The Lepidopterists' News

Total Page:16

File Type:pdf, Size:1020Kb

The Lepidopterists' News The Lepidopterists' News THE MONTHLY NEWSLETTER OF THE LEPIDOPTERISTS' SOCIETY P. O. Box 104, Cambridge 38, Massachusetts, U. S. A. Editor - C. L. REMINGTON • Assoc. Editor - J. E. REMINGTON Volume II April 1948 Number 4 LEPIDOPTERA BIOLOGY -- OPEN FOR STUDY Biology is 11 terally the "science of life ". courtship, duration of coitus, time of day or In the present discussion it will be used in night of coitus,etc.), oviposition habits,and the strictest sense, to mean the study of larval feeding habits (whether diurnal orno~ LIVING Lepidoptera, as contrasted to the stu­ turnal, what part of plant eaten, defensive dy of dead collection specimens. A large pr0- actions, gregariousness, etc.). portion 0 f our Society members are not pro­ fessional entomologists, and it is these en­ (3) HABITAT. The precise location 0 f the thusiastic avocationists whose attention the ova, the larva (day and night), the pupa, and NEWS editors have endeavored continually to especially the adults. In all species we need direct toward the study of Lepidoptera IN THE to know just where the adults live. For ex­ FIELD. What are the aspects that a lepidop­ ample, Erebia theano ethela is restricted to terist can study methodically in whatever re­ small sphagnum bogs; ~. magdalena is in the gion he may live? There are seven primary same area, but frequents only the dry rock­ ones: (1) phenology; (2) habits; (3) habi tat; slides; ~. tyndarus callias, flying nearby,is (4) host plants in each region; (5) enemies; only on vegetated, less rocky spots; and~. (6) population composition; (7)over-wintering. ~odea is somewhat lower, usually in tall lush grass. The precise altitudinal distri­ (1) PHENOLOGY. The season-to-season trend bution is not well-known, and in mountainous in Lepidoptera occurrence can be expected to regions would make a profitable study. give valuable information for all biologists. Lepidoptera are especially useful as a tool (4) HOST PLANTS. Here is one of the most in the study of yearly patterns because they important and, surprisingly, least accurately are so well-known taxonomically and their ap­ known aspects of Lepidoptera biology. Many peal to non-professionals has resulted in a species feed on quite different plants in dif­ large number of widely-distributed active ferent regions. Euphydryas phaeton eats Che­ field workers. The only region well-known lone glabra in New England, but in Missouri phenologically is Great Britain and, to a the host is Aureolaria flava. The Lep. Soc. much lesser degree, western Europe. The an­ expects eventually to publish a list of known nual Season Summary of the Lep. Soc. is an host plants of North American butterflies(and effort to gather such information for North of other groups) as information is assembled. America, and we hope to expand it to include There is a ~lant identification service avai­ other parts of the world as organized cooper­ lable (see NEWS, vol.I: p.25). ation develops. Each collector can keep his own records and will find it interesting to (5) ENEMIES. It is especially important compare them year by year. Several Lep. Soc. that all parasites obtained in rearing Lepi­ members keep field notebooks and record the doptera be saved and complete data, including species taken or seen, their abundance, and the name of the host, kept with them. Insects, their condition after each collecting trip. birds, lizards, and other animals which prey Some of these lepidopterists try to get out on larvae or adults should be noted. at least once each week throughout the col­ lecting season, in order to have a continuous (6) POPULATION COMPOSITION. The mathema­ record. Unfortunately, most collectors fail tically inclined lepidopterist can assemble to keep a record of species which are not scientifically valuable data on the percent­ collected because of commonness. Phenologi­ ages of various forms in local populations of cal records need to be correlated with wea­ each species. In Catocala lacrymosa, what ther data. part of the population are the striking forms?; in Lycaena hypophleas, how frequent (2) HABITS. Very little is known of the are the aberrations?; in Papillo glaucus, special habits of different species, especi­ what percentage of the females are black? and ally as they differ from related species. Ac­ so on. curate observations are needed on the manner of flight, sociology (which species "chase" (7) OVER-WINTERING. In too few cases we others, which are gregarious, etcr), prefer­ know the life history stage -- ovum, larva, ences of food of adults (which flowers are pupa, or adult -- in which a species passes chosen, which species are attracted to damp­ the winter. But we especially need to know ness, to carrion, to dung, to sap flows,etc.), whether Hemiargus isola, Eurema mexicana, color preferences, the normal resting posi­ Agraulis vanillae, and others survive the tion (wings open