Transparency in PDF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Raster Images in R Graphics by Paul Murrell
48 CONTRIBUTED RESEARCH ARTICLES Raster Images in R Graphics by Paul Murrell Abstract The R graphics engine has new sup- 39837_s_at 1267_at 402_s_at 32562_at 37600_at 1007_s_at 36643_at 1039_s_at 40215_at 39781_at port for rendering raster images via the func- 266_s_at 307_at 38408_at 37539_at 1911_s_at 1463_at 2057_g_at 39556_at 41744_at 34789_at 34850_at rasterImage() grid.raster() 38631_at tions and . This 37280_at 36536_at 37006_at 41397_at 41346_at 40692_at 35714_at 1992_at 33244_at 40167_s_at 32872_at 34699_at 33440_at leads to better scaling of raster images, faster 36275_at 33809_at 40953_at 1308_g_at 1928_s_at 1307_at 40504_at 41742_s_at 41743_i_at 1674_at 40784_at 40785_g_at rendering to screen, and smaller graphics files. 37978_at 37099_at 1973_s_at 38413_at 2036_s_at 1126_s_at 31472_s_at 37184_at 35256_at 40493_at 41779_at 33412_at Several examples of possible applications of 37193_at 37479_at 39210_at 919_at 1140_at 41478_at 35831_at 176_at 37724_at 38385_at 41401_at 41071_at these new features are described. 39135_at 34961_at 37251_s_at 41470_at 1947_g_at 37810_at 36777_at 38004_at 177_at 36897_at 34106_at 31615_i_at 35665_at 33358_at 39315_at 41191_at 931_at 1914_at 36873_at 37809_at 39635_at 38223_at 33936_at 37558_at 41348_at 31605_at 205_g_at 32475_at 34247_at 36149_at 1500_at 34098_f_at 33528_at 35663_at 40393_at 33193_at 39716_at 33405_at 1929_at 36092_at 32215_i_at 41448_at 40763_at 873_at Prior to version 2.11.0, the core R graphics engine 37225_at 38056_at 37413_at 39424_at 32116_at 2039_s_at 40480_s_at 35816_at 1134_at -
Understanding Image Formats and When to Use Them
Understanding Image Formats And When to Use Them Are you familiar with the extensions after your images? There are so many image formats that it’s so easy to get confused! File extensions like .jpeg, .bmp, .gif, and more can be seen after an image’s file name. Most of us disregard it, thinking there is no significance regarding these image formats. These are all different and not cross‐ compatible. These image formats have their own pros and cons. They were created for specific, yet different purposes. What’s the difference, and when is each format appropriate to use? Every graphic you see online is an image file. Most everything you see printed on paper, plastic or a t‐shirt came from an image file. These files come in a variety of formats, and each is optimized for a specific use. Using the right type for the right job means your design will come out picture perfect and just how you intended. The wrong format could mean a bad print or a poor web image, a giant download or a missing graphic in an email Most image files fit into one of two general categories—raster files and vector files—and each category has its own specific uses. This breakdown isn’t perfect. For example, certain formats can actually contain elements of both types. But this is a good place to start when thinking about which format to use for your projects. Raster Images Raster images are made up of a set grid of dots called pixels where each pixel is assigned a color. -
Image Formats
Image Formats Ioannis Rekleitis Many different file formats • JPEG/JFIF • Exif • JPEG 2000 • BMP • GIF • WebP • PNG • HDR raster formats • TIFF • HEIF • PPM, PGM, PBM, • BAT and PNM • BPG CSCE 590: Introduction to Image Processing https://en.wikipedia.org/wiki/Image_file_formats 2 Many different file formats • JPEG/JFIF (Joint Photographic Experts Group) is a lossy compression method; JPEG- compressed images are usually stored in the JFIF (JPEG File Interchange Format) >ile format. The JPEG/JFIF >ilename extension is JPG or JPEG. Nearly every digital camera can save images in the JPEG/JFIF format, which supports eight-bit grayscale images and 24-bit color images (eight bits each for red, green, and blue). JPEG applies lossy compression to images, which can result in a signi>icant reduction of the >ile size. Applications can determine the degree of compression to apply, and the amount of compression affects the visual quality of the result. When not too great, the compression does not noticeably affect or detract from the image's quality, but JPEG iles suffer generational degradation when repeatedly edited and saved. (JPEG also provides lossless image storage, but the lossless version is not widely supported.) • JPEG 2000 is a compression standard enabling both lossless and lossy storage. The compression methods used are different from the ones in standard JFIF/JPEG; they improve quality and compression ratios, but also require more computational power to process. JPEG 2000 also adds features that are missing in JPEG. It is not nearly as common as JPEG, but it is used currently in professional movie editing and distribution (some digital cinemas, for example, use JPEG 2000 for individual movie frames). -
About Graphics/Digital Images
