USP4 Promotes Invasion of Breast Cancer Cells Via Relaxin/TGF-Β1/Smad2/MMP-9 Signal

Total Page:16

File Type:pdf, Size:1020Kb

USP4 Promotes Invasion of Breast Cancer Cells Via Relaxin/TGF-Β1/Smad2/MMP-9 Signal European Review for Medical and Pharmacological Sciences 2016; 20: 1115-1122 USP4 promotes invasion of breast cancer cells via Relaxin/TGF-β1/Smad2/MMP-9 signal W.-H. CAO1, X.-P. LIU2, S.-L. MENG3, Y.-W. GAO3, Y. WANG1, Z.-L. MA1, X.-G. WANG1, H.-B. WANG1 1Department of Breast Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China 2Department of Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, China 3Department of Gynaecology, People’s Hospital of Zhangqiu, Jinan, China Abstract. – OBJECTIVE: Ubiquitin-specific = dimethyl sulfoxide; BB94, batimastat; PBS, phosphate protease 4 (USP4) is a deubiquitinating enzyme buffered saline; FBS, fetal bovine serum; DMEM, Dul- with key roles in the regulation of TGF-β1 signal- becco’s modified Eagle medium; IMDM, Iscove’s modi- ing, suggesting its importance in tumorigenesis. fied Dulbecco’s medium. However, the underlying mechanisms causing this are not entirely clear. In the present study, we investigated the effect of USP4 on invasion Introduction and tumorigenesis of breast cancer cells, and explored its mechanism. MATERIALS AND METHODS: Breast cancer is the second-fourth leading cause Effects of USP4 of cancer-related deaths in women in the world, overexpression or USP4 silencing by small inter- fering RNA (USP4 siRNA) on invasion of breast suggesting that early diagnosis and prevention of 1 cancer MDA-MB-231 and T47D cells in vitro was this disease is urgently needed . Currently, breast detected. Using siRNAs and inhibitors to exam- cancer is treated with surgery, chemotherapy, and ine the USP4 signaling pathway. radiation therapy or combined modalities with RESULTS: The migration and invasion assays remarkable success. In addition, patients with showed that USP4 promotes human breast can- breast cancer or preneoplastic lesions are also cer cell migration and invasion by USP4 overex- pression, and knockdown of USP4 by siRNA in- treated with hormonal therapy either for treatment hibits human breast cancer cell migration and in- or prevention purposes. Although these treatment vasion. Treatment with RLX siRNAs, TGF-β1 siR- modalities are successful, a significant number of NAs, Smad2 siRNAs or BB94 (MMPs inhibitor) to patients either do not respond to therapy, or the tu- USP4-overexpressing breast cancer cells revealed mor may recur during therapy and develop metas- that USP4- induced RLX via TGF-β1 pathway pro- tasis, for which there is limited curative therapy2,3. motes the cell migration and invasion. Further This inadequate outcome strongly suggests that studies demonstrated that USP4-mediated TGF-β1 activation not only enhances the phosphorylation the evaluation of novel targeted therapeutic agents of Smad2 through TGF-β, but also directly upreg- is urgently needed to improve the treatment out- ulate matrix metalloproteinase (MMP)-9-mediated come of patients diagnosed with this disease. cell migration and invasion of breast cancer cells. Ubiquitin-specific proteases (USPs) regulate CONCLUSIONS: Therapies targeting the USP4 post-translational modification of proteins by inhibits invasion of breast cancer cells via Re- inhibiting ubiquitination of its targets, affecting laxin/TGF-β1/Smad2/MMP-9 signal. These re- multiple biological processes such as cell cycle, sults indicate that USP4 is an attractive target 4 for breast cancer therapy. DNA repair, and cell signaling pathways . USP4, a member of USP subfamily, is the first deubiq- Key Words: uiting enzymes that have been identified in mam- Breast cancer, Ubiquitin-specific protease 4, Relax- malian cells. TGF-β, a multifunctional cytokine, in, TGF-β1. plays a tumor suppressive role in normal epithelia cells and precancerous tissues by inhibiting cell Abbreviations proliferation and inducing apoptosis, but acceler- ates the progression of established cancers by pro- BC = breast cancer; TGF-b = transforming growth fac- moting cell proliferation, invasion, and metasta- tor-beta; MMP-9 = matrix metalloproteinases-9; DMSO sis5-8. TGF-β initiates signaling by binding to type Corresponding Author: Hai-Bo Wang, MD; e-mail: [email protected] 1115 W.