or closed, head upward or winter in any stage in Colorado, Kansas, and downward), location of night resting for di­ Missouri. ~ urnal species and of day resting for noctur­ nal species, aspects of copulation (type of ~ C.L.R. Vol.II, no.4 PRINCIPLES OF TAXONOMY - II. DEFINITIONS OF TERMS Taxonomy was produced, perhaps partheno­ Several NEWS readers have requested that genetically, by Carl von Linne. For a long we give definitions of technical words com­ time it expanded as a rather shapeless mass, monly encountered in writings on Lepidoptera. or as a mass varying in shape from classifier The following apply to Lepidoptera and not to classifier. Each early worker acknowledged necessarily to any other group. the biblical premise that Diety had created all the species at once as outlined in Gene­ (1) Ovum. Usually used to refer to a fully­ sis, and each worker believed himself the au­ formed fertilized egg after oviposition. thor of a new filing system o£ species ar­ May also mean the unfertilized germ cell rangement, which was admittedly arbitrary. In in the ovary of the female. (Plural- ~.) the beginning of the 19th Century there began (2) Larva. The caterpillar, or grub, stage to appear in biological writings a hint that during which most growth and feeding oc­ species had undergone many changes, probably cur. Strictly used, this is the stage in response to the environment, and were not following emergence from the egg and pre­ placed on earth in complete and final form. ceding pupation in insects with complete This idea developed slowly until it took a metamorphosis. (Plural- larvae.) sudden leap to rational reality in the 1850's (3) Pupa. The "restingltstage between the through the brilliant work of Charles Darwin. larval and adult stages, during which the adult is formed. May be enclosed in a co­ Without himself being a taxonomist, Dar­ coon in some Lepidoptera, or naked. (Plu­ win took the varying mass of the body of tax­ ral- ~.) onomy and miraculously gave it a clear, true (4) Chrysalis. Usually the pupa of butter­ form by presenting it with a skeleton -- phy­ flies, only. (Plural- chrysalides.) logeny. The principle of organic evolution (5) lm£gQ. The adult, sexually mature stage, made possible what we call a Itnatural classi­ having functional wings in all but a few fication lt • The term Itphylogenylt is from the Lepidoptera. (Plural- imagines[preferred], Greek (phylon- a tribe, and genos- descent) or imag~; adjective- imaginal.) and refers to the ancestry, or family tree, (6) Ecdysis. Moulting (shedding) the skin. of organisms. The basic assumption is that (Plural- ecdyses; adjective- ecdysial.) all living entities, whether plant or animal, (7) Exuviae. The moulted skin of the larva. descended from one ancestor. Presumably this Never used in the singular. ancestor was very simple in structure and (8) Eclosion. Emergence of the imago from the gave rise to two main lines, the plants and pupal skin or of the larva from the ovum. animals, and these lines in turn subdivided (9) Instar. The period between two ecdyses. many times, giving us the multitude of differ­ The first instar is the stage following ent groups of plants and animals existing to­ emergence from the egg and preceding the day, as well as many now extinct. first ecdysis. The second instar is the The reason we call our system a Itnatural" stage between the first and second ecdy­ classification is that we believe it express­ ses. The last instar is between pupation es true ancestral relationships. For example, and the preceding ecdysiS. Parnassius is included in the same family (IO)Stadium. Essentially synonymous with in­ with Papilio because there is reason to be­ ~. (Plural- stadia.) lieve they both descended from the same an­ (ll)Oviposition. The process of laying eggs. cestor, an ancestor which Pieris, Melitaea,~­ (12)Hibernation. The dormant state during ~, and others did not share. Similarly, which the insects live through seasonal all these 5 genera are included in one super­ low temperatures (winter) at a very low family because it is believed that they all de­ metabolic rate. scended from one progenitor which was not the (13)Aestivation. The dormant state during ancestor of Hesperia, Pyrgus, and Megathymus. which the insects live through seasonal high temperatures or excessive dryness (summer) at a very low metabolic rate. (14)Primaries. The fore (mesothoracic)wings. (15)Secondaries. The hind(metathoracic)wings. (lb)Genitalia. All the special structures at the posterior end of the abdomen directly concernl~d wi th copulation. (17)Sympatrlc. Species which are sympatric occur together, at least in the same 10- cali ty, if not in the same stage of life history,. (18 )Allopatric. Species which are allopatric occupy separate ranges. (19)Dichromatism (sexual, seasonal, etc.). The OCC1~rence of different coloration in a specios. For example, Papilio glaucus, with d aJ'k females in the South, has sexu­ ~ dicIu'gmatism; Zerene caesonia.
