American Ornithologists' Union / Cooper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topazes and Hermits
Trochilidae I: Topazes and Hermits Fiery Topaz, Topaza pyra Topazini Crimson Topaz, Topaza pella Florisuginae White-necked Jacobin, Florisuga mellivora Florisugini Black Jacobin, Florisuga fusca White-tipped Sicklebill, Eutoxeres aquila Eutoxerini Buff-tailed Sicklebill, Eutoxeres condamini Saw-billed Hermit, Ramphodon naevius Bronzy Hermit, Glaucis aeneus Phaethornithinae Rufous-breasted Hermit, Glaucis hirsutus ?Hook-billed Hermit, Glaucis dohrnii Threnetes ruckeri Phaethornithini Band-tailed Barbthroat, Pale-tailed Barbthroat, Threnetes leucurus ?Sooty Barbthroat, Threnetes niger ?Broad-tipped Hermit, Anopetia gounellei White-bearded Hermit, Phaethornis hispidus Tawny-bellied Hermit, Phaethornis syrmatophorus Mexican Hermit, Phaethornis mexicanus Long-billed Hermit, Phaethornis longirostris Green Hermit, Phaethornis guy White-whiskered Hermit, Phaethornis yaruqui Great-billed Hermit, Phaethornis malaris Long-tailed Hermit, Phaethornis superciliosus Straight-billed Hermit, Phaethornis bourcieri Koepcke’s Hermit, Phaethornis koepckeae Needle-billed Hermit, Phaethornis philippii Buff-bellied Hermit, Phaethornis subochraceus Scale-throated Hermit, Phaethornis eurynome Sooty-capped Hermit, Phaethornis augusti Planalto Hermit, Phaethornis pretrei Pale-bellied Hermit, Phaethornis anthophilus Stripe-throated Hermit, Phaethornis striigularis Gray-chinned Hermit, Phaethornis griseogularis Black-throated Hermit, Phaethornis atrimentalis Reddish Hermit, Phaethornis ruber ?White-browed Hermit, Phaethornis stuarti ?Dusky-throated Hermit, Phaethornis squalidus Streak-throated Hermit, Phaethornis rupurumii Cinnamon-throated Hermit, Phaethornis nattereri Little Hermit, Phaethornis longuemareus ?Tapajos Hermit, Phaethornis aethopygus ?Minute Hermit, Phaethornis idaliae Polytminae: Mangos Lesbiini: Coquettes Lesbiinae Coeligenini: Brilliants Patagonini: Giant Hummingbird Lampornithini: Mountain-Gems Tro chilinae Mellisugini: Bees Cynanthini: Emeralds Trochilini: Amazilias Source: McGuire et al. (2014).. -
Phenotypic Flexibility in Passerine Birds Seasonal Variation of Aerobic
Journal of Thermal Biology 36 (2011) 430–436 Contents lists available at ScienceDirect Journal of Thermal Biology journal homepage: www.elsevier.com/locate/jtherbio Phenotypic flexibility in passerine birds: Seasonal variation of aerobic enzyme activities in skeletal muscle Eric T. Liknes 1, David L. Swanson n Department of Biology, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA article info abstract Article history: Improved winter cold tolerance is widespread among small passerines resident in cold climates and is Received 1 March 2011 generally associated with elevated summit metabolic rate (Msum ¼maximum thermoregulatory metabolic Accepted 26 July 2011 rate) and improved shivering endurance with increased reliance on lipids as fuel. Elevated Msum and Available online 2 August 2011 improved cold tolerance may result from greater metabolic intensity, due to mass-specific increase in Keywords: oxidative enzyme capacity, or increase in the masses of thermogenic tissues. To examine the mechanisms Phenotypic flexibility underlying winter increases in Msum, we investigated seasonal changes in mass-specific and total activities Seasonal acclimatization of the key aerobic enzymes citrate synthase (CS) and b-hydroxyacyl CoA-dehydrogenase (HOAD) in Citrate synthase pectoralis, supracoracoideus and mixed leg muscles of three resident passerine species, black-capped b-Hydroxyacyl CoA-dehydrogenase chickadee (Poecile atricapillus), house sparrow (Passer domesticus), and white-breasted nuthatch Poecile atricapillus (Sitta carolinensis). Activities of CS were generally higher in winter than in summer muscles for chickadees Passer domesticus Sitta carolinensis and house sparrows, but not nuthatches. Mass-specific HOAD activity was significantly elevated in winter relative to summer in all muscles for chickadees, but did not vary significantly with season for sparrows or nuthatches, except for sparrow leg muscle. -
Nesting Behavior of Reddish Hermits (Phaethornis Ruber) and Occurrence of Wasp Cells in Nests
