Prenatal Diagnosis of Congenital Anomalies

Total Page:16

File Type:pdf, Size:1020Kb

Prenatal Diagnosis of Congenital Anomalies PRENATAL DIAGNOSIS OF CONGENITAL ANOMALIES Roberto Romero, M.D. Associate Professor of Obstetrics and Gynecology Director of Perinatal Research Yale University School of Medicine New Haven, Connecticut Gianluigi Pilu, M.D. Attending Physician Section of Prenatal Pathophysiology Second Department of Obstetrics and Gynecology University of Bologna School of Medicine Bologna, Italy Philippe Jeanty, M.D. Assistant Professor Department of Radiology Vanderbilt University Nashville, Tennessee Alessandro Ghidini, M.D. Research Fellow Department of Obstetrics and Gynecology Yale University School of Medicine New Haven, Connecticut John C. Hobbins, M.D. Professor of Obstetrics and Gynecology and Diagnostic Imaging Yale University School of Medicine Director of Obstetrics Yale-New Haven Hospital New Haven, Connecticut APPLETON & LANGE Norwalk, Connecticut/San Mateo, Califomia ©1987-2002 Romero-Pilu-Jeanty-Ghidini-Hobbins 0-8385-7921-3 Notice: Our knowledge in clinical sciences is constantly changing. As new information becomes available, changes in treatment and in the use of drugs become necessary. The author(s) and the publisher of this volume have taken care to make certain that the doses of drugs and schedules of treatment are correct and compatible with the standards generally accepted at the time of publication. The reader is advised to consult carefully the instruction and information material included in the package insert of each drug or therapeutic agent before administration. This advice is especially important when using new or infrequently used drugs. Copyright © 1988 by Appleton & Lange A Publishing Division of Prentice Hall All rights reserved. This book, or any parts thereof, may not be used or reproduced in any manner without written permission. For information, address Appleton & Lange, 25 Van Zant Street, East Norwalk, Connecticut 06855. 88 89 90 91 92 / 10 9 8 7 6 5 4 3 2 1 Prentice-Hall of Australia, Pty. Ltd., Sydney Prentice-Hall Canada, Inc. Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-Hall of India Private Limited, New Delhi Prentice-Hall International (UK) Limited, London Prentice-Hall of Japan, Inc., Tokyo Prentice-Hall of Southeast Asia (Pte.) Ltd., Singapore Whitehall Books Ltd., Wellington, New Zealand Editora Prentice-Hall do Brasil Ltda., Rio de Janeiro Library of Congress Cataloging-in-Publication Data Prenatal diagnosis of congenital anomalies. Includes index. 1. Prenatal diagnosis. 2. Fetus---Abnormalities --- Diagnosis. I. Romero, Roberto. [DNLM: 1. Abnormalities ---diagnosis. 2. Fetal Diseases--diagnosis. 3. Prenatal Diagnosis---methods. QS 675 P926] RG628.P74 1987 618.2'2 87-14557 ISBN 0-8385-7921-3 Production Editor: Donald L. Delauter Design: M. Chandler Martylewski PRINTED IN THE UNITED STATES OF AMERICA ©1987-2002 Romero-Pilu-Jeanty-Ghidini-Hobbins The Central Nervous System Normal Sonographic Anatomy of the Porencephaly/ 50 Fetal Central Nervous System/ 1 Hydranencephaly/ 52 HYDROCEPHALUS/ 21 Microcephaly/ 54 Aqueductal Stenosis/ 24 Holoprosencephaly/ 59 Communicating Hydrocephalus/ 27 Inienecphaly/ 65 Dandy-Walker Malformation/ 30 Agenesis of the Corpus Callosum/ 67 Choroid Plexus Papilloma/ 34 Lissencephaly/ 70 NEURAL TUBE DEFECTS/ 36 Intracranial Arachnoid Cysts/ 71 Spina Bifida/ 36 Intracranial Tumors/ 73 Anencephaly/ 43 Acrania/ 75 Cephalocele/ 46 Choroid Plexus Cyst/ 76 Aneurysm of the Vein of Galen/ 77 Normal Sonographic Anatomy of the Fetal Central Nervous System INTRACRANIAL ANATOMY tional ages is critical for the recognition of congenital anomalies. The objective of the sonographic examination of the fetal central nervous system (CNS) is to reconstruct with a Axial Planes two-dimensional tool a complex three-dimensional Axial planes are obtained by scanning the head of the structure.In this effort, the larger the number of scanning fetus at an angle of about 20 degrees to the canthomeatal planes obtained, the more accurate the representation will line.9 Four different levels are commonly used (Fig. 1-2), appear.The three planes traditionally used for such an The first scanning plane passes through the bodies of the evaluation are the axial, sagittal, and coronal (Fig. 1-1). lateral ventricles. In Figure 1-3A, the different The sonographer should be aware that important appearances of this view throughout gestation can be developmental changes occur in the fetal brain well after seen. At 16 weeks, the lateral ventricles occupy most of the end of embryogenesis and up to the third trimester. the relative hemispheres and are partially filled with the The lateral ventricles and subarachnoid cisterns