Arxiv:1707.04966V3 [Astro-Ph.HE] 17 Dec 2017
From hadrons to quarks in neutron stars: a review Gordon Baym,1, 2, 3 Tetsuo Hatsuda,2, 4, 5 Toru Kojo,6, 1 Philip D. Powell,1, 7 Yifan Song,1 and Tatsuyuki Takatsuka5, 8 1Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801, USA 2iTHES Research Group, RIKEN, Wako, Saitama 351-0198, Japan 3The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark 4iTHEMS Program, RIKEN, Wako, Saitama 351-0198, Japan 5Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198, Japan 6Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China 7Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 8Iwate University, Morioka 020-8550, Japan (Dated: December 19, 2017) In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors.
[Show full text]