NESTING BEHAVIOR OF REDDISH HERMITS (PHAETHORNIS RUBER) AND OCCURRENCE OF WASP CELLS IN NESTS YOSHIKA ONIKI REDraSHHermits (Phaethornisruber) are small hummingbirdsof the forested tropical lowlands east of the Andes and south of the Orinoco (Meyer de Schauensee,1966: 161). Five birds mist-nettedat Belem (1 ø 28' S, 48ø 27' W, altitude 13 m) weighed2.0 to 2.5 g (average2.24 g). I studiedtheir nestingfrom 14 October1966 to October1967 at Belem, Brazil, in the Area de PesquisasEco16gicas do Guam•t (APEG) and MocamboForest reserves,in the Instituto de Pesquisase Experimentaqfio Agropecu•triasdo Norte (IPEAN). Names of forest types used and the Portugueseequivalents are: tidal swamp forest (vdrze'a), mature upland forest (terra-/irme) and secondgrowth (capoeira). In all casescapo.eira has been in mature upland situations. At Belem Phaethornisruber is commonall year in the lower levels of secondgrowth (capoeira) where thin branchesare plentiful. Isolated males call frequently from thin horizontal branches,never higher than 2.5-3.0 m. The male sits erect and wags his tail forward and backward as he squeaksa seriesof insectlike"pi-pi-pipipipipipi" notes, 18-20 times per minute; the first two or three notesare short and separated,the rest are run togetherrapidly. The bird sometimesstops calling for someseconds and flasheshis tongue in and out several times during the interval. I foundno singingassemblies of malehermits such as Davis (1934) describes for both the Reddishand Long-tailedHermits (Phaethornissuperciliosus). and Snow (1968) for the Little Hermit (P. longuemareus). Breeding season.--The monthly rainfall at Belem in the year of the study was 350 to 550 mm from January to May and 25 to 200 mm from June to December,with lows in October and November and highs in March and April. -
Bird Watcher's General Store
BIRD OBSERVER BIRD OBSERVER ^4^ ■ ^ '- V - iIRDOBSEl jjjijdOBSEKSK fi« o , bs«s^2; bird observer ®^«D 0BS£, VOL. 21 NO. 1 FEBRUARY 1993 BIRD OBSERVER • s bimonthly {ournal • To enhance understanding, observation, and enjoyment of birds. VOL. 21, NO. 1 FEBRUARY 1993 Editor In Chief Corporate Officers Board of Directors Martha Steele President Dorothy R. Arvidson Associate Editor William E. Davis, Jr. Alden G. Clayton Janet L. Heywood Treasurer Herman H. D'Entremont Lee E. Taylor Department Heads H. Christian Floyd Clerk Cover Art Richard A. Forster Glenn d'Entremont William E. Davis, Jr. Janet L. Heywood Where to Go Birding Subscription Manager Harriet E. Hoffman Jim Berry David E. Lange John C. Kricher Feature Articles and Advertisements David E. Lange Field Notes Robert H. Stymeist John C. Kricher Simon Perkins Book Reviews Associate Staff Wayne R. Petersen Alden G. Clayton Theodore Atkinson Marjorie W. Rines Bird Sightings Martha Vaughan John A. Shetterly Robert H. Stymeist Editor Emeritus Martha Steele At a Glance Dorothy R. Arvidson Robert H. Stymeist Wayne R. Petersen BIRD OBSERVER {USPS 369-850) is published bimonthly, COPYRIGHT © 1993 by Bird Observer of Eastern Massachusetts, Inc., 462 Trapelo Road, Belmont, MA 02178, a nonprofit, tax-exempt corporation under section 501 (c)(3) of the Internal Revenue Code. Gifts to Bird Observer will be greatly appreciated and are tax deductible. POSTMASTER; Send address changes to BIRD OBSERVER, 462 Trapelo Road, Belmont, MA 02178. SUBSCRIPTIONS: $16 for 6 issues, $30 for two years in the U. S. Add $2.50 per year for Canada and foreign. Single copies ^ .0 0 . -
Discrimination of Black-Capped Chickadee (Poecile Atricapillus) Chick-A-Dee Calls Produced Across Seasons
ABC 2020, 7(2):247-256 Animal Behavior and Cognition DOI: https://doi.org/10.26451/abc.07.02.14.2020 ©Attribution 3.0 Unported (CC BY 3.0) Discrimination of black-capped chickadee (Poecile atricapillus) chick-a-dee calls produced across seasons Erin N. Scully1, Kimberly A. Campbell2, Jenna V. Congdon1, and Christopher B. Sturdy*,1,2 1Department of Psychologya, University of Alberta 2Neuroscience and Mental Health Instituteb, University of Alberta *Corresponding author (Email: [email protected]) Citation – Scully, E. N., Campbell, K. A., Congdon, J. V., & Sturdy, C. B. (2020). Discrimination of black-capped chickadee (Poecile atricapillus) chick-a-dee calls produced across seasons. Animal Behavior and Cognition, 7(2), 247-256. doi: https://doi.org/10.26451/abc.07.02.14.2020 Abstract – While black-capped chickadees (Poecile atricapillus) primarily produce fee-bee songs in