-H. Cao, X.-P. Liu, S.-L. Meng, Y.-W. Gao, Y. Wang, Z.-L. Ma, X.-G. Wang, H.-B. Wang I and type II receptor serine/threonine kinases on USP4 siRNA Transfection the cell surface, receptor-mediated Smads activa- MDA-MB-231 were seeded in six-well plates, tion to regulate gene expression, which is a classi- grown to 50-80% confluence. Cells were trans- cal pathway for TGF-β signaling transduced from fected with USP4 siRNA (2 μg) in OptiMEM the cell membrane to the nucleus, and resulting in (Gibco, BRL, Grand Island, NY, USA) for 48 hs tumor suppression. Recently, it has been shown using Lipofectamine 2000 (Invitrogen, Carlsbad, that USP4overexpression facilitates tumor cell in- CA, USA) according to the manufacturer’s in- vasion, migration, and aggressiveness by enhanc- structions. ing transforming growth factor-β (TGF-β) sig- naling9-10. However, the underlying mechanisms USP4 Plasmids Construction causing this are not entirely clear. Moreover, the and Transfection contribution of USP4 to breast cancer progression Human USP4 cDNA was cloned and amplified has not been determined. from leukocytes. The polymerase chain reaction Relaxin (RLN) is a small peptide hormone ex- (PCR) primers were: forward, 5′- GAA GGC CCT pressed in several cancers of reproductive and endo- GGA TGT GAT GGT G-3′ and reverse, 5′- CAT crine organs. Increased expression of RLN in breast TTC TTC CTG GGC TGC TTA TC-3′ with the cancer correlates with aggressive cancer. Previous restriction enzymes KpnI and XhoI link. The cD- studies have found that RLN was the downstream NA was then subcloned into a linearized PMD-18T of the TGF-β1/Smad2 signal, which could in- vector [Takara Biotechnology Co., Ltd., Dalian, duce MMP-9 expression, suggesting that RLN plays China], digested and released with KpnI and XhoI a key role in breast cancer tumorigenesis11,12. (Fermentas, Burlington, Ontario, Canada), and then In this study, we use USP4 gene-silenced and cloned into pcDNA3.1 (+) vector (Invitrogen Life overexpressing breast cancer cells to determine Technologies, Carlsbad, CA, USA). After amplifi- if USP4 can promote the migration and invasion cation and DNA sequence confirmation, this vector of breast cancer cells and clarify whether RLN/ was designated as pcDNA3.1-USP4 and used for TGF-β/Smad2/MMP-9 are involved in the mech- the overexpression of USP4 in breast cancer cells. anisms that USP4 promotes the migration and in- pcDNA3.1 and pCDNA3.1- USP4 plasmids were vasion of breast cancer cells, providing a novel separately transfected into T47Dcells using Li- therapeutic target for the pathogenesis and gene pofectamine 2000 (Invitrogen Life Technologies, therapy of breast cancer. Carlsbad, CA, USA) according to the manufactur- er’s instructions, and stable cell lines were selected with 600 μg/ml G418 (Invitrogen Life Technolo- Materials and Methods gies). Gene expression was confirmed by Western blot analysis. To determine the signaling pathways Cell Line and Culture involved in the production of RLX, TGF-β1, TGF- MDA-MB-231 and T47D human breast can- βRI, Phospho-Smad2 (Ser-465), MMP-9. The sta- cer cells were cultivated in HAM’s F12 medium ble pcDNA3.1 or pCDNA3.1- USP4 transfected (Biochrom, Shanghai, China) substituted with T47D cells were transfected with RLX siRNA or 10% fetal calf serum (FCS), 2 mmol L-glutamine TGF-β1 siRNA or Smad2 siRNA for 48 hs or treat- (Gibco, Invitrogen, Hangzhou, China), 6 ng/ ml ed withBB94 for 24 hs. insulin (Gibco; Invitrogen Corp, Hangzhou, Chi- na), 3.75 ng/ml hydrocortisone (Sigma, Oakville, Western Blot Analysis