Recommended publications
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • Uncus Shaped Akin to Elephant Tusks Defines a New Genus for Two Very Different-In-Appearance Neotropical Skippers (Hesperiidae: Pyrginae)
    The Journal Volume 45: 101-112 of Research on the Lepidoptera ISSN 0022-4324 (PR in T ) THE LEPIDOPTERA RESEARCH FOUNDATION, 29 DE C EMBER 2012 ISSN 2156-5457 (O N L in E ) Uncus shaped akin to elephant tusks defines a new genus for two very different-in-appearance Neotropical skippers (Hesperiidae: Pyrginae) Nic K V. GR ishin Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA 75390-9050 [email protected] Abstract. Analyses of male genitalia, other aspects of adult, larval and pupal morphology, and DNA COI barcode sequences suggest that Potamanaxas unifasciata (C. Felder & R. Felder, 1867) does not belong to Potamanaxas Lindsey, 1925 and not even to the Erynnini tribe, but instead is more closely related to Milanion Godman & Salvin, 1895 and Atarnes Godman & Salvin, 1897, (Achlyodini). Unexpected and striking similarities are revealed in the male genitalia of P. unifasciata and Atarnes hierax (Hopffer, 1874). Their genitalia are so similar and distinct from the others that one might casually mistake them for the same species. Capturing this uniqueness, a new genus Eburuncus is erected to include: E. unifasciata, new combination (type species) and E. hierax, new combination. Key words: phylogenetic classification, monophyletic taxa, immature stages, DNA barcodes,Atarnes sallei, Central America, Peru. INTRODUCT I ON 1982-1999). Most of Burns’ work derives from careful analysis of genitalia, recently assisted by morphology Comprehensive work by Evans (e.g. Evans, 1937; of immature stages and molecular evidence (e.g. 1952; 1953) still remains the primary source of Burns & Janzen, 2005; Burns et al., 2009; 2010).
