The Discovery of Chemical Neurotransmitters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Why Joseph Erlanger Rejected the Local Circuit Theory of Nerve Impulse Propagation
Why Joseph Erlanger Rejected the Local Circuit Theory of Nerve Impulse Propagation Greg Gandenberger University of Pittsburgh, Department of History and Philosophy of Science 1017 Cathedral of Learning, Pittsburgh, PA 15260. [email protected] Abstract In the 1920s and 1930s, Joseph Erlanger and his colleagues expressed doubts about the local circuit theory of nerve impulse propagation in some of their publications. In 1934, their scepticism inspired Alan Hodgkin to begin a series of experiments that are generally regarded as providing strong support for the local circuit theory. Hodgkin’s experiments are well known, but the nature and sources of Erlanger’s scepticism are not. In the mid-1920s, Erlanger believed that oscillograph recordings indicated that the eddy currents generated by action currents are too small to propagate the nerve impulse as the local circuit theory proposes. In the 1930s, his fundamental objection to the local circuit theory was his belief that eddy currents large enough to propagate nerve impulses would dissipate a large amount of energy and produce uncontrolled stray effects. However, a 1936 discovery led him to admit that eddy currents do at least increase the excitability of an active fiber ahead of the action current wave. His opposition to the local circuit theory diminished further as a result of several developments between late 1938 and early 1939, including most notably Hodgkin demonstration that the resistance of the medium outside the active nerve affects propagation velocity. Word Count: 7467 Keywords Joseph Erlanger; Alan Hodgkin; local circuit theory; membrane theory; St. Louis School; electrophysiology 1. Introduction Early in his 1934-1935 year as a Cambridge undergraduate, Alan Hodgkin discovered that a blocked nerve impulse increases the excitability of the nerve beyond the block. -
The Creation of Neuroscience
The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits. -
The Royal Society Medals and Awards
The Royal Society Medals and Awards Table of contents Overview and timeline – Page 1 Eligibility – Page 2 Medals open for nominations – Page 8 Nomination process – Page 9 Guidance notes for submitting nominations – Page 10 Enquiries – Page 20 Overview The Royal Society has a broad range of medals including the Premier Awards, subject specific awards and medals celebrating the communication and promotion of science. All of these are awarded to recognise and celebrate excellence in science. The following document provides guidance on the timeline and eligibility criteria for the awards, the nomination process and our online nomination system Flexi-Grant. Timeline • Call for nominations opens 30 November 2020 • Call for nominations closes on 15 February 2021 • Royal Society contacts suggested referees from February to March if required. • Premier Awards, Physical and Biological Committees shortlist and seek independent referees from March to May • All other Committees score and recommend winners to the Premier Awards Committee by April • Premier Awards, Physical and Biological Committees score shortlisted nominations, review recommended winners from other Committees and recommend final winners of all awards by June • Council reviews and approves winners from Committees in July • Winners announced by August Eligibility Full details of eligibility can be found in the table. Nominees cannot be members of the Royal Society Council, Premier Awards Committee, or selection Committees overseeing the medal in question. More information about the selection committees for individual medals can be found in the table below. If the award is externally funded, nominees cannot be employed by the organisation funding the medal. Self-nominations are not accepted. -
Independent Discovery in Biology: Investigating Styles of Scientific Research
Medical History, 1993, 37: 432-441. INDEPENDENT DISCOVERY IN BIOLOGY: INVESTIGATING STYLES OF SCIENTIFIC RESEARCH by NICHOLAS RUSSELL * INTRODUCTION The fact that discoveries are often made independently is a commonplace of the history and sociology of science. Analysis of independent discovery has potential for evaluating the relative importance of social and individual components in the conduct of scientific research.' For instance, in a classic paper, Barber and Fox2 discussed the independent discovery of a bizarre phenomenon by two scientists. Aaron Kellner and Lewis Thomas both found that injections of the enzyme papain caused the upright ears of rabbits to droop over their heads like spaniels'. At first neither could find an explanation for it. Both abandoned the search and Kellner never returned to it, even though he went on to use the floppy ear response as a technical assay for measuring the potency of papain samples. Lewis Thomas did look into it again and discovered that papain completely altered the structure of the matrix of cartilage, not only in the ears but everywhere else in the animal as well. Both Thomas and Kellner had originally missed these changes because they had assumed that cartilage was a stable and uninteresting tissue. Barber and Fox concluded that Thomas persisted with the problem because it played a role in his developing research while the floppy-eared phenomenon was irrelevant to Kellner's interests. Barber and Fox hinted that more personal factors were involved as well, a theme expanded by Thomas in a later autobiographical essay.3 Thomas had found the collapsed ears amusing. -