Shanghai, China). Cells were washed with ice-cold PBS and whole cell extracts were prepared using cell lysis Agents buffer [20 mmol/L Tris (pH 7.5), 0.1% Triton-X, The primary antibodies against USP4, RLX2, 0.5% deoxycholate, 1 mmol/L phenylmethylsul- TGF-β1, Phospho-Smad2 (Ser-465), MMP-9 fonyl fluoride, 10 ug/mL aprotinin, and 10 ug/ and actin were all purchased from Cell Signaling mL leupeptin] and cleared by centrifugation at Technology, Inc. (Shanghai, China). USP4 siR- 12,000 x g, 4oC. Total protein concentration was NA, RLX2 siRNA, TGF-β1 siRNA, Smad2 siR- measured using the bicinchoninic acid assay kit NA, BB94 (MMPs inhibitor) were from Cell Sig- (Sigma, St. Louis, MO, USA) with bovine serum naling Technology. Cells incubated with culture albumin as a standard. Cell lysates containing 30 medium or culture medium with DMSO served as mg total protein were analyzed by immunoblot- controls. ting. Chemoluminescent detection (Upstate, Lake 1116 USP4 promotes invasion of breast cancer cells via Relaxin/TGF-β1/Smad2/MMP-9 signal Placid, NY, USA) was done in accordance with were measured by Image-Pro Plus 6.0 software. the manufacturer’s instructions. The changes in migration were determined by comparing the difference in wound-healing areas Invasion Assay within 48 h (n = 6). The upper chamber of each Transwell was coated with Matrigel (BD Biosciences, Franklin Statistical Analysis Lakes, NJ, USA) 1:6 diluted with DMEM at 37°C Student’s t-test was used to assess the signifi- for 3 h. Cells (2×104) were seeded in upper cham- cance of differences among the different groups. bers in DMEM and incubated in 24-well-plates Differences were expressed as mean ±SD with with 10% FBS supplemented DMEM. After 36 h p-values < 0.05 being considered as statistically of incubation, cells remaining on the upper sur- significant. face of the membrane were removed with a cot- ton swab. Cells that invaded through the Matri- gel-precoated membrane filter were fixed, stained Results and counted using a microscope. Effect of siRNA on USP4 Expression Wound Healing Assay in MDA-MB-231 Cells Cells (3 × 105 cells/well) were seeded into More USP4 protein expression was shown in 24-well plates at 60-80% confluency, and the cell the MDA-MB-231 cells.
Recommended publications
  • Binding of Sap102 and Usp4 to the A2a
    Diplomarbeit BINDING OF SAP102 AND USP4 TO THE A2A ADENOSINE RECEPTOR CARBOXYTERMINUS Zur Erlangung des akademischen Grades Doktorin der Zahnheilkunde (Dr. med. dent.) an der Medizinischen Universität Wien ausgeführt am Institut für Pharmakologie unter der Anleitung von Prof. Dr. Christian Nanoff eingereicht von Ivana Ostrouska Matr.Nr.: n0347690 Gallmeyergasse 6/1/5, A-1190 Wien Wien, 31.März 2009 Diploma Thesis BINDING OF SAP102 AND USP4 TO THE A2A ADENOSINE RECEPTOR CARBOXYTERMINUS Obtainment of the academic degree Doctor of Dentistry (Dr. med. dent.) at the Medical University Vienna performed at the Institute of Pharmacology supervised by Prof. Dr. Christian Nanoff submitted by Ivana Ostrouska Matr.No.: n0347690 Gallmeyergasse 6/1/5, A-1190 Vienna Vienna, 31.March 2009 My very best thanks to Christian Nanoff, Oliver Kudlacek, Ingrid Gsandtner and to the Institute of Pharmacology. 3 Content 1 Summary ................................................................................................................ 11 2 Introduction ........................................................................................................... 12 2.1 The A2A adenosine receptor..................................................................................... 12 2.1.1 A2A receptor signaling.......................................................................................... 15 2.2 Synapse Associated Proteins and SAP102 .............................................................. 17 2.2.1 SAP Structure.....................................................................................................