spring, they produce chick-a-dee calls year-round with call production peaking in the fall. This call serves multiple functions, including food location, flock communication, and predator alarm. As seasons change, the meaning of the call may also change. For instance, flock communication could be more important in the fall than in the spring, and food type and availability change according to season. To determine if the chick-a-dee call varies acoustically across seasons in a predictable manner, we conducted an operant go/no-go discrimination task that examined black-capped chickadees’ ability to categorize calls produced in two different seasons: fall and spring. We found that birds trained to respond to vocalizations produced in either fall or spring learned to discriminate at the same rate as birds trained to respond to pseudorandomized stimuli, suggesting that none of the groups demonstrated category learning, relying instead on rote memorization. -
Observations of Hummingbird Feeding Behavior at Flowers of Heliconia Beckneri and H
SHORT COMMUNICATIONS ORNITOLOGIA NEOTROPICAL 18: 133–138, 2007 © The Neotropical Ornithological Society OBSERVATIONS OF HUMMINGBIRD FEEDING BEHAVIOR AT FLOWERS OF HELICONIA BECKNERI AND H. TORTUOSA IN SOUTHERN COSTA RICA Joseph Taylor1 & Stewart A. White Division of Environmental and Evolutionary Biology, Graham Kerr Building, University of Glasgow, Glasgow, CB23 6DH, UK. Observaciones de la conducta de alimentación de colibríes con flores de Heliconia beckneri y H. tortuosa en El Sur de Costa Rica. Key words: Pollination, sympatric, cloud forest, Cloudbridge Nature Reserve, Green Hermit, Phaethornis guy, Violet Sabrewing, Campylopterus hemileucurus, Green-crowned Brilliant, Heliodoxa jacula. INTRODUCTION sources in a single foraging bout (Stiles 1978). Interactions between closely related sympatric The flower preferences shown by humming- flowering plants may involve competition for birds (Trochilidae) are influenced by a com- pollinators, interspecific pollen loss and plex array of factors including their bill hybridization (e.g., Feinsinger 1987). These dimensions, body size, habitat preference and processes drive the divergence of genetically relative dominance, as influenced by age and based floral phenotypes that influence polli- sex, and how these interact with the morpho- nator assemblages and behavior. However, logical, caloric and visual properties of flow- floral convergence may be favored if the ers (e.g., Stiles 1976). increased nectar supplies and flower densities, Hummingbirds are the primary pollina- for example, increase the regularity and rate tors of most Heliconia species (Heliconiaceae) of flower visitation for all species concerned (Linhart 1973), which are medium to large (Schemske 1981). Sympatric hummingbird- clone-forming herbs that usually produce pollinated plants probably face strong selec- brightly colored floral bracts (Stiles 1975). -
Project Scientific Progress Report Study Site
Project Ecology of plant-hummingbird interactions along an elevational gradient Scientific Progress Report Project leader: Catherine Graham, Swiss Federal Research Institute Principal investigator: María Alejandra Maglianesi, Universidad Estatal a Distancia Coordinator: Emanuel Brenes Rodríguez, Universidad Estatal a Distancia Study site Las Nubes Biological Reserve York University San José, Costa Rica January, 2020 1 INTRODUCTION A primary aim of community ecology is to identify the processes that govern species assemblages across environmental gradients (McGill et al. 2006), allowing us to understand why biodiversity is non-randomly distributed on Earth. Mutualistic interactions such as those between plants and their animal pollinators are the major biodiversity component from which the integrity of ecosystems depends (Valiente-Banuet et al. 2015). The interdependence of plant and pollinators can be assessed using a network approach, which is a powerful tool to analyze the complexity of ecological systems (Ings et al. 2009), especially in highly diversified tropical regions. Mountain regions provide pronounced environmental gradients across relatively small spatial scales and have proved to be a suitable model system to investigate patterns and determinants of species diversity and community structure (Körner 2000, Sanders and Rahbek 