About Graphics/Digital Images Digital images are found in lots of file formats (types) that are used for various reasons. I liken the file formats to flavors of ice-cream, which you might or might not choose to consume on any given day. One day chocolate is more important than mint; another day you might use vanilla, and on another day you might decide to combine more than one flavor in the same bowl. Likewise, you might choose one type of graphic file for a particular project, but it might be completely inappropriate for another project. What works well for display purposes (keeping it on the computer, or for publication to the internet) might not print well. Something that prints well might be too big a file to post to the internet, or may make your program run too slowly. Also, some authoring programs (like Boardmaker or Classroom Suite) might be written to only understand certain types of image files. Some file types are more common than others, and are more likely to be recognized by the “parent” program (the one you use to display, edit or print your image). Whatever type you pick ultimately depends on how you plan to use the image. The more technical definitions provided below are taken from the glossary found at http://www.photoshopelementsuser.com/glossary.php?letter=B The additional comments I have added, and hopefully let you know why you would care about any of this, anyway. The two biggest types of images I describe here fall loosely into two categories: vector images and bitmap images. -
Scope and Issues in Alpha Compositing Technology
International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763 Issue 12, Volume 2 (December 2015) www.ijirae.com Scope and Issues in Alpha Compositing Technology Sudipta Maji Asoke Nath M.Sc. Computer Science Department Of Computer Science Department Of Computer Science St. Xavier's College St. Xavier's College Abstract— Alpha compositing is the process of combining an image with a background to create the appearance of partial transparency. The combining operation takes advantage of an alpha channel, which basically determines how much of a source pixel's color information covers a destination pixel's color information. In this documentation, the authors discuss different types of alpha blending modes which are used to achieve this partial transparency. Alpha compositing is a process which is used to combine two images and there are the ranges of alpha value which is multiplied with the source pixel to generate target pixel.). Alpha values also range from 0 to 255, with 0 being completely transparent (i.e., 0% opaque) and 255 completely opaque (i.e., 100% opaque. Alpha blending is a way of mixing the colors of two images together to form a final image. In the preset paper the authors tried to give a comprehensive review on different issues and scope in Alpha Compositing technology. A good example of naturally occurring alpha blending is a rainbow over a waterfall. The rainbow as one image, and the background waterfall is another, then the final image can be formed by alpha blending the two together. Keywords— Alpha Compositing; pixel; RGB; Android; Blending Equation I. -
Freeimage Documentation Here
FreeImage a free, open source graphics library Documentation Library version 3.13.1 Contents Introduction 1 Foreword ............................................................................................................................... 1 Purpose of FreeImage ........................................................................................................... 1 Library reference .................................................................................................................. 2 Bitmap function reference 3 General functions .................................................................................................................. 3 FreeImage_Initialise ............................................................................................... 3 FreeImage_DeInitialise .......................................................................................... 3 FreeImage_GetVersion .......................................................................................... 4 FreeImage_GetCopyrightMessage ......................................................................... 4 FreeImage_SetOutputMessage ............................................................................... 4 Bitmap management functions ............................................................................................. 5 FreeImage_Allocate ............................................................................................... 6 FreeImage_AllocateT ............................................................................................ -
Alpha Compositing Alpha Compositing the Alpha Channel