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • A Study on the E3 Ligase TRIM21/Ro52 Alexander Espinosa from the Department of Medicine, Karolinska Institutet, Stockholm, Sweden
    Thesis for doctoral degree (Ph.D.) 2008 Thesis for doctoral degree (Ph.D.) 2008 A STUDY ON THE E3 LIGASE TRIM21/RO52 A study on the E3 ligase TRIM21/Ro52 ligase E3 the on study A Alexander Espinosa Alexander Espinosa Fredrik Bredin From the Department of Medicine, Karolinska Institutet, Stockholm, Sweden A STUDY ON THE E3 LIGASE TRIM21/Ro52 Alexander Espinosa All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print AB, Box 20082, SE-161 02 Bromma, Sweden. © Alexander Espinosa, 2008 ISBN 978-91-7357-480-8 iii ABSTRACT Patients with the systemic autoimmune diseases Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE), often have antibodies against the intracellular protein TRIM21/Ro52. Although the presence of anti-TRIM21/Ro52 autoantibodies is used as a diagnostic tool, the biological function of TRIM21/Ro52 is still unknown. The aim of this thesis is to provide a better understanding of the function of TRIM21/Ro52, especially regarding its role in autoimmunity. To achieve this, TRIM21/Ro52 was studied at a molecular and cellular level in vitro and in vivo. By using circular dichroism, limited proteolysis, mass spectrometry, ultra-centrifugation, and two- hybrid experiments, it was shown that TRIM21/Ro52 is a Zn2+ binding protein that forms weak dimers. These results also confirmed the presence of the predicted secondary structure domains of TRIM21/Ro52. A RING domain in the N-terminus of TRIM21/Ro52 suggests that TRIM21/Ro52 is a RING dependent E3 ligase. Through ubiquitination assays, it was shown that TRIM/Ro52 is indeed an E3 ligase and that the E3 ligase activity of TRIM21/Ro52 was dependent on the E2 enzymes UbcH5a-c or UbcH6.
    [Show full text]
  • Cell Proliferation Control: from Intrinsic Transcriptional Programs to Extrinsic Stromal Networks
    Cell Proliferation Control: from Intrinsic Transcriptional Programs to Extrinsic Stromal Networks DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Huayang Liu Graduate Program in Molecular Genetics The Ohio State University 2015 Dissertation Committee: Professor Gustavo Leone, Advisor Professor Helen Chamberlin Professor Harold Fisk Professor Tsonwin Hai Copyright by Huayang Liu 2015 Abstract Robust mechanisms to control cell proliferation have evolved to maintain the integrity of organ architecture and tissue homeostasis. Disruption of these mechanisms, either intracellular circuits or extracellular inputs for cell proliferation control, inevitably occur under oncogenic conditions, rendering cells with unlimited proliferative capacity and subsequent malignant transformation. Here, we investigated how two critical intracellular proliferative pathways, Myc and E2f, are integrated to control cell cycle transitions in normal and Rb deficient cells using a murine intestinal model. We show that in contrast to the current paradigm, Myc and E2f1-3 have little impact on normal G1- S transitions. Instead Myc and E2f1-3 synergistically control an S-G2 transcriptional program in intestinal crypts required for completing normal cell divisions and maintaining crypt-villi integrity. Surprisingly, Rb deficiency results in the Myc- dependent accumulation of E2f3a protein and the genome-wide repositioning of Myc and E2f3 on chromatin associated with ‘super activation’ of a G1-S transcriptional program, ectopic S phase entry and rampant cell proliferation. These findings reveal that Rb deficient cells hijack and redeploy Myc and E2f3 from an S-G2 program essential for normal cell cycles to a G1-S program that re-engages ectopic cell cycles, exposing an unanticipated addiction of Rb-null ‘cancer-like cells’ on Myc.