    [Show full text]
  • 1 Moving on from the Insect Apocalypse Narrative
    Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation Manu E. Saunders1,2, Jasmine Janes1,3, James O’Hanlon1 1School of Environmental and Rural Science, University of New England Armidale NSW Australia 2UNE Business School, University of New England Armidale NSW Australia 3Biology Department, Vancouver Island University, Nanaimo, BC, Canada This is the author’s version of a manuscript published in BioScience. Please cite as: Saunders ME, Janes J, O’Hanlon J (2019) Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience https://doi.org/10.1093/biosci/biz143 1 Abstract Recent studies showing temporal changes in local and regional insect populations received exaggerated global media coverage. Confusing and inaccurate science communication on this important issue could have counter-productive effects on public support for insect conservation. The ‘insect apocalypse’ narrative is fuelled by a limited number of studies that are restricted geographically (predominantly UK, Europe, USA) and taxonomically (predominantly bees, macrolepidoptera, and ground beetles). Biases in sampling and analytical methods (e.g. categorical vs. continuous time series, different diversity metrics) limit the relevance of these studies as evidence of generalised global insect decline. Rather, the value of this research lies in highlighting important areas for priority investment. We summarise research, communication and policy priorities for evidence-based insect conservation, including key areas of knowledge to increase understanding of insect population dynamics. Importantly, we advocate for a balanced perspective in science communication to better serve both public and scientific interests. 2 Introduction Insects are the most diverse and abundant group of animals on Earth and are critical drivers of ecosystem function in terrestrial and aquatic systems; yet the majority of insect taxa are understudied, publicly misunderstood and face numerous environmental threats (Samways 2007; Cardoso et al.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • New Records of Microlepidoptera in Alberta, Canada
    Volume 59 2005 Number 2 Journal of the Lepidopterists’ Society 59(2), 2005, 61-82 NEW RECORDS OF MICROLEPIDOPTERA IN ALBERTA, CANADA GREGORY R. POHL Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 - 122 St., Edmonton, Alberta, Canada T6H 3S5 email: [email protected] CHARLES D. BIRD Box 22, Erskine, Alberta, Canada T0C 1G0 email: [email protected] JEAN-FRANÇOIS LANDRY Agriculture & Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, Canada K1A 0C6 email: [email protected] AND GARY G. ANWEILER E.H. Strickland Entomology Museum, University of Alberta, Edmonton, Alberta, Canada, T6G 2H1 email: [email protected] ABSTRACT. Fifty-seven species of microlepidoptera are reported as new for the Province of Alberta, based primarily on speci- mens in the Northern Forestry Research Collection of the Canadian Forest Service, the University of Alberta Strickland Museum, the Canadian National Collection of Insects, Arachnids, and Nematodes, and the personal collections of the first two authors. These new records are in the families Eriocraniidae, Prodoxidae, Tineidae, Psychidae, Gracillariidae, Ypsolophidae, Plutellidae, Acrolepi- idae, Glyphipterigidae, Elachistidae, Glyphidoceridae, Coleophoridae, Gelechiidae, Xyloryctidae, Sesiidae, Tortricidae, Schrecken- steiniidae, Epermeniidae, Pyralidae, and Crambidae. These records represent the first published report of the families Eriocrani- idae and Glyphidoceridae in Alberta, of Acrolepiidae in western Canada, and of Schreckensteiniidae in Canada. Tetragma gei, Tegeticula
    [Show full text]
  • Hawk Moths of North America Is Richly Illustrated with Larval Images and Contains an Abundance of Life History Information
    08 caterpillars EUSA/pp244-273 3/9/05 6:37 PM Page 244 244 TULIP-TREE MOTH CECROPIA MOTH 245 Callosamia angulifera Hyalophora cecropia RECOGNITION Frosted green with shiny yellow, orange, and blue knobs over top and sides of body. RECOGNITION Much like preceding but paler or Dorsal knobs on T2, T3, and A1 somewhat globular and waxier in color with pale stripe running below set with black spinules. Paired knobs on A2–A7 more spiracles on A1–A10 and black dots on abdomen cylindrical, yellow; knob over A8 unpaired and rounded. lacking contrasting pale rings. Yellow abdominal Larva to 10cm. Caterpillars of larch-feeding Columbia tubercle over A8 short, less than twice as high as broad. Silkmoth (Hyalophora columbia) have yellow-white to Larva to 6cm. Sweetbay Silkmoth (Callosamia securifera) yellow-pink instead of bright yellow knobs over dorsum similar in appearance but a specialist on sweet bay. Its of abdomen and knobs along sides tend to be more white than blue (as in Cecropia) and are yellow abdominal tubercle over A8 is nearly three times as set in black bases (see page 246). long as wide and the red knobs over thorax are cylindrical (see page 246). OCCURRENCE Urban and suburban yards and lots, orchards, fencerows, woodlands, OCCURRENCE Woodlands and forests from Michigan, southern Ontario, and and forests from Canada south to Florida and central Texas. One generation with mature Massachusetts to northern Florida and Mississippi. One principal generation northward; caterpillars from late June through August over most of range. two broods in South with mature caterpillars from early June onward.
