ang Chen‡ Danyang Zhuo† Thomas Anderson University of Washington †Duke University ‡Rice University Abstract kernel-level debuggers and kernel testing frameworks makes this worse. The restricted and different kernel programming High development velocity is critical for modern systems. environment also limits the number of trained developers. This is especially true for Linux file systems which are seeing Finally, upgrading a kernel module requires either rebooting increased pressure from new storage devices and new demands the machine or restarting the relevant module, either way on storage systems. However, high velocity Linux kernel rendering the machine unavailable during the upgrade. In the development is challenging due to the ease of introducing cloud setting, this forces kernel upgrades to be batched to meet bugs, the difficulty of testing and debugging, and the lack of cloud-level availability goals. support for redeployment without service disruption. Existing Slow development cycles are a particular problem for file approaches to high-velocity development of file systems for systems.
    [Show full text]
  • Comparison of Kernel and User Space File Systems
    Comparison of kernel and user space file systems — Bachelor Thesis — Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg Vorgelegt von: Kira Isabel Duwe E-Mail-Adresse: [email protected] Matrikelnummer: 6225091 Studiengang: Informatik Erstgutachter: Professor Dr. Thomas Ludwig Zweitgutachter: Professor Dr. Norbert Ritter Betreuer: Michael Kuhn Hamburg, den 28. August 2014 Abstract A file system is part of the operating system and defines an interface between OS and the computer’s storage devices. It is used to control how the computer names, stores and basically organises the files and directories. Due to many different requirements, such as efficient usage of the storage, a grand variety of approaches arose. The most important ones are running in the kernel as this has been the only way for a long time. In 1994, developers came up with an idea which would allow mounting a file system in the user space. The FUSE (Filesystem in Userspace) project was started in 2004 and implemented in the Linux kernel by 2005. This provides the opportunity for a user to write an own file system without editing the kernel code and therefore avoid licence problems. Additionally, FUSE offers a stable library interface. It is originally implemented as a loadable kernel module. Due to its design, all operations have to pass through the kernel multiple times. The additional data transfer and the context switches are causing some overhead which will be analysed in this thesis. So, there will be a basic overview about on how exactly a file system operation takes place and which mount options for a FUSE-based system result in a better performance.
    [Show full text]
  • Software Defined Storage Overview
    Software Defined Storage Overview August 2019 Juan Jose Floristan Cloud Specialist Solution Architect 1 AGENDA 1. Why Red Hat Storage? 2. Red Hat Ceph Storage 3. Red Hat Gluster Storage 4. Red Hat Openshift Container Storage 2 Why Red Hat Storage? 3 Why Red Hat Storage? STORAGE IS EVOLVING TRADITIONAL STORAGE OPEN, SOFTWARE-DEFINED STORAGE Complex proprietary silos Standardized, unified, open platforms USER USER USER USER ADMIN Control Plane (API, GUI) ADMIN ADMIN ADMIN Software Ceph Gluster +++ Open Source Custom GUI Custom GUI Custom GUI Proprietary Hardware Proprietary Hardware Proprietary Hardware Standard Computers and Disks Proprietary Proprietary Proprietary Standard Hardware Software Software Software 4 Why Red Hat Storage? WHY THIS MATTERS PROPRIETARY Common, Lower cost, standardized supply chain HARDWARE off-the-shelf hardware SCALE-UP Scale-out Increased operational flexibility ARCHITECTURE architecture HARDWARE-BASED Software-based More programmability, agility, INTELLIGENCE intelligence and control CLOSED DEVELOPMENT Open development More flexible, well-integrated PROCESS process technology 5 Why Red Hat Storage? A RISING TIDE Software-Defined Storage is leading SDS-P MARKET SIZE BY SEGMENT $1,395M a shift in the global storage industry, Block Storage File Storage $1,195M with far-reaching effects. Object Storage $1,029M Hyperconverged “By 2020, between 70%-80% of unstructured $859M data will be held on lower-cost storage managed $705M $592M by SDS.” $475M Innovation Insight: Separating Hype From Hope for Software-Defined Storage “By 2019, 70% of existing storage array products will also be available as software-only versions.” 2013 2014 2015 2016 2017 2018 Innovation Insight: Separating Hype From Hope for Software-Defined Storage 2019 Source: IDC 6 Why Red Hat Storage? THE RED HAT STORAGE MISSION To offer a unified, open software-defined storage portfolio that delivers a range of data services for next generation workloads, thereby accelerating the transition to modern IT infrastructures.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Lamassu: Storage-Efficient Host-Side Encryption