    [Show full text]
  • Ubiquitin-Specific Protease 4-Mediated Deubiquitination and Stabilization of PRL-3 Is Required for Potentiating Colorectal Oncogenesis
    Published OnlineFirst December 15, 2015; DOI: 10.1158/0008-5472.CAN-14-3595 Cancer Molecular and Cellular Pathobiology Research Ubiquitin-Specific Protease 4-Mediated Deubiquitination and Stabilization of PRL-3 Is Required for Potentiating Colorectal Oncogenesis Cheng Xing1, Xing-Xing Lu2, Peng-Da Guo2, Tong Shen2, Shen Zhang2, Xiao-Shun He2, Wen-Juan Gan2, Xiu-Ming Li2, Jing-Ru Wang2, Yuan-Yuan Zhao2, Hua Wu2, and Jian-Ming Li1,2 Abstract Ubiquitin specific protease 4 (USP4) is a deubiquitinating Mechanistically, we observed that USP4 interacted with and enzyme with key roles in the regulation of p53 and TGFb stabilized PRL-3 via deubiquitination. This resulted in activa- signaling, suggesting its importance in tumorigenesis. Howev- tion of Akt and reduction of E-cadherin, critical regulators of er, the mechanisms and regulatory roles of USP4 in cancer, cancer cell growth and metastasis. Examination of clinical including colorectal cancer, remain largely elusive. Here, we samples confirmed that USP4 expression positively correlates present the first evidence that USP4 regulates the growth, with PRL-3 protein expression, but not mRNA transcript levels. invasion, and metastasis of colorectal cancer. USP4 expression Taken together, our results demonstrate that aberrant expres- was significantly elevated in colorectal cancer tissues and was sion of USP4 contributes to the development and progression significantly associated with tumor size, differentiation, distant of colorectal cancer and reveal a critical mechanism underlying metastasis, and poor survival. Knockdown of USP4 diminished USP4-mediated oncogenic activity. These observations suggest colorectal cancer cell growth, colony formation, migration, and that the potential of harnessing proteolytic degradation pro- invasion in vitro and metastasis in vivo.
    [Show full text]
  • Ubiquitin-Specific Protease 4-Mediated Deubiquitination and Stabilization of PRL-3 Is Required for Potentiating Colorectal Oncogenesis
    Published OnlineFirst December 15, 2015; DOI: 10.1158/0008-5472.CAN-14-3595 Cancer Molecular and Cellular Pathobiology Research Ubiquitin-Specific Protease 4-Mediated Deubiquitination and Stabilization of PRL-3 Is Required for Potentiating Colorectal Oncogenesis Cheng Xing1, Xing-Xing Lu2, Peng-Da Guo2, Tong Shen2, Shen Zhang2, Xiao-Shun He2, Wen-Juan Gan2, Xiu-Ming Li2, Jing-Ru Wang2, Yuan-Yuan Zhao2, Hua Wu2, and Jian-Ming Li1,2 Abstract Ubiquitin specific protease 4 (USP4) is a deubiquitinating Mechanistically, we observed that USP4 interacted with and enzyme with key roles in the regulation of p53 and TGFb stabilized PRL-3 via deubiquitination. This resulted in activa- signaling, suggesting its importance in tumorigenesis. Howev- tion of Akt and reduction of E-cadherin, critical regulators of er, the mechanisms and regulatory roles of USP4 in cancer, cancer cell growth and metastasis. Examination of clinical including colorectal cancer, remain largely elusive. Here, we samples confirmed that USP4 expression positively correlates present the first evidence that USP4 regulates the growth, with PRL-3 protein expression, but not mRNA transcript levels. invasion, and metastasis of colorectal cancer. USP4 expression Taken together, our results demonstrate that aberrant expres- was significantly elevated in colorectal cancer tissues and was sion of USP4 contributes to the development and progression significantly associated with tumor size, differentiation, distant of colorectal cancer and reveal a critical mechanism underlying metastasis, and poor survival. Knockdown of USP4 diminished USP4-mediated oncogenic activity. These observations suggest colorectal cancer cell growth, colony formation, migration, and that the potential of harnessing proteolytic degradation pro- invasion in vitro and metastasis in vivo.
    [Show full text]
  • Deciphering the Functional Redundancy of USP4 and USP15 by Sarah Zachariah a Thesis Submitted in Partial Fulfillment of the Requ
    Deciphering the functional redundancy of USP4 and USP15 by Sarah Zachariah A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in Biochemistry Department of Biochemistry, Microbiology, Immunology Faculty of Medicine University of Ottawa Supervisor: Dr. Douglas Gray © Sarah Zachariah, Ottawa, Canada, 2020 i ABSTRACT The deubiquitinating enzymes USP4 and USP15 are encoded by genes that are ohnologues arising from whole genome duplication events early in vertebrate evolution, and the majority of known vertebrate genomes contain a functional copy of both. Both USPs are known to be involved in some of the same signalling pathways such as Wnt/β-catenin, however subfunctionalization has occurred such that they each regulate the stability of distinct substrates. Despite their sequence and evolutionary similarities, the ohnologues may have opposite correlations in overall survival of lung adenocarcinoma patients. Early work with knockout mice has determined that while mice null in one ohnologue display no phenotype, the double null genotype is lethal. We hypothesize that there are mechanisms in place that allow one to perform the other’s functions to a certain extent when deficient in one USP. To study the extent of this functional redundancy, we are analyzing the progeny of genetic crosses of mice in which one or both genes have been inactivated. There is evidence for partial functional redundancy and more severe phenotypes when deficient in USP15. Embryos null for both genes die at midgestation and are physically smaller than embryos heterozygous for both genes. They have underdeveloped livers, and a likely defect in hematopoiesis. Proper fetal hematopoiesis requires signalling through Wnt/ β-catenin pathway, and a systematic analysis of the components of this pathway has been undertaken to correlate deficiencies with the genotypes of our knockout mice.