decrease echogenic choroid plexuses. At midgestation, the size of steadily in size throughout gestation, resulting not only in the lateral ventricles has considerable diminished, but in a geometric modification of the cerebral structures but many cases it is still possible to observe the two walls also in important changes in the sonographic appearance that line the ventricular cavity on both sides. During the of the fetal brain. During the early second trimester, the third trimester, only the lateral wall can be visualized. fluid-filled lateral ventricles are large. This causes The distance between the midline echo and the lateral enhancement of sound transmission, and the distal wall of the ventricle is now approximately one third of cerebral cortex appears more echoic than later in the hemispheric width. This value will remain constant gestation. Familiarity with the normal ultrasound throughout life (Fig. 1-3B). appearance of the fetal brain in different scanning planes The axial view has been used to derive nomograms for and at different gesta- the normal size of the ventricles The ©1987-2002 Romero-Pilu-Jeanty-Ghidini-Hobbins 2 THE CENTRAL NERVOUS SYSTEM or 19th week, the temporal lobe is convex and the lobe of the insula is apposed to the calvarium. In the following weeks, the insula deepens medially while the adjacent frontal and temporal lobes (so-called opercula) move progressively closer to each other, forming the sylvian fissure. The beginning of sylvian fissure demarcation is already visible at 22 weeks of gestation, However, it is not until 32 to 34 weeks of gestation that the opercularization is complete3 (Fig. 1-7). The third axial section corresponds to the biparietal diameter level (Fig. 1-8A,B). In this scanning plane, the thalami appear as two triangular echo-free areas. Between the thalami, the slitlike third ventricle can be seen. It is sometimes possible to visualize a cross-section of the aqueductus of Sylvius posterior to the third ventricle. On both sides of the thalami, the hippocampal gyrus appears as a circular space delineated medially by the ambient cistern and laterally by the atrium of the lateral ventricle. Anterior to the Figure 1-1. Schematic representation of the scanning planes used thalami, it is possible to visualize the frontal horns of the for the study of fetal cerebral anatomy: (1) axial, (2) sagittal, and lateral ventricles. During the (3) coronal. ratio between the distance from the midline echo to the lateral ventricular wall (lateral ventricular width, LVW)and the hemispheric width (HW) measured from the midline echo to the inner echo of the calvarium is illustrated in Figure 1-4. Tables 1-1 and 1-2 are the corresponding nomograms. It should be stressed that after the 20th week of gestation, the choroid plexus is considerably reduced in size. It is no longer observes in the previously described axial plane and can only be imaged in a lower section (Fig. 1-5A,B). Because the lateral ventricles diverge inferiorly and posteriorly, the measurement of the LVW:HW ratio at this level would result in a falsely elevated value. Therefore, this measurement should not be taken in a section that displays the choroid plexus later than 20 weeks of gestation. Furthermore, in normal fetuses, it is usually possible with current high-resolution ultrasound equipment to visualize both the lateral and medial walls of the lateral ventricle. This observation is important because it has been suggested that simultaneous demonstration of both ventricular walls in the third trimester is an early sign of hydrocephaly.4 The sonographer should be aware that such findings may be entirely normal in this scanning plane. The second scanning plane passes through the frontal Figure 1-2. Schematic representation of the axial examination of the horns, atria, and occipital horns of the lateral ventricles fetal head. In the four scanning planes (from rostral to caudal), the (Fig. 1-6). At 18 weeks, the atria are round and are following structures can be recognized: bodies of the lateral ventricles (B), frontal horns (FH), atria (At), and occipital horns (OH) of the entirely filled with the echogenic choroid plexus. Later in lateral ventricles, thalami (T), sylvian and vein of Galen cisterns (sc, gestation, the atria decrease in size and assume a convex vgc), third ventricle (3v), ambient cistern (ac), hippocampal gyrus shape due to the development of the calcar avis. The (HG), cerebral peduncles (P), chiasmatic cistern (cc), and cerebellum occipital horns appear as a fluid-filled posterior (C). LV, lateral ventricles; 4v, fourth ventricle. prolongation of the atria. In this scanning plane, it is possible to appreciate the progressive opercularization of the