    Lamassu: Storage-Efficient Host-Side Encryption Peter Shah and Won So NetApp Inc. Abstract moves downstream through the stack. This strategy can Many storage customers are adopting encryption solu- take many forms, such as built-in application encryption, tions to protect critical data. Most existing encryption OS-based file system encryption or VM-level encryp- solutions sit in, or near, the application that is the source tion [3, 19, 22]. We term any encryption that runs on of critical data, upstream of the primary storage system. the same physical hardware as the primary application Placing encryption near the source ensures that data re- data-source encryption. mains encrypted throughout the storage stack, making it In general, existing data-source encryption solutions easier to use untrusted storage, such as public clouds. interfere with content-driven data management features Unfortunately, such a strategy also prevents down- provided by storage systems — in particular, deduplica- stream storage systems from applying content-based fea- tion. If a storage controller does not have access to the tures, such as deduplication, to the data. In this paper, we keys used to secure data, it cannot compare the contents present Lamassu, an encryption solution that uses block- of encrypted data to determine which sections, if any, are oriented, host-based, convergent encryption to secure duplicates. data, while preserving storage-based data deduplication. In this paper, we present an alternative encryption Unlike past convergent encryption systems, which typi- strategy that provides the benefits of upstream encryp- cally store encryption metadata in a dedicated store, our tion while preserving storage-based data deduplication system transparently inserts its metadata into each file’s on downstream storage.
    [Show full text]
  • D3.5 Design and Implementation of P2P Infrastructure
    INNOVATION ACTION H2020 GRANT AGREEMENT NUMBER: 825171 WP3 – Vision Materialisation and Technical Infrastructure D3.5 – Design and implementation of P2P infrastructure Document Info Contractual Delivery Date: 31/12/2019 Actual Delivery Date: 31/12/2019 Responsible Beneficiary: INOV Contributing Beneficiaries: UoG Dissemination Level: Public Version: 1.0 Type: Final This project has received funding from the European Union’s H2020 research and innovation programme under the grant agreement No 825171 ` DOCUMENT INFORMATION Document ID: D3.5: Design and implementation of P2P infrastructure Version Date: 31/12/2019 Total Number of Pages: 36 Abstract: This deliverable describes the EUNOMIA P2P infrastructure, its design, the EUNOMIA P2P APIs and a first implementation of the P2P infrastructure and the corresponding APIs made available for the remaining EUNOMIA modules to start integration (for the 1st phase). Keywords: P2P design, P2P infrastructure, IPFS AUTHORS Full Name Beneficiary / Organisation Role INOV INESC INOVAÇÃO INOV Overall Editor University of Greenwich UoG Contributor REVIEWERS Full Name Beneficiary / Organisation Date University of Nicosia UNIC 23/12/2019 VERSION HISTORY Version Date Comments 0.1 13/12/2019 First internal draft 0.6 22/12/2019 Complete draft for review 0.8 29/12/2019 Final draft following review 1.0 31/12/2019 Final version to be released to the EC Type of deliverable PUBLIC Page | ii H2020 Grant Agreement Number: 825171 Document ID: WP3 / D3.5 EXECUTIVE SUMMARY This deliverable describes the P2P infrastructure that has been implemented during the first phase of the EUNOMIA to provide decentralized support for storage, communication and security functions. It starts with a review of the main existing P2P technologies, where each one is analysed and a selection of candidates are selected to be used in the project.