    [Show full text]
  • Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy
    International Journal of Molecular Sciences Review Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy Keng Po Lai 1 , Jian Chen 1,* and William Ka Fai Tse 2,* 1 Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China; [email protected] 2 Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan * Correspondence: [email protected] (J.C.); [email protected] (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.) Received: 25 February 2020; Accepted: 1 April 2020; Published: 6 April 2020 Abstract: Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology. Keywords: deubiquitinase; degradation; therapeutic target; cancer 1. Introduction Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activities and stability.
    [Show full text]
  • USP4 Antibody A
    Revision 1 C 0 2 - t USP4 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 1 5 Web: [email protected] 6 www.cellsignal.com 2 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB H M R Mk Endogenous 104, 109 Rabbit Q13107 7375 Product Usage Information 1. Nijman, S.M. et al. (2005) Cell 123, 773-86. 2. Nalepa, G. et al. (2006) Nat Rev Drug Discov 5, 596-613. Application Dilution 3. Gupta, K. et al. (1994) Oncogene 9, 1729-31. 4. Gupta, K. et al. (1993) Oncogene 8, 2307-10. Western Blotting 1:1000 5. Papa, F.R. and Hochstrasser, M. (1993) Nature 366, 313-9. 6. Gray, D.A. et al. (1995) Oncogene 10, 2179-83. Storage 7. Gilchrist, C.A. et al. (1997) J Biol Chem 272, 32280-5. 8. Gilchrist, C.A. and Baker, R.T. (2000) Biochim Biophys Acta 1481, 297-309. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% 9. Zhang, X. et al. (2011) EMBO J 30, 2177-89. glycerol. Store at –20°C. Do not aliquot the antibody. 10. Blanchette, P. et al. (2001) Oncogene 20, 5533-7. 11. DeSalle, L.M. et al. (2001) Oncogene 20, 5538-42. Specificity / Sensitivity USP4 Antibody recognizes endogenous levels of total USP4 protein. Based upon sequence alignment, this antibody is predicted to cross-react with the UnpEL and UnpES isoforms of USP4.
    [Show full text]
  • Inhibition of USP4 Attenuates Pathological Scarring by Downregulation of the TGF‑Β/Smad Signaling Pathway
    MOLECULAR MEDICINE REPORTS 20: 1429-1435, 2019 Inhibition of USP4 attenuates pathological scarring by downregulation of the TGF‑β/Smad signaling pathway JIE ZHANG, SIJIA NA, SHUTING PAN, SANG LONG, YUQI XIN, QINGKUN JIANG, ZHONGWEI LAI, JUNFENG YAN and ZHONGYI CAO Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China Received October 16, 2018; Accepted April 17, 2019 DOI: 10.3892/mmr.2019.10370 Abstract. Pathological scarring is a result of the hypertrophy Introduction of scar tissue during tissue repair following trauma. The aim of the present study was to assess the effect of ubiquitin‑specific Scars are the products of wound healing by the human protease 4 (USP4) silencing on pathological scarring, and to body. Among them, hypertrophic scars (HS) and keloids evaluate the mechanistic basis for the effect. An MTT assay are known as pathological scars, which are characterized by was used to assess cell viability. Immunoprecipitation (IP) was sustained hyperactive growth, irregular scar shape, and an used to determine ubiquitination levels of the TGF-β receptor uneven and tough texture (1). Pathological scars are the result (TβR)I and Smad7. Tumor formation was assessed by injecting of hypertrophy of scar tissue in the process of tissue repair keloid fibroblasts. Hematoxylin and eosin staining was used to following trauma. Pathological scars have serious aesthetic detect pathological changes in tumor tissue. Reverse transcrip- effects and result in tissue dysfunction due to deformities tion quantitative polymerase chain reaction and western blot of the scar contractures, particularly at the joints. Certain analysis assays were used to evaluate the expression levels of patients experience pain, itching, ulceration and the develop- TβRI and Smad7.