insula. Until the 18th ©1987-2002 Romero-Pilu-Jeanty-Ghidini-Hobbins NORMAL SONOGRAPHIC ANATOMY OF THE FETAL CENTRAL NERVOUS SYSTEM 3 Figure 1-3. A. Axial scans at the level of the bodies (B) of the lateral ventricles at 16, 23, and 30 weeks. Note the prominent choroid plexus (CP) in the 16-week fetus and the progressive shrinking of the ventricular cavity. The arrowheads indicate the medial and lateral walls of the ventricle. Figure 1-3. B. Anatomic specimen from an adult brain correspond- ing to the axial section shown in Figure 1-3A. Note the similarity in ventricular versus hemispheric size with the ultrasound image of the 30-week fetus. (Reproduced with permission from Matsui, Irano : An Atlas of the Human Brain for Computed Tomography. Tokyo, Igaku Shoin, 1978.) Figure 1-4. A. Measurement of the LVW:HW ratio.
Recommended publications
  • Congenital Externally Communicating Porencephaly Presenting As Hemiplegic Cerebral Palsy: Imaging Study of a Rare Condition
    SunKrist Journal of Neonatology and Pediatrics Case Presentation Volume: 3, Issue: 1 Scientific Knowledge Congenital Externally Communicating Porencephaly Presenting as Hemiplegic Cerebral Palsy: Imaging Study of a Rare Condition Al-Mosawi AJ1,2* 1Department of Pediatrics and Pediatric Psychiatry, Children Teaching Hospital of Baghdad Medical City, Iraq 2Head, Iraq Headquarter of Copernicus Scientists International Panel, Iraq 1. Abstract presentation including asymptomatic, various forms Congenital porencephaly is a very rare condition of cerebral palsy, seizures and cognitive impairment. characterized by cystic degeneration The disorder is heterogeneous in nature and the brain encephalomalacia and cysts or cavities within the lesions can be caused by developmental brain. Porencephalic cysts have a variable size and abnormalities, infection, perinatal brain ischemia, site and therefore it result in a variable clinical trauma and hemorrhage. Genetic factors have been presentations including asymptomatic, various forms suggested and familial cases have been reported. of cerebral palsy, seizures and cognitive impairment. Congenital porencephaly is generally classified into, The disorder is heterogeneous in nature and the brain internally communicating with the ventricle and lesions can be caused by developmental externally communicating with the subarachnoid abnormalities, infection, perinatal brain ischemia, space [1-7]. The aim of this paper is to report the rare trauma and hemorrhage. Genetic factors have been finding of externally communicating porencephaly in suggested and familial cases have been reported. a child with hemiplegic cerebral palsy. Congenital porencephaly is generally classified into, 4. Patients and Methods internally communicating with the ventricle and The case of a five-year old girl with hemiplegic externally communicating with the subarachnoid cerebral palsy caused by porencephaly is described space.
    [Show full text]
  • A Case Report Cem Yener Trakya University, Turkey
    American Journal of Preventive Medicine and Public Health Open Access Iniencephaly: A Case Report Cem Yener Trakya University, Turkey ABSTRACT of head, spinal dysmorphism, and lordosis of cervicothoracic vertebrae. Iniencephaly is in the same family of neural tube defects as spina Iniencephaly is a rare neural tube defect characterized by the presence of occipital bone defects at foramen magnum, fixed retroflexion bifida, but it is more severe. The frequency varies between 0.1-10 / 10,000. Most of the fetuses are female. Etiopathogenesis is not known. According to some sources, it has been associated with trisomy 13, 18 and monosomy X. AFP(alfa-feto protein) as a biochemical marker is generally increased. Here we present a 30 years old 19 weeks pregnant women that was referred to our Perinatology Department. We detected polihydramnios, extreme retroflexion of the head, absent neck, low set ears and major cardiac anomaly on ultrasonography. We informed family and with family consent we terminated pregnancy (Image 1). In conclusion, iniencephaly is a neural tube defect with unknown etiopathogenesis. There is no standard treatment for iniencephaly since most infants rarely live longer than a few hours. Medicine is based more on prevention using supplementation with folic acid. Numerous studies have demonstrated that mothers can reduce the risk of neural tube birth defects such as iniencephaly by up to 70 percent with daily supplements of at least 4 mg of folic disordersacid. Pregnant so prenatal women care should is important avoid taking for these antiepileptic patients. drugs, diuretics, antihistamines, and sulfa drugs, which have been shown to be associated with an increased risk of neural tube defects.