    [Show full text]
  • Performance and Extension of User Space File Introduction (1 of 2) Introduction (2 of 2) Introduction
    4/15/2014 Introduction (1 of 2) Performance and Extension of • Developing in-kernel file systems challenging User Space File – Understand and deal with kernel code and data structures – Steep learning curve for kernel development Aditya Raigarhia and Ashish Gehani • No memory protection Stanford and SRI • No use of debuggers • Must be in C • No standard C library • ACM Symposium on Applied Computing (SAC) In-kernel implementations not so great Sierre, Switzerland, March 22-26, 2010 – Porting to other flavors of Unix can be difficult – Needs root to mount – tough to use/test on servers Introduction (2 of 2) Introduction - FUSE • • Modern file system research adds functionality File system in USEr space (FUSE) – framework for Unix- like OSes over basic systems, rather than designing low- • level systems Allows non-root users to develop file systems in user space – Ceph [37] – distributed file system for performance • and reliability – uses client in users space API for interface with kernel, using fs-type operations • • Programming in user space advantages Many different programming language bindings • FUSE file systems can be mounted by non-root users – Wide range of languages • Can compile without re-compiling kernel – Use of 3 rd party tools/libraries • – Fewer kernel quirks (although still need to couple user Examples code to kernel system calls) – WikipediaFS [2] lets users view/edit Wikipedia articles as if local files – SSHFS access via SFTP protocol 1 4/15/2014 Problem Statement Outline • Prevailing view – user space file systems
    [Show full text]
  • Encrypted File System Based on Distributed Key-Value Stores and FUSE
    International Journal of Network Security & Its Applications (IJNSA) Vol.11, No.2, March 2019 KVEFS: Encrypted File System based on Distributed Key-Value Stores and FUSE Giau Ho Kim, Son Hai Le, Trung Manh Nguyen, Vu Thi Ly, Thanh Nguyen Kim, Nguyen Van Cuong, Thanh Nguyen Trung, and Ta Minh Thanh Le Quy Don Technical University No 236 Hoang Quoc Viet Street , Hanoi, Vietnam [email protected] Abstract. File System is an important component of a secure operating system. The need to build data protection systems is extremely important in open source operating systems, high mobility hardware systems, and miniaturization of storage devices that make systems available. It is clear that the value of the data is much larger than the value of the storage device. Computers access protection mechanism does not work if the thief retrieves the hard drive from the computer and reads data from it on another computer. Encrypted File System (EFS) is a secure level of operating system kernel. EFS uses cryptography to encrypt or decrypt files and folders when they are being saved or retrieved from a hard disk. EFS is often integrated transparently in operating system There are many encrypted filesystems commonly used in Linux operating systems. However, they have some limitations, which are the inability to hide the structure of the file system. This is a shortcoming targeted by the attacker, who will try to decrypt a file to find the key and then decrypt the entire file system. In this paper, we propose a new architecture of EFS called KVEFS which is based on cryptographic algorithms, FUSE library and key-value store.
    [Show full text]
  • The Evolution of File Systems
    The Evolution of File Systems Thomas Rivera, Hitachi Data Systems Craig Harmer, April 2011 SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals may use this material in presentations and literature under the following conditions: Any slide or slides used must be reproduced without modification The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations. This presentation is a project of the SNIA Education Committee. Neither the Author nor the Presenter is an attorney and nothing in this presentation is intended to be nor should be construed as legal advice or opinion. If you need legal advice or legal opinion please contact an attorney. The information presented herein represents the Author's personal opinion and current understanding of the issues involved. The Author, the Presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information. NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK. The Evolution of File Systems 2 © 2012 Storage Networking Industry Association. All Rights Reserved. 2 Abstract The File Systems Evolution Over time additional file systems appeared focusing on specialized requirements such as: data sharing, remote file access, distributed file access, parallel files access, HPC, archiving, security, etc. Due to the dramatic growth of unstructured data, files as the basic units for data containers are morphing into file objects, providing more semantics and feature- rich capabilities for content processing This presentation will: Categorize and explain the basic principles of currently available file system architectures (e.g.