    [Show full text]
  • USP4 Antibody (Internal) Rabbit Polyclonal Antibody Catalog # ALS10995
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 USP4 Antibody (Internal) Rabbit Polyclonal Antibody Catalog # ALS10995 Specification USP4 Antibody (Internal) - Product Information Application IHC Primary Accession Q13107 Reactivity Human, Rabbit, Monkey, Pig, Bovine, Dog Host Rabbit Clonality Polyclonal Calculated MW 109kDa KDa USP4 Antibody (Internal) - Additional Information Gene ID 7375 Anti-USP4 antibody ALS10995 IHC of human Other Names thymus. Ubiquitin carboxyl-terminal hydrolase 4, 3.4.19.12, Deubiquitinating enzyme 4, Ubiquitin thioesterase 4, USP4 Antibody (Internal) - Background Ubiquitin-specific-processing protease 4, Ubiquitous nuclear protein homolog, USP4, Hydrolase that deubiquitinates target UNP, UNPH proteins such as the receptor ADORA2A, PDPK1 and TRIM21. Deubiquitination of ADORA2A Target/Specificity increases the amount of functional receptor at Human USP4. BLAST analysis of the peptide the cell surface. May regulate mRNA splicing immunogen showed no homology with through deubiquitination of the U4 other human proteins. spliceosomal protein PRPF3. This may prevent its recognition by the U5 component PRPF8 Reconstitution & Storage thereby destabilizing interactions within the Long term: -70°C; Short term: +4°C U4/U6.U5 snRNP. May also play a role in the regulation of quality control in the ER. Precautions USP4 Antibody (Internal) is for research use USP4 Antibody (Internal) - References only and not for use in diagnostic or therapeutic procedures. Gray D.A.,et al.Oncogene 10:2179-2183(1995). Gray D.A.,et al.Submitted (OCT-1997) to the USP4 Antibody (Internal) - Protein Information EMBL/GenBank/DDBJ databases. Frederick A.,et al.Oncogene 16:153-165(1998). Name USP4 Ota T.,et al.Nat.
    [Show full text]
  • The Deubiquitinase USP4 Stabilizes Twist1 Protein to Promote Lung Cancer Cell Stemness
    cancers Article The Deubiquitinase USP4 Stabilizes Twist1 Protein to Promote Lung Cancer Cell Stemness Fengtian Li y, Qingyong Hu y, Tao He, Jing Xu, Yong Yi , Siyi Xie, Liangping Ding, Mengyuan Fu, Rongtian Guo, Zhi-Xiong Jim Xiao * and Mengmeng Niu * Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; [email protected] (F.L.); [email protected] (Q.H.); [email protected] (T.H.); [email protected] (J.X.); [email protected] (Y.Y.); [email protected] (S.X.); [email protected] (L.D.); [email protected] (M.F.); [email protected] (R.G.) * Correspondence: [email protected] (Z.-X.J.X.); [email protected] (M.N.); Tel./Fax: +86-28-8541-0034 (Z.-X.J.X.) These authors contributed equally to this work. y Received: 28 April 2020; Accepted: 7 June 2020; Published: 15 June 2020 Abstract: Lung cancer stem cells (CSCs) play a pivotal role in tumor development, drug resistance, metastasis and recurrence of lung cancer. Thus, it is of great importance to study the mechanism by which CSCs are regulated. In this study, we demonstrate that the deubiquitinase USP4 is critically important in promoting lung cancer stemness. Silencing of USP4 leads to reduction of Oct4 and Sox2 expression, decreased CD133+ cell population and inhibition of tumorsphere formation. Conversely, ectopic expression of USP4 significantly enhances lung cancer cell stemness, which is effectively rescued by simultaneous silencing of Twist1. Mechanistically, we identified USP4 as a novel deubiquitinase of Twist1.
    [Show full text]