    [Show full text]
  • Iniencephaly: Radiological and Pathological Features of a Series of Three Cases Panduranga Chikkannaiah, V
    Published online: 2019-09-25 Case Report Iniencephaly: Radiological and pathological features of a series of three cases Panduranga Chikkannaiah, V. Srinivasamurthy, B. S. Satish Prasad1, Pradeepkumar Lalyanayak, Divya N. Shivaram Department of Pathology, 1Radiology, ESIC Medical College and PGIMSR, Rajajinagar, Bangalore, Karnataka, India ABSTRACT Iniencephaly is a rare form of neural tube defect with an incidence of 0.1‑10 in 10,000 pregnancies. It is characterized by the presence of occipital bone defects at foramen magnum, fixed retroflexion of head, spinal dysmorphism, and lordosis of cervicothoracic vertebrae. It is usually associated with central nervous system, gastrointestinal, and cardiovascular anomalies. We present radiological and autopsy findings in a series of 3 cases of iniencephaly (gestational ages 29.3, 23, and 24 weeks) first fetus in addition showed omphalocele, pulmonary hypoplasia, two lobes in right lung, accessory spleen, atrial septal defect, bilateral clubfoot, ambiguous genitalia, and single umbilical artery. Second fetus was a classical case of iniencephaly apertus with spina bifida. Third fetus had colpocephaly and bifid spine. Key words: Colpocephaly, iniencephaly, omphalocele, pulmonary hypoplasia, spina bifida Introduction as her routine anomalous ultrasonogram (USG) done at a primary center revealed defective development of spine, Iniencephaly is a rare, fatal neural tube defect (NTD) atrial septal defect (ASD), aplasia of the right kidney, characterized by occipital bone defects at foramen magnum, and encephalocele. The mother’s routine blood and fixed retroflexion of head, spinal dysmorphism, and biochemical investigations were within normal limits. lordosis of cervicothoracic vertebrae.[1] Howkin and Lawrie She was not a known diabetic or hypertensive and had in 1939 classified iniencephaly into two types based on the a history of nonconsanguineous marriage.
    [Show full text]
  • A Medley of Fetal Brain Anomalies No Disclosures
    3/28/2021 No disclosures A Medley of Fetal Brain Anomalies Ana Monteagudo, MD Anencephaly-Exencephaly Anencephaly-Exencephaly Sequence Sequence 10 3/7 weeks Abnormally shaped head Echogenic amniotic fluid Absent calvarium Best seen with increased gain CRL may be lagging dates Iniencephaly Anencephaly-Exencephaly Sequence 11 2/7 weeks Iniencephaly is an NTD. 19 weeks Retroflexion of the head Spinal abnormalities Retroflexion with ONTD Spine Head 1 3/28/2021 Posterior Encephalocele Posterior Encephalocele 14 4/7 weeks Cranial defect Brain protruding through defect Parietal Encephalocele- Atretic ? Occipital Encephalocele Cranial Defect Cephalocele Sagittal suture Parietal bone Lambdoid Feeding Vessel suture Occipital bone Anterior cephalocele 13 weeks H.O. Encephalocele 2 3/28/2021 Anterior Cephalocele 13 weeks 32 wks Anterior Encephalocele Anterior Encephalocele 25 wks Posterior Encephalocele MECKEL SYNDROME, TYPE 1; MKS1 Posterior Encephalocele 34 3/7 weeks Transabdominal Transvaginal 3 3/28/2021 Absence of Gyri & Sulci (Lissencephaly) and Ventriculomegaly, Dilated 3rd & DWM Ventriculomegaly Dilated 3rd ventricle Absent vermis Ventriculomegaly Dysgenetic Corpus Callosun Pericallosal Artery 3/7 Ventriculomegaly 34 weeks Smooth brain surface 3/7 Absence of Gyri & Sulci 34 weeks Lissencephaly Cataract and Micrognathia Agenesis of the Corpus Callosum- Indirect Signs Walker-Warburg Syndrome Cataract Micrognathia Non-visualization CSP Prominent Wide Inter- Tear-shaped HARD syndrome: hydrocephalus, agyria, and retinal dysplasia 3rd ventricle hemispheric fissure ventricles Agenesis of the Corpus callosum Non-Visualization of CSP Parallel slit-like, crescent shape • No fluid filled CSP lateral ventricle • Normal corpus callosum & pericallosal a. Upwardly displaced Absent corpus Absent pericallosal 3rd ventricle Falx callosum artery 4 3/28/2021 Dysgenesis Corpus callosum • Biometry too small, thick • Obliteration of the CSP … this finding should elicit detailed imaging and evaluation of the CC, other cerebral structures and the remaining fetal anatomy.