2012). Although some studies have investigated the variation in plant–pollinator interaction networks across elevational gradients (Ramos-Jiliberto et al. 2010, Benadi et al. 2013), such studies are still scarce, particularly in the tropics. In the Neotropics, hummingbirds (Trochilidae) are considered to be effective pollinators (Castellanos et al. 2003). They have been classified into two distinct groups: hermits and non-hermits, which differ mainly in their elevational distribution and their level of specialization on floral resources, i.e., the proportion of floral resources available in the community that is used by species (Stiles 1978). -
The Behavior and Ecology of Hermit Hummingbirds in the Kanaku Mountains, Guyana
THE BEHAVIOR AND ECOLOGY OF HERMIT HUMMINGBIRDS IN THE KANAKU MOUNTAINS, GUYANA. BARBARA K. SNOW OR nearly three months, 17 January to 5 April 1970, my husband and I F camped at the foot of the Kanaku Mountains in southern Guyana. Our camp was situated just inside the forest beside Karusu Creek, a tributary of Moco Moco Creek, at approximately 80 m above sea level. The period of our visit was the end of the main dry season which in this part of Guyana lasts approximately from September or October to April or May. Although we were both mainly occupied with other observations we hoped to accumulate as much information as possible on the hermit hummingbirds of the area, particularly their feeding niches, nesting and social organization. Previously, while living in Trinidad, we had studied various aspects of the behavior and biology of the three hermit hummingbirds resident there: the breeding season (D. W. Snow and B. K. Snow, 1964)) the behavior at singing assemblies of the Little Hermit (Phaethornis Zonguemareus) (D. W. Snow, 1968)) the feeding niches (B. K. Snow and D. W. Snow, 1972)) the social organization of the Hairy Hermit (Glaucis hirsuta) (B. K. Snow, 1973) and its breeding biology (D. W. Snow and B. K. Snow, 1973)) and the be- havior and breeding of the Guys’ Hermit (Phuethornis guy) (B. K. Snow, in press). A total of six hermit hummingbirds were seen in the Karusu Creek study area. Two species, Phuethornis uugusti and Phaethornis longuemureus, were extremely scarce. P. uugusti was seen feeding once, and what was presumably the same individual was trapped shortly afterwards. -
Trends in Nectar Concentration and Hummingbird Visitation
SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2016 Trends in Nectar Concentration and Hummingbird Visitation: Investigating different variables in three flowers of the Ecuadorian Cloud Forest: Guzmania jaramilloi, Gasteranthus quitensis, and Besleria solanoides Sophie Wolbert SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Animal Studies Commons, Community-Based Research Commons, Environmental Studies Commons, Latin American Studies Commons, and the Plant Biology Commons Recommended Citation Wolbert, Sophie, "Trends in Nectar Concentration and Hummingbird Visitation: Investigating different variables in three flowers of the Ecuadorian Cloud Forest: Guzmania jaramilloi, Gasteranthus quitensis, and Besleria solanoides" (2016). Independent Study Project (ISP) Collection. 2470. https://digitalcollections.sit.edu/isp_collection/2470 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. Wolbert 1 Trends in Nectar Concentration and Hummingbird Visitation: Investigating different variables in three flowers of the Ecuadorian Cloud Forest: Guzmania jaramilloi, Gasteranthus quitensis, and Besleria solanoides Author: Wolbert, Sophie Academic -
Programs and Field Trips
CONTENTS Welcome from Kathy Martin, NAOC-V Conference Chair ………………………….………………..…...…..………………..….…… 2 Conference Organizers & Committees …………………………………………………………………..…...…………..……………….. 3 - 6 NAOC-V General Information ……………………………………………………………………………………………….…..………….. 6 - 11 Registration & Information .. Council & Business Meetings ……………………………………….……………………..……….………………………………………………………………………………………………………………….…………………………………..…..……...….. 11 6 Workshops ……………………….………….……...………………………………………………………………………………..………..………... 12 Symposia ………………………………….……...……………………………………………………………………………………………………..... 13 Abstracts – Online login information …………………………..……...………….………………………………………….……..……... 13 Presentation Guidelines for Oral and Poster Presentations …...………...………………………………………...