Introduction and Historical Perspective
Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful -
Former Fellows Biographical Index Part
Former Fellows of The Royal Society of Edinburgh 1783 – 2002 Biographical Index Part Two ISBN 0 902198 84 X Published July 2006 © The Royal Society of Edinburgh 22-26 George Street, Edinburgh, EH2 2PQ BIOGRAPHICAL INDEX OF FORMER FELLOWS OF THE ROYAL SOCIETY OF EDINBURGH 1783 – 2002 PART II K-Z C D Waterston and A Macmillan Shearer This is a print-out of the biographical index of over 4000 former Fellows of the Royal Society of Edinburgh as held on the Society’s computer system in October 2005. It lists former Fellows from the foundation of the Society in 1783 to October 2002. Most are deceased Fellows up to and including the list given in the RSE Directory 2003 (Session 2002-3) but some former Fellows who left the Society by resignation or were removed from the roll are still living. HISTORY OF THE PROJECT Information on the Fellowship has been kept by the Society in many ways – unpublished sources include Council and Committee Minutes, Card Indices, and correspondence; published sources such as Transactions, Proceedings, Year Books, Billets, Candidates Lists, etc. All have been examined by the compilers, who have found the Minutes, particularly Committee Minutes, to be of variable quality, and it is to be regretted that the Society’s holdings of published billets and candidates lists are incomplete. The late Professor Neil Campbell prepared from these sources a loose-leaf list of some 1500 Ordinary Fellows elected during the Society’s first hundred years. He listed name and forenames, title where applicable and national honours, profession or discipline, position held, some information on membership of the other societies, dates of birth, election to the Society and death or resignation from the Society and reference to a printed biography. -
Recollections of the History of Neuropsychopharmacology Through Interviews Conducted by William E. Bunney, Jr
1 RECOLLECTIONS OF THE HISTORY OF NEUROPSYCHOPHARMACOLOGY THROUGH INTERVIEWS CONDUCTED BY WILLIAM E. BUNNEY, JR. Edited by Peter R. Martin International Network for the History of Neuropsychopharmacology Risskov 2016 2 William E. Bunney, Jr. (circa 1980) 3 Contents PREFACE ..................................................................................................................................................... 4 1. THOMAS A. BAN ............................................................................................................................... 9 2. ARVID CARLSSON .......................................................................................................................... 28 3. JOSEPH T. COYLE ............................................................................................................................ 38 4. ELLEN FRANK ................................................................................................................................. 55 5. J. CHRISTIAN GILLIN ..................................................................................................................... 66 6. LOUIS A. GOTTSCHALK ................................................................................................................ 78 7. SALOMON Z. LANGER ................................................................................................................... 89 8. HEINZ E. LEHMANN .................................................................................................................... -
Williams Dissertation 4.17.12
ACTIVATION, DESENSITIZATION AND POTENTIATION OF ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTORS: RELEVANCE TO ALPHA7-TARGETED THERAPEUTICS By DUSTIN KYLE WILLIAMS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 CHAPTER 1 ANIMAL ELECTRICITY: HISTORICAL INTRODUCTION For many centuries the prevailing theories of neurotransmission had no concept of electricity. “Animal spirits”, an immeasurable force thought to be the source of animation, imagination, reason, and memory, was believed to be contained within the fluid stored in the ventricles and distributed throughout the body via the nerves which acted as conduits of this vital fluid [1, 2]. This fundamental hypothesis was upheld and propagated for more than 1,500 years by many well-known and influential philosophers, physicians, and scientists including Aristotle, Galen, Descartes, Borelli, and Fontanta, each contributing unique variations to the basic idea [2-4]. It was not until the late 18th century that Luigi Galvani discovered electricity as the currency of the nervous system, and even then this important discovery was not readily accepted. Understanding bioelectricity as we do today was truly a multi-national effort that took place over hundreds of years. Pre-Galvani to Hodgkin & Huxley By the 1660s, Jan Swammerdam (The Netherlands; 1637-1680) had shown that muscles could contract without any physical connection to the brain, providing perhaps the first evidence against the fallacious animal spirits hypothesis [4]. He devised an isolated nerve-muscle preparation from the frog and showed that mechanical stimulation of the nerve resulted in muscle contraction. -