    [Show full text]
  • Porencephaly Diagnosed by Isotope Cisternography
    Journal of Neurology, Neurosurgery, and Psychiatry, 1972, 35, 669-675 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.35.5.669 on 1 October 1972. Downloaded from Porencephaly diagnosed by isotope cisternography D. FRONT, J. W. F. BEKS, AND L. PENNING' From the Departments of Neuroradiology and Neurosurgery, University Hospital, Gronintgen, The Netherlands SUMMARY The diagnosis of porencephaly by isotope cisternography is described. In the three cases presented, porencephaly was associated with non-resorptive hydrocephalus. The communi- cating hydrocephalus caused the isotope to enter the ventricular system and visualize the cyst, and the diagnosis of both disorders was established by RIHSA cisternography. The method is simple and non-traumatic and provides information about abnormalities which air may fail to demonstrate. Isotope cisternography has proved to be very plane of the collimator than does the gamma camera. useful in the diagnosis of disturbances of flow Every patient is studied at four, 24, and 48 hours and absorption of cerebrospinal fluid (CSF) and after injection. their resultant hydrocephalus (Di Chiro, Reames, and Matthews, 1964; Bannister, Gliford, and CASE 1 and Protected by copyright. Kocen, 1967; James, DeLand, Hodges, Wag- A 39 year old man suffered a head injury in a road ner, 1970; Front, 1971), and in the recognition of accident. Bleeding was noticed from his nose and CSF rhinorrhoea (Di Chiro and Grove, 1966; mouth but no abnormality was found on neurologi- Di Chiro, Ommaya, Ashburn, and Briner, 1968; cal examination. Plain radiographs of the skull Front and Penning, 1971). showed fractures of the nasal, right maxillary, and In addition, we have found this investigation zygomatic bones.
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • Classification of Congenital Abnormalities of the CNS
    315 Classification of Congenital Abnormalities of the CNS M. S. van der Knaap1 A classification of congenital cerebral, cerebellar, and spinal malformations is pre­ J . Valk2 sented with a view to its practical application in neuroradiology. The classification is based on the MR appearance of the morphologic abnormalities, arranged according to the embryologic time the derangement occurred. The normal embryology of the brain is briefly reviewed, and comments are made to explain the classification. MR images illustrating each subset of abnormalities are presented. During the last few years, MR imaging has proved to be a diagnostic tool of major importance in children with congenital malformations of the eNS [1]. The excellent gray fwhite-matter differentiation and multi planar imaging capabilities of MR allow a systematic analysis of the condition of the brain in infants and children. This is of interest for estimating prognosis and for genetic counseling. A classification is needed to serve as a guide to the great diversity of morphologic abnormalities and to make the acquired data useful. Such a system facilitates encoding, storage, and computer processing of data. We present a practical classification of congenital cerebral , cerebellar, and spinal malformations. Our classification is based on the morphologic abnormalities shown by MR and on the time at which the derangement of neural development occurred. A classification based on etiology is not as valuable because the various presumed causes rarely lead to a specific pattern of malformations. The abnor­ malities reflect the time the noxious agent interfered with neural development, rather than the nature of the noxious agent. The vulnerability of the various structures to adverse agents is greatest during the period of most active growth and development.