    [Show full text]
  • Full Page Photo
    Эверсманния. Энтомологические исследования Eversmannia в России и соседних регионах. Вып. 9. 20.III.2007: 11–33 No. 9. 2007. Р. В. Яковлев г. Барнаул, Алтайский государственный университет (Южно-Сибирский ботанический сад), Алтайский краевой институт повышения квалификации работников образования Древоточцы (Lepidoptera: Cossidae) России R.V. Yakovlev. Carpenter moths (Lepidoptera: Cossidae) of Russia. SUMMARY. In this article the catalogue of Cossidae of Russia is presented. An annotated list including 32 species has been compiled. Two new species and two new subspecies: Catopta albonubila argunica, ssp. n. (Locus typicus: East Trasbaicalia, Kuenga, 45 km SW. Sretensk), Catopta perunovi, sp. n. (Locus typicus: Russia, Altai Rep., near Ongudai), Cossus cossus dauricus, ssp. n. (Locus typicus: Russia Transbaikalia, Chita Province, Nizhnii Tsasutchei), Phragmataecia pacifica, sp. n. (Locus typicus: Russia, Dagestan, 5 km E. Urma) are described. Besides, a new species from S. Mongolia Catopta saldaitisi, sp. n. (Locus typicus: S. Mongolia, Omnogovi Aimak, the Gobi Altai Mts., Gurvan Sayhan) is described. For each species bibliography and distribution map are given. Проводимая в последние годы работа по исследованию древоточцев (Сossidae) Евразии при- вела к описанию ряда новых таксонов с территории Палеарктики, позволила установить грани- цы распространения многих видов. В данной работе делается попытка представить полный ка- талог древоточцев России, выполненный как на основании анализа литературных данных, так и на большом фактическом материале. Исследованный материал хранится в ряде коллекций Рос- сии, Украины, Германии, Австрии. Приведен аннотированный список видов, включающий дан- ные о первичном описании, синонимии, месте хранения типового материала и распростране- нии. Для редких и малоизвестных видов и для новых таксонов приводятся полные данные эти- кеток. Для каждого вида приведена карта распространения на территории России.
    [Show full text]
  • Butterflies and Moths of Comal County, Texas, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
    Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm).
    [Show full text]
  • And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
    A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-­CCo-Chairvhiadi rA.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • The Scientific Publications of Dr László Gozmány (1921 2006) on Lepidoptera with a Revised Bibliography and an Annotated List of Taxon Names He Proposed
    ANNALES HISTORICO-NATURALES MUSEI NATIONALIS HUNGARICI Volume 103 Budapest, 2011 pp. 373–428 The scientific publications of Dr László Gozmány (1921 2006) on Lepidoptera with a revised bibliography and an annotated list of taxon names he proposed ZS. BÁLINT1, G. KATONA1 & A. KUN2 1 Department of Zoology, Hungarian Natural History Museum H-1088 Budapest, Baross utca 13, Hungary. E-mails: [email protected], [email protected] 2 H-2089 Telki, Berkenye u. 46, Hungary. E-mail: [email protected] – The complete bibliographic list of 141 scientific works on Lepidoptera written by Dr LÁSZLÓ GOZMÁNY, former curator of Lepidoptera in the Hungarian Natural History Museum, is presented with reference to 800 names he proposed. The bibliography is supp- lemented by the catalogue of the names arranged according to family-group (13), genus- group (150) and species-group (637) names and listed in alphabetical order with reference to original description, type status, sex, country of origin, type locality and depositor. With 6 figures. –LÁSZLÓ GOZMÁNY, bibliography, list of taxon names, Microlepidoptera, Hungarian Natural History Museum. INTRODUCTION Five years elapsed since the curator emeritus of the Lepidoptera col- lection, the renowned Microlepidoptera specialist of the Hungarian Natu- ral History Museum, Dr LÁSZLÓ GOZMÁNY passed away. The festive volume of the journal Acta zoologica Academiae scientiarum hungaricae for his 85th anniversary was only posthumously published (BÁLINT 2007), which actually included the funeral oration (MATSKÁSI 2007). In the same year two commemorations were published in the journals of the two lepi- dopterists’ societies, where he had been elected as honorary member (BÁLINT et al.
    [Show full text]