    [Show full text]
  • Refuse: Userspace FUSE Reimplementation Using Puffs
    ReFUSE: Userspace FUSE Reimplementation Using puffs Antti Kantee Alistair Crooks Helsinki University of Technology The NetBSD Foundation [email protected].fi [email protected] Abstract for using Gmail as a file system storage backend and FUSEPod [5] which facilitaties iPod access and man- In an increasingly diverse and splintered world, agement. interoperability rules. The ability to leverage code Userspace file systems operate by attaching an in- written for another platform means more time and re- kernel file system to the kernel’s virtual file system sources for doing new and exciting research instead layer, vfs [17]. This component transforms incoming of reinventing the wheel. Interoperability requires requests into a form suitable for delivery to userspace, standards, and as the saying goes, the best part of sends the request to userspace, waits for a response, standards is that everyone can have their own. How- interprets the result and feeds it back to caller in the ever, in the userspace file system world, the Linux- kernel. The kernel file system calling conventions originated FUSE is the clear yardstick. dictate how to interface with the virtual file system In this paper we present ReFUSE, a userspace layer, but other than that the userspace file systems implementation of the FUSE interface on top of the framework is free to decide how to operate and what NetBSD native puffs (Pass-to-Userspace Framework kind of interface to provide to userspace. File System) userspace file systems framework. We While extending the operating system to userspace argue that an additional layer of indirection is the is not a new idea [12, 21], the FUSE [2] userspace right solution here, as it allows for a more natural file systems interface is the first to become a veri- export of the kernel file system interface instead of table standard.
    [Show full text]
  • How High School Students Can Write a Filesystem Prototype
    ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA Scuola di Scienze Corso di Laurea in Informatica TgFuseFs: How High School Students Can Write a Filesystem Prototype Tesi di laurea Relatore: Presentata da: Chiar.mo Prof. Riccardo Maffei Renzo Davoli Correlatori: Dott. Marco Sbaraglia Dott. Michael Lodi Sessione III Anno Accademico 2018-2019 Information about licenses and credits can be found in AppendixA. ii To those I love and those who love me... iii iv Abstract Italian high school students who are majoring in Computer Science usually study subjects like programming, databases, networks, system engineering, electronics and operating systems. While most of these subjects let the stu- dents practice with projects, operating systems usually is taught in a more the- oretical way because practical projects either are too simple to be didactically useful or require too many prerequisites. Hence, components like filesystems are only studied in theory from an high level point of view. We think that building a filesystem prototype could be considered active learn- ing and could improve the operating systems learning experience. For this reason in this work we will show how fifth year students with very few pre- requisites can build their first working prototype of a remote filesystem in userspace using Python, FUSE and Telegram. Since the activity is designed for high school students, the prototype won’t be perfect but we will present some of the issues that students should be aware of and more advanced students should address. v vi Contents Introduction1 1 General Concepts3 1.1 Requirements...............................3 1.2 Python...................................4 1.2.1 asyncio ..............................4 1.3 FUSE and libfuse ............................8 1.3.1 pyfuse3 .............................
    [Show full text]
  • Linux Kernel Series
    Linux Kernel Series By Devyn Collier Johnson More Linux Related Stuff on: http://www.linux.org Linux Kernel – The Series by Devyn Collier Johnson (DevynCJohnson) [email protected] Introduction In 1991, a Finnish student named Linus Benedict Torvalds made the kernel of a now popular operating system. He released Linux version 0.01 on September 1991, and on February 1992, he licensed the kernel under the GPL license. The GNU General Public License (GPL) allows people to use, own, modify, and distribute the source code legally and free of charge. This permits the kernel to become very popular because anyone may download it for free. Now that anyone can make their own kernel, it may be helpful to know how to obtain, edit, configure, compile, and install the Linux kernel. A kernel is the core of an operating system. The operating system is all of the programs that manages the hardware and allows users to run applications on a computer. The kernel controls the hardware and applications. Applications do not communicate with the hardware directly, instead they go to the kernel. In summary, software runs on the kernel and the kernel operates the hardware. Without a kernel, a computer is a useless object. There are many reasons for a user to want to make their own kernel. Many users may want to make a kernel that only contains the code needed to run on their system. For instance, my kernel contains drivers for FireWire devices, but my computer lacks these ports. When the system boots up, time and RAM space is wasted on drivers for devices that my system does not have installed.
    [Show full text]