……….…... 14 Instructions for Session Chairs .. 15 Additional Social & Special Events…………… ……………………………..………………….………...………………………...…………………………………………………..…………………………………………………….……….……... 15 Student Travel Awards …………………………………………..………...……………….………………………………..…...………... 18 - 20 Postdoctoral Travel Awardees …………………………………..………...………………………………..……………………….………... 20 Student Presentation Award Information ……………………...………...……………………………………..……………………..... 20 Function Schedule …………………………………………………………………………………………..……………………..…………. 22 – 26 Sunday, 12 August Tuesday, 14 August .. .. .. 22 Wednesday, 15 August– ………………………………...…… ………………………………………… ……………..... Thursday, 16 August ……………………………………….…………..………………………………………………………………… …... 23 Friday, 17 August ………………………………………….…………...………………………………………………………………………..... 24 Saturday, -
Do Sympatric Heliconias Attract the Same Species of Hummingbird? Observations on the Pollination Ecology of Heliconia Beckneri and H
Do Sympatric Heliconias Attract the Same Species of Hummingbird? Observations on the Pollination Ecology of Heliconia beckneri and H. tortuosa at Cloudbridge Nature Reserve Joseph Taylor University of Glasgow The Hummingbird-Heliconia Project The hummingbird family (Trochilidae), endemic to the Neotropics, is remarkable not only for its beauty but also because of its ability to hover over a flower while feeding, its wing movements a blur. These lively birds require frequent, nutritious feeding to sustain their expenditure of energy, and some plants have evolved to attract and feed them in exchange for pollination services. Prominent among such plants are most species in the genus Heliconia (Heliconiaceae), which are medium to large clone-forming herbs with banana-like leaves (Stiles, 1975). The hummingbird-Heliconia interdependence is a good example of co- evolution, and this study is concerned with one aspect of this relationship. Since several species of hummingbird and Heliconia exist at Cloudbridge, a middle-elevation nature reserve in Costa Rica, we wondered whether particular species of Heliconia had evolved an attraction for particular hummingbird species, which might reduce the chances of hybridisation and pollen loss; or whether the plants compete for a variety of hummingbirds. At Cloudbridge, on the Pacific slope of southern Costa Rica’s Talamanca mountain range, Heliconia beckneri , an endangered species (website 1) restricted to this area and thought to be of hybrid origin (Daniels and Stiles, 1979; website 2), and H. tortuosa occur together. Stiles (1979) names the Green Hermit ( Phaethornis guy ) as the primary pollinator of both species and the Violet Sabrewing ( Campylopterus hemileucurus ) as the secondary pollinator of H. -
Early Birding Book
Early Birding in Dutchess County 1870 - 1950 Before Binoculars to Field Guides by Stan DeOrsey Published on behalf of The Ralph T. Waterman Bird Club, Inc. Poughkeepsie, New York 2016 Copyright © 2016 by Stan DeOrsey All rights reserved First printing July 2016 Digital version June 2018, with minor changes and new pages added at the end. Digital version July 2019, pages added at end. Cover images: Front: - Frank Chapman’s Birds of Eastern North America (1912 ed.) - LS Horton’s post card of his Long-eared Owl photograph (1906). - Rhinebeck Bird Club’s second Year Book with Crosby’s “Birds and Seasons” articles (1916). - Chester Reed’s Bird Guide, Land Birds East of the Rockies (1908 ed.) - 3x binoculars c.1910. Back: 1880 - first bird list for Dutchess County by Winfrid Stearns. 1891 - The Oölogist’s Journal published in Poughkeepsie by Fred Stack. 1900 - specimen tag for Canada Warbler from CC Young collection at Vassar College. 1915 - membership application for Rhinebeck Bird Club. 1921 - Maunsell Crosby’s county bird list from Rhinebeck Bird Club’s last Year Book. 1939 - specimen tag from Vassar Brothers Institute Museum. 1943 - May Census checklist, reading: Raymond Guernsey, Frank L. Gardner, Jr., Ruth Turner & AF [Allen Frost] (James Gardner); May 16, 1943, 3:30am - 9:30pm; Overcast & Cold all day; Thompson Pond, Cruger Island, Mt. Rutson, Vandenburg’s Cove, Poughkeepsie, Lake Walton, Noxon [in LaGrange], Sylvan Lake, Crouse’s Store [in Union Vale], Chestnut Ridge, Brickyard Swamp, Manchester, & Home via Red Oaks Mill. They counted 117 species, James Gardner, Frank’s brother, added 3 more.