    [Show full text]
  • Neonatal Porencephaly and Adult Stroke Related to Mutations in Collagen IV A1
    Neonatal Porencephaly and Adult Stroke Related to Mutations in Collagen IV A1 Marjo S. van der Knaap, MD, PhD,1 Leo M. E. Smit, MD, PhD,1 Frederik Barkhof, MD, PhD,2 Yolande A. L. Pijnenburg, MD,3 Sonja Zweegman, MD, PhD,4 Hans W. M. Niessen, MD, PhD,5 Saskia Imhof, MD, PhD,6 and Peter Heutink, PhD7 Objective: The objective of this study was to describe leukoencephalopathy, lacunar infarcts, microbleeds and macro- bleeds in the context of a collagen IV A1 mutation. Methods: We examined a family with autosomal dominant poren- cephaly, in whom a defect in collagen IV A1 was detected recently. The patients underwent neurological, ophthalmo- logical, and cardiological examinations and magnetic resonance imaging of the brain. Electron microscopy of a skin biopsy was performed. Extensive laboratory screening was performed for thrombophilia and increased bleeding tendency. Results: The porencephaly was symptomatic in the infantile period in two patients, whereas it led to only minor neu- rological dysfunction in their affected mother. However, she experienced development of recurrent strokes in her 40s. In addition to the porencephaly, all patients had a leukoencephalopathy, which was most severe in the mother. Her mag- netic resonance imaging results also showed lacunar infarcts, macrobleeds and a multitude of microbleeds. No other risk factors for recurrent stroke were found. Electron microscopy showed interruptions of the basement membrane of skin capillaries and inhomogeneous thickening of the basement membrane with pools of basement membrane fragments. Interpretation: Leukoencephalopathy, ischemic infarcts, microbleeds, and macrobleeds are indicative of an underlying microangiopathy, of which the best-known causes are hypertension, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and cerebral amyloid angiopathy.
    [Show full text]
  • 2472 - in Our Physical Examination, 6 Cm Cervical After an Hour, Patient Had Normal Delivery
    ACRANIA IN TERM FETUSA Termde fetusta akrani İLKER KAHRAMANOĞLU, MERVE BAKTIROĞLU, FATMA FERDA VERİT Süleymaniye Kadın Hastalıkları Ve Doğum,kadın Hastalıkları Ve Doğum,istanbul, Türkiye Suleymaniye Birth And Women Health Education And Research Hospital, Department Of Obstetrics And Gynecology,istanbul,turkey ÖZET Fetal akrani, kraniyal çatı kemiklerinin kısmi veya tam yokluğu ile karakterize, nadir görülen,yaşam şansı çok düşük olan konjenital bir patolojidir. Takipsiz gebelerde ve tanısı konup terminasyon istemeyen hastalarda maternal invazif girişimin ve aileye psikolojik zararın arttığı, maliyetin yükseldiği göz önünde tutulmalıdır. 2. trimesterde fetal akrani tanısı konulup terminasyon önerilen, aile olarak terminasyonu kabul etmeyen, miadında normal doğum yapan gebe sunulmuştur. Anahtar Kelimeler: Akrani, nöral tüp defekti, term fetus ABSTRACT Acrania is a rare fetal malformation, characterized by abnormal development of the calvarium with a large mass of disorganized brain tissue. Early diagnosis of acrania is important for determining the necessity to terminate the pregnancy and also to decrease the negative psychological and financial effects on patients and doctors. In this report, we present a case of term acrania, diagnosed in second trimester, refused termination because of religious beliefs. Key words: Acrania, neural tube defect, term fetus INTRODUCTİON Neural tube defects cover a broad spectrum early diagnosis of fetal acrania (3, 4). In of morphologic anomalies of the central this report, we present a case of term nervous
    [Show full text]
  • MR Imaging of Fetal Head and Neck Anomalies
    Neuroimag Clin N Am 14 (2004) 273–291 MR imaging of fetal head and neck anomalies Caroline D. Robson, MB, ChBa,b,*, Carol E. Barnewolt, MDa,c aDepartment of Radiology, Children’s Hospital Boston, 300 Longwood Avenue, Harvard Medical School, Boston, MA 02115, USA bMagnetic Resonance Imaging, Advanced Fetal Care Center, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA cFetal Imaging, Advanced Fetal Care Center, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA Fetal dysmorphism can occur as a result of var- primarily used for fetal MR imaging. When the fetal ious processes that include malformation (anoma- face is imaged, the sagittal view permits assessment lous formation of tissue), deformation (unusual of the frontal and nasal bones, hard palate, tongue, forces on normal tissue), disruption (breakdown of and mandible. Abnormalities include abnormal promi- normal tissue), and dysplasia (abnormal organiza- nence of the frontal bone (frontal bossing) and lack of tion of tissue). the usual frontal prominence. Abnormal nasal mor- An approach to fetal diagnosis and counseling of phology includes variations in the size and shape of the parents incorporates a detailed assessment of fam- the nose. Macroglossia and micrognathia are also best ily history, maternal health, and serum screening, re- diagnosed on sagittal images. sults of amniotic fluid analysis for karyotype and Coronal images are useful for evaluating the in- other parameters, and thorough imaging of the fetus tegrity of the fetal lips and palate and provide as- with sonography and sometimes fetal MR imaging. sessment of the eyes, nose, and ears.