Alpha Compositing • alpha compositing is the process of combining an image with a background to create the appearance of partial transparency. • In order to correctly combine these image elements, it is Alpha Compositing necessary to keep an associated matte for each element. • This matte contains the coverage information - the shape of the geometry being drawn • This allows us to distinguish between parts of the image where the geometry was actually drawn and other parts of the image which are empty. The Alpha Channel The Alpha Channel “A separate component is needed to retain the matte information, the extent of coverage of an element at a pixel. • To store this matte information, the concept of an alpha In a full colour rendering of an element, the RGB components retain only the channel was introduced by A. R. Smith (1970s) colour. In order to place the element over an arbitrary background, a mixing factor is required at every pixel to control the linear interpolation of foreground and • Porter and Duff then expanded this to give us the basic background colours. algebra of Compositing in the paper "Compositing Digital In general, there is no way to encode this component as part of the colour Images" in 1984. information. For anti-aliasing purposes, this mixing factor needs to be of comparable resolution to the colour channels. Let us call this an alpha channel, and let us treat an alpha of 0 to indicate no coverage, 1 to mean full coverage, with fractions corresponding to partial coverage.” Porter & Duff 84 Alpha Channel Pre multiplied alpha • In a 2D image element which stores a colour for each pixel, an additional value is “What is the meaning of the quadruple (r,g,b,a) at a pixel? stored in the alpha channel containing a value ranging from 0 to 1. -
Digital Preservation Guidance Note: Graphics File Formats
Digital Preservation Guidance Note: 4 Graphics File Formats Digital Preservation Guidance Note 4: Graphics file formats Document Control Author: Adrian Brown, Head of Digital Preservation Research Document Reference: DPGN-04 Issue: 2 Issue Date: August 2008 ©THE NATIONAL ARCHIVES 2008 Page 2 of 15 Digital Preservation Guidance Note 4: Graphics file formats Contents 1 INTRODUCTION .....................................................................................................................4 2 TYPES OF GRAPHICS FORMAT........................................................................................4 2.1 Raster Graphics ...............................................................................................................4 2.1.1 Colour Depth ............................................................................................................5 2.1.2 Colour Spaces and Palettes ..................................................................................5 2.1.3 Transparency............................................................................................................6 2.1.4 Interlacing..................................................................................................................6 2.1.5 Compression ............................................................................................................7 2.2 Vector Graphics ...............................................................................................................7 2.3 Metafiles............................................................................................................................7 -
Webp - Faster Web with Smaller Images
WebP - Faster Web with smaller images Pascal Massimino Google Confidential and Proprietary WebP New image format - Why? ● Average page size: 350KB ● Images: ~65% of Internet traffic Current image formats ● JPEG: 80% of image bytes ● PNG: mainly for alpha, lossless not always wanted ● GIF: used for animations (avatars, smileys) WebP: more efficient unified solution + extra goodies Targets Web images, not at replacing photo formats. Google Confidential and Proprietary WebP ● Unified format ○ Supports both lossy and lossless compression, with transparency ○ all-in-one replacement for JPEG, PNG and GIF ● Target: ~30% smaller images ● low-overhead container (RIFF + chunks) Google Confidential and Proprietary WebP-lossy with alpha Appealing replacement for unneeded lossless use of PNG: sprites for games, logos, page decorations ● YUV: VP8 intra-frame ● Alpha channel: WebP lossless format ● Optional pre-filtering (~10% extra compression) ● Optional quantization --> near-lossless alpha ● Compression gain: 3x compared to lossless Google Confidential and Proprietary WebP - Lossless Techniques ■ More advanced spatial predictors ■ Local palette look up ■ Cross-color de-correlation ■ Separate entropy models for R, G, B, A channels ■ Image data and metadata both are Huffman-coded Still is a very simple format, fast to decode. Google Confidential and Proprietary WebP vs PNG source: published study on developers.google.com/speed/webp Average: 25% smaller size (corpus: 1000 PNG images crawled from the web, optimized with pngcrush) Google Confidential and Proprietary Speed number (takeaway) Encoding ● Lossy (VP8): 5x slower than JPEG ● Lossless: from 2x faster to 10x slower than libpng Decoding ● Lossy (VP8): 2x-3x slower than JPEG ● Lossless: ~1.5x faster than libpng Decoder's goodies: ● Incremental ● Per-row output (very low memory footprint) ● on-the-fly rescaling and cropping (e.g. -
CS6640 Computational Photography 15. Matting and Compositing