Otto Loewi (1873–1961): Dreamer and Nobel Laureate
Singapore Med J 2014; 55(1): 3-4 M edicine in S tamps doi:10.11622/smedj.2014002 Otto Loewi (1873–1961): Dreamer and Nobel laureate Alli N McCoy1, MD, PhD, Siang Yong Tan2, MD, JD ronically, Otto Loewi is better known for the way in barely passed the end-of-year examination, requiring a year which he came upon the idea that won him the Nobel of remediation before he was able to complete his medical Prize than for the discovery itself. Loewi’s prize-winning degree in 1896. experiment came to him in a dream. According to Loewi, Loewi’s first job as an assistant in the city hospital at I“The night before Easter Sunday of [1920] I awoke, turned on the Frankfurt proved frustrating, as he could not provide effective light and jotted down a few notes on a tiny slip of thin paper. treatment for patients with tuberculosis and pneumonia. Then I fell asleep again. It occurred to me at 6.00 o’clock in Disheartened, he decided to leave clinical medicine for a the morning that during the night I had written down something basic science research position in the laboratory of prominent important, but I was unable to decipher the scrawl. The next German pharmacologist, Hans Meyer, at the University of night, at 3.00 o’clock, the idea returned. It was the design of Marburg an der Lahn. While Loewi would eventually win an experiment to determine whether or not the hypothesis of international acclaim for his contribution to neuroscience, his chemical transmission that I had uttered 17 years ago was correct. -
Front Matter (PDF)
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON Series A CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER. VOL. G LONDON: P rinted for THE ROYAL SOCIETY and Sold by HARRISON AND SONS, Ltd., ST. MARTIN’S LANE,. PRINTERS in ordinary to h is m a jesty . March, 1922. LONDON : HARRISON AND SONS, LTD., PRINTERS IN ORDINARY TO HIS MAJESTY, ST. MARTIN^ LANE. CONTENTS ---------------- SERIES A. VOL. C. i PAGE Minutes of Meetings, November 3, 1021—February 23, 1922 .................................. i No. A 702.—October 4, 1921. On the Velocity of Sound in Gases at High Temperatures, and the Ratio of the Specific Heats. By Harold B. Dixon, C.B.E., F.R.S., Colin Campbell, D.Sc., and A. Parker, D.Sc....................................................................................................... 1 The Ratio of the Specific Heats of Air and of Carbon Dioxide. By J. R. Partington, D.Sc. Communicated by Dr. J. A. Harker, F.R.S............................ 27 On the Currents induced in a Conductor by the Passage of a Mass of Magnetic Material over it. By E. S. Bieler, M.Sc., 1851 Scholar of McGill University. Communicated by Sir E. Rutherford, F.R.S. (Plate 1 ) ............. ................ 1.......... 50 On some New Formuke for the Numerical Calculation of the Mutual Induction of Coaxial Circles. By Louis V. King, D.Sc., Macdonald Professor of Physics, McGill University, Montreal. Communicated by Prof. A. S. Eve, F.R.S......... 60 Gaseous Combustion at High Pressures. Part II.—The Explosion of Hydrogen-Air and Carbon Monoxide-Air Mixtures. By William A rthur Bone, D.Sc., Ph.D., F.R.S.,'and the late William Arthur Haward, M.Sc., Salters’Research Fellow.. -
Balcomk41251.Pdf (558.9Kb)
Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr. -
Sir Frederick Gowland Hopkins O.M., M.A., M.B., D.Sc., Hon. Sc.D., Hon. LL.D., Hon. D.Sc., F.R.C.P., F.R.S
Downloaded from https://doi.org/10.1079/BJN19470004 VOl. I Obituary 3 Barcroft‘s interest in the science of nutrition arose not only from the catholicity of his physiological outlook, but also more directly from the fact that since 1937 he had https://www.cambridge.org/core been Chairman of the Food Investigation Board, and hence intimately concerned in their activities relating to such matters as the processing of food and the conservation of its nutritive value. Barcroft married, in 1903, Mary A. Ball, daughter of the late Sir Robert Ball, the celebrated astronomer. One of their sons is Henry Barcroft, Professor of Physiology at Queen’s University, Belfast. LESLIE J. HARRIS . IP address: SIR FREDERICK GOWLAND HOPKINS, O.M., M.A., M.B., D.Sc., 170.106.202.58 Hon. Sc.D., Hon. LL.D., Hon. D.Sc., F.R.C.P., F.R.S. Ry the death of Sir Frederick Hopkins, which occurred in Cambridge on 16 May in his 86th year, Nutritional Science lost one of its great pioneers, and its doyen. He had , on long been recognized as the leading biochemist of his time; he was also greatly beloved 29 Sep 2021 at 04:37:19 as a man. In discussing his life’s work in another place,* I wrote that Hopkins’s scientific renown was based on his explorations into at least four or five different avenues of biochemistry: lactic acid in muscle activity; the discovery of the amino-acid tryptophan, and the demonstration of its ‘specific biological value’; his classical experiments on , subject to the Cambridge Core terms of use, available at the need for accessory factors in normal diets (by which he is best known to the man in the street); and his isolation of the cell-catalyst, glutathione (which will perhaps prove scientifically the most significant of all his contributions).