    [Show full text]
  • Ultrasound Anomaly Details
    Appendix 2. Association of Copy Number Variants With Specific Ultrasonographically Detected Fetal Anomalies Ultrasound Anomaly Details Abdominal wall Bladder exstrophy Body-stalk anomaly Cloacal exstrophy Gastroschisis Omphalocele Other: free text box CNS Absent cerebellar vermis Agenesis of corpus collosum Anencephaly Arachnoid cyst Cerebellar hypoplasia Chiari malformation Dandy-Walker malformation Encephalocele Anterior Posterior Holoprosencephaly Hydranencephaly Iniencephaly Lissencephaly Parenchymal defect Posterior fossa cyst Spina bifida Vascular anomaly Ventriculomegaly/Hydrocephaly Unilateral Mild (10-12mm) Moderate (13-15mm) Severe (>15mm) Bilateral Mild (10-12mm) Moderate (13-15mm) Severe (>15mm) Other: free text box Ear Outer ear malformation Unilateral Bilateral Other: free text box Effusion Hydrops Single effusion only Ascites Pericardial effusion Pleural effusion Skin edema Donnelly JC, Platt LD, Rebarber A, Zachary J, Grobman WA, and Wapner RJ. Association of copy number variants with specific ultrasonographically detected fetal anomalies. Obstet Gynecol 2014;124. The authors provided this information as a supplement to their article. © Copyright 2014 American College of Obstetricians and Gynecologists. Page 1 of 6 Other: free text box Fac Eye anomalies Cyclopia Hypertelorism Hypotelorism Microphthalmia Other: free text box Facial tumor Lip - Cleft Unilateral Midline Bilateral Nose Absent / hypoplastic nose bone Depressed nasal bridge Palate – Cleft Profile
    [Show full text]
  • Version 1.0, 8/21/2016 Zika Pregnancy Outcome Reporting Of
    Version 1.0, 8/21/2016 Zika Pregnancy outcome reporting of brain abnormalities and other adverse outcomes The following box details the inclusion criteria for brain abnormalities and other adverse outcomes potentially related to Zika virus infection during pregnancy. All pregnancy outcomes are monitored, but weekly reporting of adverse outcomes is limited to those meeting the below criteria. All prenatal and postnatal adverse outcomes are reported for both Zika Pregnancy Registries (US Zika Pregnancy Registry, Zika Active Pregnancy Surveillance System) and Active Birth Defects Surveillance; however, case finding methods dictate some differences in specific case definitions. Brain abnormalities with and without microcephaly Confirmed or possible congenital microcephaly# Intracranial calcifications Cerebral atrophy Abnormal cortical formation (e.g., polymicrogyria, lissencephaly, pachygyria, schizencephaly, gray matter heterotopia) Corpus callosum abnormalities Cerebellar abnormalities Porencephaly Hydranencephaly Ventriculomegaly / hydrocephaly (excluding “mild” ventriculomegaly without other brain abnormalities) Fetal brain disruption sequence (collapsed skull, overlapping sutures, prominent occipital bone, scalp rugae) Other major brain abnormalities, including intraventricular hemorrhage in utero (excluding post‐natal IVH) Early brain malformations, eye abnormalities, or consequences of central nervous system (CNS) dysfunction Neural tube defects (NTD) o Anencephaly / Acrania o Encephalocele o Spina bifida Holoprosencephaly
    [Show full text]