CS6640 Computational Photography 15. Matting and compositing © 2012 Steve Marschner 1 Final projects • Flexible group size • This weekend: group yourselves and send me: a one-paragraph description of your idea if you are fixed on one one-sentence descriptions of 3 ideas if you are looking for one • Next week: project proposal one-page description plan for mid-project milestone • Before thanksgiving: milestone report • December 5 (day of scheduled final exam): final presentations Cornell CS6640 Fall 2012 2 Compositing ; DigitalDomain; vfxhq.com] DigitalDomain; ; Titanic [ Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Foreground and background • How we compute new image varies with position use background use foreground [Chuang et al. / Corel] / et al. [Chuang • Therefore, need to store some kind of tag to say what parts of the image are of interest Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Binary image mask • First idea: store one bit per pixel – answers question “is this pixel part of the foreground?” [Chuang et al. / Corel] / et al. [Chuang – causes jaggies similar to point-sampled rasterization – same problem, same solution: intermediate values Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Partial pixel coverage • The problem: pixels near boundary are not strictly foreground or background – how to represent this simply? – interpolate boundary pixels between the fg. and bg. colors Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Alpha compositing • Formalized in 1984 by Porter & Duff • Store fraction of pixel covered, called α A covers area α B shows through area (1 − α) – this exactly like a spatially varying crossfade • Convenient implementation – 8 more bits makes 32 – 2 multiplies + 1 add per pixel for compositing Cornell CS4620 Spring 2008 • Lecture 17 © 2008 Steve Marschner • Alpha compositing—example [Chuang et al. -
Textalive: Integrated Design Environment for Kinetic Typography
TextAlive: Integrated Design Environment for Kinetic Typography Jun Kato Tomoyasu Nakano Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan {jun.kato, t.nakano. m.goto}@aist.go.jp ABSTRACT After Effects [1]). While such tools provide a fine granularity This paper presents TextAlive, a graphical tool that allows of control over the animations, producing the final result interactive editing of kinetic typography videos in which takes long time even for the experienced user because lyrics or transcripts are animated in synchrony with the manual synchronization of the text animation and audio is corresponding music or speech. While existing systems have tedious. In addition, general tools do not provide any allowed the designer and casual user to create animations, guidelines to help novice users produce convincing effects. most of them do not take into account synchronization with Tools specifically designed for making kinetic typography audio signals. They allow predefined motions to be applied videos (e.g., ActiveText [18] or Kinedit [7]) provide to objects and parameters to be tweaked, but it is usually predefined templates of effective animations, from which the impossible to extend the predefined set of motion algorithms user can choose. Such domain-specific tools, though, have within these systems. We therefore propose an integrated had a certain limitation in their flexibility. That is, the design environment featuring (1) GUIs that designers can use programming needed to create new animation templates has to create and edit animations synchronized with audio signals, to be done in separate development environments. (2) integrated tools that programmers can use to implement animation algorithms, and (3) a framework for bridging the With the goal of pushing forward the state of the art in kinetic interfaces for designers and programmers. -
The Mystery of Blend- and Landwatermasks
The Mystery of Blend- and LandWaterMasks Introduction Blend- and LandWaterMask’s are essential for Photoreal Scenery Creation. This process is also the most time consuming and tedious part if done seriously and exactly. For this process sophisticated Painting programs are required like Adobe Photoshop, Corel Painter, Corel Photo Paint Pro, Autodesk SketchBook Pro, GNU Image Manipulation Program (GIMP), IrfanView, Paint.NET or any Photo Painting Program which supports Layers and Alpha-channels can be used, depending on the taste and requirements of the user. Searching the Internet reveals that a lot of people have problems – including the Author of this document himself – with the above mentioned subject. One important note: This is not a tutorial on how to create Blend- and LandWaterMasks because the Internet contains quiet a lot of tutorials in written form and in video form, some are good, some are bullshit. FSDeveloper.com provides an exhausting competent and comprehensive lot of information regarding this subject. The Author of this document gained a lot of this information from this source! Another requirement is a good understanding of the Photo Paint Program you are using. Also a thorough knowledge of the Flight Simulator Terrain SDK is required or is even essential for the process. You need also a basic understanding of technical terms used in the Computer Graphic Environment. Technical Background and Terms As usual, there is a bit of technical explanations and technical term's required. I will keep this very very short, because the Internet, i.e. Wikipedia provides exhausting information regarding this subjects, I will provide the relevant Hyperlinks so you can navigate to the pertinent Web-pages.